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7.1 Regular permutation groups

Definition 7.1 (Cayley). A right regular representation of G is the representation ρ : G →
Sym(G), ρ(g) : x 7→ xg, where g ∈ G acts as right translation by g. This is a “permutation
representation.”

DO 7.2. ρ is faithful, or, Ker(ρ) = 1.

We define GR = Img(ρ) ≤ Sym(G).

DO 7.3. GR is transitive.

DO 7.4. |Gx| = 1.

A permutation group H ≤ Sym(Ω) is regular if it is transitive and, (∀x ∈ Ω)(|Hx| = 1. Notice
that the ∀ can be replaced by ∃ since H is transitive. A regular permutation group H ≤ Sym(Ω)
satisfies |H| = |Ω|.

Definition 7.5. Let fi : G → Sym(Ωi) (i = 1, 2) be two permutation representations of the
group G. We say that f1 and f2 are equivalent if there is a bijection ψ : Ω1 → Ω2 such that
(∀g ∈ G)(f1(g)ψ = ψf2(g)). We say that the permutation groups Gi ≤ Sym(Ωi) (i = 1, 2) are
equivalent if there is a bijection ψ : Ω1 → Ω2 such that G2 = ψ−1G1ψ.

DO 7.6. Prove: the groups Gi ≤ Sym(Ωi) (i = 1, 2) are equivalent if and only if there exists a
group G that has two equivalent pemutation representations fi : G→ Sym(Ωi) (i− 1, 2), such that
Img(fi) = Gi.

DO 7.7. Prove: If G is a regular permutation group then G is equivalent to GR (and therefore
also to GL).

Hint: Suppose G ≤ Sym(Ω) is regular. Pick x0 ∈ Ω. Then the map H → Ω given by h 7→ xh0 is a
bijection. (End Hint)

Definition 7.8. A permutation group H ≤ Sym(Ω is semiregular if (∀x ∈ Ω)(|Hx| = 1).

So, H is regular if and only if it is transitive and semiregular.

DO 7.9. Each orbit of a semiregular permutation group H has length |H| (because = |H : Hx|).

Definition 7.10. The left regular representation GyG given by λ : G→ Sym(G), λ(g) : x 7→
g−1x.

DO 7.11. λ(gh) = λ(g)λ(h).
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DO 7.12. GL := Img(λ) ≤ Sym(G) is a regular permutation group isomorphic to G.

Definition 7.13. Let S ⊆ G. The centralizer of S in G is the subgroup CG(S) := {g ∈ G :
(∀s ∈ S)(gs = sg)} of G.

Claim 7.14. [GL, GR] = 1, i.e., GL ≤ CSym(G)(GR) and vice versa.

HW 7.15. Show the following.

(a) If G ≤ Sym(Ω) is transitive, then CSym(Ω)(G) is semiregular.

(b) If G ≤ Sym(Ω) is semiregular, then CSym(Ω)(G) is transitive.

Corollary 7.16. If G ≤ Sym(Ω) is regular, then CSym(Ω)(G) is regular.

Corollary 7.17. CSym(G)(GL) = GR.

Proof. We know that the centralizer C ≥ GR, and a proper supergroup of GR cannot be regular.

HW 7.18. If G ≤ Sym(Ω) is primitive and 1 6= N CG, then N is transitive.

Corollary 7.19. If G is primitive and 1 6= N CG and N is abelian, then N is regular.

Follows from below DO exercise.

DO 7.20. If H ≤ Sym(Ω) is transitive and abelian, then it is regular.

7.2 A bound on the order of primitive and solvable permutation groups

Corollary 7.21. If G ≤ Sym(Ω) is primitive and solvable, then |G| ≤ n1+log2(n), where n = |Ω|.
Proof. First, for NCG, we consider the action GyN by conjugation, given by g : x 7→ xg = g−1xg
for x ∈ n. Notice that Ker(φ) = {g ∈ G : (∀x ∈ N)(xg = x)} = CG(N).

Let N CminG (N is a minimal normal subgroup in G). Then N is characteristically simple.
Then, N = T × · · · × T , where T is simple. If T is solvable, then T ∼= Zp and N ∼= Zk

p.

Notice that N is transitive. Since N is abelian, N is regular and n = pk. So φ : GyN
by conjugation. Then, Ker(φ) = CG(N) = N . From the lemma below, Img(φ) ∼= G/N , so
G/N ≤ Aut(N) = Aut(Zk

p) = GL(k, p) (DO below).

We estimate |GL(k, p)| ≤ |Mk×k(Fp)| = pk
2
. So, we find that |G| ≤ |N ||G/N | ≤ pk

2
pk =

nk+1 = n1+logp n ≤ n1+log2 n.

