Graph Isomorphism course, Spring 2017

Instructor: László Babai Notes by Angela Wu Tuesday, April 18, 2017

7 Day 7, TWk4

7.1 Regular permutation groups

Definition 7.1 (Cayley). A **right regular representation of** G is the representation $\rho: G \to \operatorname{Sym}(G), \ \rho(g): x \mapsto xg$, where $g \in G$ acts as right translation by g. This is a "permutation representation."

DO 7.2. ρ is faithful, or, $Ker(\rho) = 1$.

We define $G_R = \operatorname{Img}(\rho) \leq \operatorname{Sym}(G)$.

DO 7.3. G_R is transitive.

DO 7.4. $|G_x| = 1$.

A permutation group $H \leq \operatorname{Sym}(\Omega)$ is **regular** if it is transitive and, $(\forall x \in \Omega)(|H_x| = 1$. Notice that the \forall can be replaced by \exists since H is transitive. A regular permutation group $H \leq \operatorname{Sym}(\Omega)$ satisfies $|H| = |\Omega|$.

Definition 7.5. Let $f_i: G \to \operatorname{Sym}(\Omega_i)$ (i=1,2) be two permutation representations of the group G. We say that f_1 and f_2 are *equivalent* if there is a bijection $\psi: \Omega_1 \to \Omega_2$ such that $(\forall g \in G)(f_1(g)\psi = \psi f_2(g))$. We say that the permutation groups $G_i \leq \operatorname{Sym}(\Omega_i)$ (i=1,2) are equivalent if there is a bijection $\psi: \Omega_1 \to \Omega_2$ such that $G_2 = \psi^{-1}G_1\psi$.

DO 7.6. Prove: the groups $G_i \leq \operatorname{Sym}(\Omega_i)$ (i = 1, 2) are equivalent if and only if there exists a group G that has two equivalent permutation representations $f_i : G \to \operatorname{Sym}(\Omega_i)$ (i - 1, 2), such that $\operatorname{Img}(f_i) = G_i$.

DO 7.7. Prove: If G is a regular permutation group then G is equivalent to G_R (and therefore also to G_L).

Hint: Suppose $G \leq \operatorname{Sym}(\Omega)$ is regular. Pick $x_0 \in \Omega$. Then the map $H \to \Omega$ given by $h \mapsto x_0^h$ is a bijection. (End Hint)

Definition 7.8. A permutation group $H \leq \text{Sym}(\Omega \text{ is semiregular if } (\forall x \in \Omega)(|H_x| = 1).$

So, H is regular if and only if it is transitive and semiregular.

DO 7.9. Each orbit of a semiregular permutation group H has length |H| (because $= |H: H_x|$).

Definition 7.10. The **left regular representation** $G \curvearrowright G$ given by $\lambda : G \to \text{Sym}(G), \lambda(g) : x \mapsto g^{-1}x.$

DO 7.11. $\lambda(qh) = \lambda(q)\lambda(h)$.

DO 7.12. $G_L := \operatorname{Img}(\lambda) \leq \operatorname{Sym}(G)$ is a regular permutation group isomorphic to G.

Definition 7.13. Let $S \subseteq G$. The **centralizer of** S **in** G is the subgroup $C_G(S) := \{g \in G : (\forall s \in S)(gs = sg)\}$ of G.

Claim 7.14. $[G_L, G_R] = 1$, i.e., $G_L \leq C_{Sym(G)}(G_R)$ and vice versa.

HW 7.15. Show the following.

- (a) If $G \leq \operatorname{Sym}(\Omega)$ is transitive, then $C_{\operatorname{Sym}(\Omega)}(G)$ is semiregular.
- (b) If $G \leq \operatorname{Sym}(\Omega)$ is semiregular, then $C_{\operatorname{Sym}(\Omega)}(G)$ is transitive.

Corollary 7.16. If $G \leq \operatorname{Sym}(\Omega)$ is regular, then $C_{\operatorname{Sym}(\Omega)}(G)$ is regular.

Corollary 7.17. $C_{\text{Sym}(G)}(G_L) = G_R$.

Proof. We know that the centralizer $C \geq G_R$, and a proper supergroup of G_R cannot be regular. \square

HW 7.18. If $G \leq \operatorname{Sym}(\Omega)$ is primitive and $1 \neq N \triangleleft G$, then N is transitive.

Corollary 7.19. If G is primitive and $1 \neq N \triangleleft G$ and N is abelian, then N is regular.

Follows from below DO exercise.

DO 7.20. If $H \leq \operatorname{Sym}(\Omega)$ is transitive and abelian, then it is regular.

7.2 A bound on the order of primitive and solvable permutation groups

Corollary 7.21. If $G \leq \operatorname{Sym}(\Omega)$ is primitive and solvable, then $|G| \leq n^{1 + \log_2(n)}$, where $n = |\Omega|$.

Proof. First, for $N \triangleleft G$, we consider the action $G \cap N$ by conjugation, given by $g: x \mapsto x^g = g^{-1}xg$ for $x \in n$. Notice that $\text{Ker}(\phi) = \{g \in G: (\forall x \in N)(x^g = x)\} = C_G(N)$.

Let $N \triangleleft_{\min} G$ (N is a minimal normal subgroup in G). Then N is characteristically simple. Then, $N = T \times \cdots \times T$, where T is simple. If T is solvable, then $T \cong \mathbb{Z}_p$ and $N \cong \mathbb{Z}_p^k$.

