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7 Day 7, TWk4

7.1 Regular permutation groups

Definition 7.1 (Cayley). A right regular representation of G is the representation p : G —
Sym(G), p(g) : * — xg, where g € G acts as right translation by g. This is a “permutation
representation.”

DO 7.2. p is faithful, or, Ker(p) = 1.
We define G = Img(p) < Sym(G).

DO 7.3. G is transitive.

DO 7.4. |G, = 1.

A permutation group H < Sym({?) is regular if it is transitive and, (Vz € Q)(|H,| = 1. Notice
that the V can be replaced by 3 since H is transitive. A regular permutation group H < Sym(€)
satisfies |H| = |Q].

Definition 7.5. Let f; : G — Sym(£%;) (i = 1,2) be two permutation representations of the
group G. We say that f; and fo are equivalent if there is a bijection ¥ : €3 — Q9 such that
(Vg € G)(f1(9)Y = ¥ fa(g)). We say that the permutation groups G; < Sym(€;) (i = 1,2) are
equivalent if there is a bijection v : ; — Qg such that Gy = ¥~ 'G11.

DO 7.6. Prove: the groups G; < Sym(€;) (i = 1,2) are equivalent if and only if there exists a
group G that has two equivalent pemutation representations f; : G — Sym(€2;) (i —1,2), such that

Img(f;) = G;.

DO 7.7. Prove: If G is a regular permutation group then G is equivalent to Gr (and therefore
also to G'.).

Hint: Suppose G < Sym(Q) is regular. Pick xg € Q. Then the map H — Q given by h + x} is a
bijection. (End Hint)

Definition 7.8. A permutation group H < Sym(2 is semiregular if (Vx € Q)(|H,| = 1).
So, H is regular if and only if it is transitive and semiregular.
DO 7.9. Each orbit of a semiregular permutation group H has length |H| (because = |H : Hy|).

Definition 7.10. The left regular representation G ~ G given by A : G — Sym(G), A(g) : z —
-1
g .

DO 7.11. A(gh) = A(g)A(h).



DO 7.12. G, :=Img(\) < Sym(G) is a regular permutation group isomorphic to G.

Definition 7.13. Let S C G. The centralizer of S in G is the subgroup Cg(S) := {g € G :
(Vs € S)(gs = sg)} of G.

Claim 7.14. [GL,GRr] =1, i.e., G < Cgym(a)(GR) and vice versa.
HW 7.15. Show the following.

(a) If G < Sym(€2) is transitive, then Cgyp ) (G) is semiregular.

(b) If G < Sym(Q2) is semiregular, then Cgyy,)(G) is transitive.
Corollary 7.16. If G < Sym(Q) is regular, then Csymq)(G) is regular.
Corollary 7.17. Cgyn(a)(GL) = Gg-

Proof. We know that the centralizer C' > G, and a proper supergroup of G g cannot be regular. [J

HW 7.18. If G < Sym(fQ) is primitive and 1 # N < G, then N is transitive.
Corollary 7.19. If G is primitive and 1 # N < G and N is abelian, then N is reqular.
Follows from below DO exercise.

DO 7.20. If H < Sym(Q2) is transitive and abelian, then it is regular.

7.2 A bound on the order of primitive and solvable permutation groups

Corollary 7.21. If G < Sym(Q) is primitive and solvable, then |G| < n'*t1°82(") where n = |Q].

Proof. First, for N <G, we consider the action G ~ N by conjugation, given by g : = — 29 = g~ lzg
for # € n. Notice that Ker(¢) ={g € G: (Vz € N)(29 = z)} = Ca(N).

Let N <pin G (N is a minimal normal subgroup in G). Then N is characteristically simple.
Then, N =T x --- x T, where T is simple. If T' is solvable, then T" = Z, and N = Z];.

Notice that N is transitive. Since N is abelian, N is regular and n = p*. So ¢ : GAN
by conjugation. Then, Ker(¢) = Cg(N) = N. From the lemma below, Img(¢) = G/N, so
G/N < Aut(N) = Aut(Z}) = GL(k, p) (DO below).