Corollary 7.22 (No longer HW, follows from above corollary). If G ≤ Sym(Ω) is primitive and
solvable, then |Ω| = pk (a prime power).

Lemma 7.23. If H ≤ Sym(Ω) is regular and abelian, then CSym(Ω)(H) = H.

Proof. C(H) ≥ H. But C(H) is regular, so this cannot be a proper inclusion.

DO 7.24. Aut(Zk
p) = GL(k, p).

HW 7.25. If N CG ≤ Sym(Ω) is regular, then |G| ≤ n1+log2 n, where n = |Ω|.
For two subsets A,B ⊆ G, we denote by A ·B = AB = {ab : a ∈ A, b ∈ B}.

DO 7.26. Suppose K,L ≤ G. Then KL ≤ G if and only if KL = LK.

Notice that GRGL = GLGR ≤ Sym(G).

HW 7.27. For what groups G is GLGR primitive? Give a very simple characterization.
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7.3 Graph isomorphism!

Definition 7.28. Graph Isomorphism (GI) problem
Input: Graphs X, Y .
Question: Decide the question “Is X ∼= Y ?”

We denote by ISO(X,Y ) : {f : X → Y isomorphisms} the set of graph isomorphisms from X
to Y .

DO 7.29. ISO(X,Y ) =

{
φ if X 6∼= Y

Aut(X)σ if X ∼= Y, for σ ∈ ISO(X,X)
.

If G ≤ Sn, we know that the minimum number of generators is ≤ log2(n!) < n log2 n.

Theorem 7.30 (Babai 1987). Every subgroup chain in Sn has length ≤ 2n− 3.

Corollary 7.31. Every non-redundant set of generators of a subgroup of Sn has ≤ 2n−3 generators.

Definition 7.32. Membership problem in permutation groups
Input: σ1, . . . , σk, τ ∈ Sn.
Question: τ ∈ 〈σ1, . . . , σk〉?

Theorem 7.33 (Furst-Hopcroft-Luks (1980)). Membership in permutation groups can be
solved in polynomial time.

C. C. Sims (1960s) first gave a polynomial-time algorithm, without analysis. His algorithm was
analyzed by Knuth, 1982-89.

DO* 7.34. GI decision problem is Cook-equivalent (polynomial time Turing-equivalent) to finding
the set of isomorphisms. Also, GI is equivalent to finding an isomorphism (if it exists).
Note: the * is a “very little star.”

DO 7.35. Isomorphism of digraphs is Karp-reducible (polynomial time many-one-reduction) to
Isomorphism of graphs. In other words, there exists a polynomial-time algorithm that solves the
following.

Input: digraphs X,Y
Output: graphs X ′, Y ′, such that X ∼= Y ⇐⇒ X ′ ∼= Y ′.

Definition 7.36. A vertex-colored graph is a triple X = (V,E, f), where (V,E) is a graph and
f : V → {colors} is a coloring a the vertices. Here {colors} is an ordered set, usually of the form [k]
where k is the number of colors used. Isomorphisms of vertex-colored graphs preserve the vertex
colors by definition.

DO 7.37. Isomorphism of vertex-colored graphs is Karp reducible to isomorphism of graphs.

Definition 7.38. A coloring g : V → {colors} is a refinement of the coloring f : V → {colors} if
the associated partition of V is a refinement, i.e., (∀x, y ∈ V )(g(x) = g(y) =⇒ f(x) = f(y)).
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7.4 Naive vertex refinement — a heuristic idea

Naive refinement step
Input: a vertex-colored graph X = (V,E, f)
Output: a refined coloring g defined as follows.

For x ∈ V let h(x) = (f(x); degi(x) | i ∈ {colors}) where degi(x) denotes the number of neighbors
of x of color i.
Now sort the strings h(x) (x ∈ V ) lexicographically and let g(x) = j if h(x) is the j-th string in
the lexicographic order.

Naive refinement is the following algorithm:
Naive refinement

repeat call naive refinement step
until partition stable

Definition 7.39 (Equitable partition). Let X = (V,E) be a graph and V = C1 t · · · t Ck be a
partition of its vertex set. We say that this partition is equitable if

1. For all i, X[Ci] (the induced subgraph on vertices in Ci) is regular.

2. For all i, j, the graph given by X[Ci, Cj ] (the induced bipartite graph on Ci×Cj) is semireg-
ular.

A coloring f splits V into color classes: V = C1 t · · · t Ck where Ci = f−1(i).

DO 7.40. The coloring f is stable under naive refinement if and only if the corresponding partition
is equitable.

Theorem 7.41 (Babai-Erdős-Selkow (1979)). For almost all graphs, naive refinement completely
splits the graph in 2 rounds.

Challenge 7.42 (Abe Mowshowitz, 1970). If the characteristic polynomial of AX is irreducible
over Q, then naive refinement completely splits the graph.
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