Graph Isomorphism course, Spring 2017 Instructor: László Babai Notes by Angela Wu and the instructor Thursday, May 18, 2017 # 16 Day 16, ThWk8 ## 16.1 Quiz questions Discussed answers to # 1-4. ## 16.2 Socle of primitive permutation groups **Lemma 16.1.** The centralizer of a regular permutation group $H \leq S_n$ in S_n is regular and is isomorphic to H. *Proof.* We can identify a regular group with its right regular representation. Suppose $H \curvearrowright \Omega$ is regular. Identify this H-action with H_R (the right regular action of H). From before, $C_{\text{Sym}(H)}(H_R) = H_L \cong H$. **DO 16.2.** If $N_1, N_2 \triangleleft G$, then $[N_1, N_2] \leq N_1 \cap N_2$. **Theorem 16.3.** If $G \leq \operatorname{Sym}(\Omega)$ is primitive, then it has at most 2 minimal normal subgroups; if there are two, both are regular and they are isomorphic. *Proof.* Suppose $M_1 \neq M_2$ are minimal normal subgroups of G. Then, $M_1 \cap M_2 = 1$ (by minimality) and therefore $[M_1, M_2] = 1$ (by exercise 16.2). Since M_1 centralizes M_2 and M_2 is transitive, M_1 is semiregular. Since M_1 is also transitive, M_1 is regular. By the same argument, so is M_2 . By Lemma 16.1 we conclude that $M_2 = C_{\text{Sym}(\Omega)}(M_1)$ and $M_1 \cong M_2$. If there was a third minimal normal subgroup $M_3 \neq M_1$, then by the same argument $M_3 = C_{\text{Sym}(\Omega)}(M_1)$, so $M_3 = M_2$, a contradiction. **Corollary 16.4.** If G is primitive, then Soc(G) is characteristically simple. So $Soc(G) = T^k$ for some simple group T and some $k \ge 1$. *Proof.* Let M_1 be a minimal normal subgroup of G. Then M_1 is characteristically simple, so $M_1 \cong T^k$ for some simple group G. If $M_1 = \operatorname{Soc}(G)$, we are done. Alternatively, $\operatorname{Soc}(G) = M_1 \times M_2$ where $M_2 \cong M_1$ so $\operatorname{Soc}(G) \cong T^{2k}$. Corollary 16.5. If G is primitive and has 2 minimal normal subgroups, then $|G| \leq n^{1+\log_2 n}$. *Proof.* In this case M is regular. Corollary 16.6. If $G \leq S_n$ is primitive and $|G| > n^{1 + \log_2 n}$, then Soc(G) is nonabelian and the unique minimal normal subgroup of G. **Theorem 16.7** (Cameron (1981) and Maróti, CFSG). Let $n \geq 25$. If a primitive permutation group $G \leq S_n$ satisfies $|G| > n^{1+\log_2 N}$, then $n = {m \choose t}^{\ell}$ and $\operatorname{Soc}(G) \cong (A_m)^{\ell}$, and $$(A_m^{(t)})^{\ell} \le G \le A_m^{(t)} \wr S_{\ell}. \tag{1}$$ ## 16.3 Continuing Luks's approach We are in the situation where the ambient group G is transitive. Let \mathcal{B} be a minimal system of imprimitivity (blocks are maximal). Write $b = |\mathcal{B}|$. We have $$\psi: G \twoheadrightarrow \widetilde{G} \leq \operatorname{Sym}(\mathcal{B}) = S_b.$$ This action is primitive, so \widetilde{G} is a primitive group. Suppose that \widetilde{G} is large: $b \geq 25$ and $|\widetilde{G}| > b^{1+\log_2 b}$. We apply Cameron's theorem above to \widetilde{G} . So we have $b = {m \choose t}^{\ell}$ and \widetilde{G} satisfies Equation (1). This equation yields a homomorphism $\widetilde{\varphi} : \widetilde{G} \to S_{\ell}$. Let now $\varphi : G \to S_{\ell}$ denote the composition of ψ and $\widetilde{\varphi}$; so this is a transitive G-action on $[\ell]$. Let $K = \text{Ker}(\varphi)$. #### ▶ Easy case $\ell \geq 2$ In this case, our recipe is to DESCEND to Ker φ . **DO 16.8.** In this case, $|G : \operatorname{Ker} \varphi| \leq b$. We need to compensate this multiplicative cost by significant progress. Progress will be measured by a dramatic reduction of the parameter b. **DO 16.9.** (a) If $$m \ge 5$$ and $m \ne 6$ then $Aut(S_m) = S_m$, i.e., $Out(S_m) = 1$, but $|Out(S_6)| = 2$. (b) For $m \ge 5$ and $m \ne 6$, $Aut(A_m) = S_m$. For $m = 6$, $|Aut(A_m) : S_m| = 2$. Use the preceding exercise to prove the following. **DO 16.10.** If $$m \geq 7$$, then $(A_m^{(t)})^{\ell} \leq \text{Ker } \varphi \leq (S_m^{(t)})^{\ell}$. **DO 16.11.** The group $\operatorname{Ker} \varphi$ has a system of imprimitivity consisting of $\binom{m}{t}$ blocks. Now $b = {m \choose t}^{\ell}$ so the number of blocks of $\operatorname{Ker} \varphi$ is ${m \choose t} \leq \sqrt{b}$, indeed a dramatic reduction (cannot be repeated more than $\log \log n$ times). #### ▶ Hard case $\ell = 1$ We have a Johnson group. This is where Luks's approach breaks down: there is no obvious way to reduce a meaningful parameter. In this case, $b = \binom{m}{t}$. The action is $S_m^{(t)} \cong S_m$ or $A_m^{(t)} \cong A_m$. Let Γ be the domain with $|\Gamma| = m$. $$G \twoheadrightarrow \widetilde{G} \cong \operatorname{giant}(m) \curvearrowright \Gamma$$, where the action on Γ is as a giant. Our job is to find a subgroup $M \leq \operatorname{Sym}(\Gamma)$ of exponential (in m) index such that $\varphi(\operatorname{Aut}(x)) \leq M$ where x is our input string. As an intermediate step, we shall find a canonical structure, such as a graph, on Γ . We then use this structure to find one of the following, at quasipolynomial multiplicative cost. - Canonical coloring with no dominant color - Canonical equipartition of the dominant color class - Canonical Johnson graph on the dominant color class ## 16.4 Symmetry defect Let X = (V, E) be a graph. We say that two vertices u, v are **twins** if the transposition (u, v) is an automorphism of X. **DO 16.12.** The "twin or equal" relation is an equivalence relation on V. Let T be a largest equivalence class of this equivalence relation. We call the proportion |T|/|V| the **symmetricity** of X and 1 - |T|/|V| the **symmetry defect** of X. **DO 16.13.** (a) The symmetry defect of a graph and its complement are the same. - (b) The symmetry defect of the complete graph is 0. - (c) The symmetry defect of the complete bipartite graph $K_{r,s}$ is $\min(r/n, s/n)$ where n = r + s. - (d) The symmetry defect of the disjoint union of the complete graphs K_{n_1}, \ldots, K_{n_k} is $1 n_j/n$ where $n_j = \max(n_1, \ldots, n_k)$ and $n = \sum_i n_i$. **HW 16.14.** (a) Prove: the symmetry defect of a nontrivial regular graph is $\geq 1/2$. (In other words, the symmetricity of a nontrivial regular graph is $\leq 1/2$.) (b) Prove that this bound is tight for all even values of n, the number of vertices. (A graph is *nontrivial* if it is not empty or complete.) Check website for assigned reading, and additional homework problems.