We estimate |GL(k,p)| < |[MF*¥(F,)| = p*’. So, we find that |G| < |N||G/N| < pF'pF =
nk:-l—l _ n1+logpn < n1+log2 n ]

Corollary 7.22 (No longer HW, follows from above corollary). If G < Sym(QQ) is primitive and
solvable, then |Q| = p* (a prime power).
Lemma 7.23. If H < Sym(Q) is regular and abelian, then Cgyyqy(H) = H.
Proof. C(H) > H. But C(H) is regular, so this cannot be a proper inclusion. O
DO 7.24. Aut(ZF) = GL(k,p).
HW 7.25. If N <G < Sym(Q) is regular, then |G| < n'*t1°82" where n = |Q).
For two subsets A, B C G, we denote by A- B = AB ={ab:a € A,b € B}.
DO 7.26. Suppose K, L < G. Then KL < G if and only if KL = LK.
Notice that GRGr, = GLGr < Sym(G).

HW 7.27. For what groups G is G Ggr primitive? Give a very simple characterization.



7.3 Graph isomorphism!

Definition 7.28. GRAPH ISOMORPHISM (GI) PROBLEM
Input: Graphs X, Y.
Question: Decide the question “Is X £ Y?”

We denote by ISO(X,Y) : {f : X — Y isomorphisms} the set of graph isomorphisms from X
to Y.
¢ i XY

DO 7.29. ISO(X,Y) = .
( ) {Aut(X)J if X 2Y, for o € ISO(X, X)

If G < S, we know that the minimum number of generators is < logy(n!) < nlogyn.
Theorem 7.30 (Babai 1987). Every subgroup chain in S, has length < 2n — 3.
Corollary 7.31. Every non-redundant set of generators of a subgroup of Sy, has < 2n—3 generators.

Definition 7.32. MEMBERSHIP PROBLEM IN PERMUTATION GROUPS
Input: oq,...,0,,7 € 5.
Question: 7 € (0y,...,0%)7?

Theorem 7.33 (Furst-Hopcroft-Luks (1980)). MEMBERSHIP IN PERMUTATION GROUPS can be
solved in polynomial time.

C. C. Sims (1960s) first gave a polynomial-time algorithm, without analysis. His algorithm was
analyzed by Knuth, 1982-89.

DO* 7.34. GI decision problem is Cook-equivalent (polynomial time Turing-equivalent) to finding
the set of isomorphisms. Also, GI is equivalent to finding an isomorphism (if it exists).

Note: the * is a “very little star.”

DO 7.35. Isomorphism of digraphs is Karp-reducible (polynomial time many-one-reduction) to
Isomorphism of graphs. In other words, there exists a polynomial-time algorithm that solves the
following.

Input: digraphs X,Y

Output: graphs X', Y/, such that X Y «— X' @Y’

Definition 7.36. A vertex-colored graph is a triple X = (V, E, f), where (V| E) is a graph and
f 'V — {colors} is a coloring a the vertices. Here {colors} is an ordered set, usually of the form [k]
where k is the number of colors used. Isomorphisms of vertex-colored graphs preserve the vertex
colors by definition.

DO 7.37. Isomorphism of vertex-colored graphs is Karp reducible to isomorphism of graphs.

Definition 7.38. A coloring g : V' — {colors} is a refinement of the coloring f : V' — {colors} if
the associated partition of V' is a refinement, i.e., (Va,y € V)(g9(z) = g(y) = f(z) = f(y)).



7.4 Naive vertex refinement — a heuristic idea

NAIVE REFINEMENT STEP

Input: a vertex-colored graph X = (V, E, f)

Output: a refined coloring g defined as follows.
For x € V' let h(z) = (f(x);deg;(z) | i € {colors}) where deg;(z) denotes the number of neighbors
of z of color i.
Now sort the strings h(x) (z € V) lexicographically and let g(z) = j if h(x) is the j-th string in
the lexicographic order.

Naive refinement is the following algorithm:
NAIVE REFINEMENT

repeat call NAIVE REFINEMENT STEP

until partition stable

Definition 7.39 (Equitable partition). Let X = (V, E) be a graph and V = C; U --- U Cy, be a
partition of its vertex set. We say that this partition is equitable if

1. For all 4, X[C}] (the induced subgraph on vertices in C;) is regular.

2. For all 4, j, the graph given by X[C;, C;] (the induced bipartite graph on C; x C}) is semireg-
ular.

A coloring f splits V into color classes: V = Cy LI --- U Cy where C; = f~1(4).

DO 7.40. The coloring f is stable under naive refinement if and only if the corresponding partition
is equitable.

Theorem 7.41 (Babai-Erdés-Selkow (1979)). For almost all graphs, naive refinement completely
splits the graph in 2 rounds.

Challenge 7.42 (Abe Mowshowitz, 1970). If the characteristic polynomial of Ay is irreducible
over QQ, then naive refinement completely splits the graph.
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