Notice that N is transitive. Since N is abelian, N is regular and $n = p^k$. So $\phi : G \curvearrowright N$ by conjugation. Then, $\operatorname{Ker}(\phi) = C_G(N) = N$. From the lemma below, $\operatorname{Img}(\phi) \cong G/N$, so $G/N \leq \operatorname{Aut}(N) = \operatorname{Aut}(\mathbb{Z}_p^k) = \operatorname{GL}(k,p)$ (DO below).

We estimate $|\operatorname{GL}(k,p)| \leq |M^{k \times k}(\mathbb{F}_p)| = p^{k^2}$. So, we find that $|G| \leq |N||G/N| \leq p^{k^2}p^k = n^{k+1} = n^{1+\log_2 n} \leq n^{1+\log_2 n}$.

Corollary 7.22 (No longer HW, follows from above corollary). If $G \leq \operatorname{Sym}(\Omega)$ is primitive and solvable, then $|\Omega| = p^k$ (a prime power).

Lemma 7.23. If $H \leq \operatorname{Sym}(\Omega)$ is regular and abelian, then $C_{\operatorname{Sym}(\Omega)}(H) = H$.

Proof. $C(H) \geq H$. But C(H) is regular, so this cannot be a proper inclusion.

DO 7.24. Aut(\mathbb{Z}_p^k) = GL(k, p).

HW 7.25. If $N \triangleleft G \leq \operatorname{Sym}(\Omega)$ is regular, then $|G| \leq n^{1 + \log_2 n}$, where $n = |\Omega|$.

For two subsets $A, B \subseteq G$, we denote by $A \cdot B = AB = \{ab : a \in A, b \in B\}$.

DO 7.26. Suppose $K, L \leq G$. Then $KL \leq G$ if and only if KL = LK.

Notice that $G_RG_L = G_LG_R \leq \operatorname{Sym}(G)$.

HW 7.27. For what groups G is G_LG_R primitive? Give a very simple characterization.

7.3 Graph isomorphism!

Definition 7.28. Graph Isomorphism (GI) Problem

Input: Graphs X, Y.

Question: Decide the question "Is $X \cong Y$?"

We denote by $ISO(X,Y): \{f: X \to Y \text{ isomorphisms}\}$ the set of graph isomorphisms from X to Y.

DO 7.29.
$$ISO(X,Y) = \begin{cases} \phi & \text{if } X \not\cong Y \\ \operatorname{Aut}(X)\sigma & \text{if } X \cong Y, \text{ for } \sigma \in \operatorname{ISO}(X,X) \end{cases}$$

If $G \leq S_n$, we know that the minimum number of generators is $\leq \log_2(n!) < n \log_2 n$.

Theorem 7.30 (Babai 1987). Every subgroup chain in S_n has length $\leq 2n-3$.

Corollary 7.31. Every non-redundant set of generators of a subgroup of S_n has $\leq 2n-3$ generators.

Definition 7.32. Membership problem in Permutation Groups

Input: $\sigma_1, \ldots, \sigma_k, \tau \in S_n$. Question: $\tau \in \langle \sigma_1, \ldots, \sigma_k \rangle$?

Theorem 7.33 (Furst-Hopcroft-Luks (1980)). Membership in Permutation Groups can be solved in polynomial time.

C. C. Sims (1960s) first gave a polynomial-time algorithm, without analysis. His algorithm was analyzed by Knuth, 1982-89.

DO* 7.34. GI decision problem is Cook-equivalent (polynomial time Turing-equivalent) to finding the set of isomorphisms. Also, GI is equivalent to finding an isomorphism (if it exists). Note: the * is a "very little star."

DO 7.35. Isomorphism of digraphs is Karp-reducible (polynomial time many-one-reduction) to Isomorphism of graphs. In other words, there exists a polynomial-time algorithm that solves the following.

Input: digraphs X, Y

Output: graphs X', Y', such that $X \cong Y \iff X' \cong Y'$.

Definition 7.36. A vertex-colored graph is a triple X = (V, E, f), where (V, E) is a graph and $f: V \to \{\text{colors}\}$ is a coloring a the vertices. Here $\{\text{colors}\}$ is an ordered set, usually of the form [k] where k is the number of colors used. Isomorphisms of vertex-colored graphs preserve the vertex colors by definition.

DO 7.37. Isomorphism of vertex-colored graphs is Karp reducible to isomorphism of graphs.

Definition 7.38. A coloring $g: V \to \{\text{colors}\}$ is a refinement of the coloring $f: V \to \{\text{colors}\}$ if the associated partition of V is a refinement, i.e., $(\forall x, y \in V)(g(x) = g(y) \implies f(x) = f(y))$.

7.4 Naive vertex refinement — a heuristic idea

NAIVE REFINEMENT STEP

Input: a vertex-colored graph X = (V, E, f)

Output: a refined coloring g defined as follows.

For $x \in V$ let $h(x) = (f(x); \deg_i(x) \mid i \in \{\text{colors}\})$ where $\deg_i(x)$ denotes the number of neighbors of x of color i.

Now sort the strings h(x) ($x \in V$) lexicographically and let g(x) = j if h(x) is the j-th string in the lexicographic order.

Naive refinement is the following algorithm:

NAIVE REFINEMENT

repeat call NAIVE REFINEMENT STEP until partition stable

Definition 7.39 (Equitable partition). Let X = (V, E) be a graph and $V = C_1 \sqcup \cdots \sqcup C_k$ be a partition of its vertex set. We say that this partition is *equitable* if

- 1. For all $i, X[C_i]$ (the induced subgraph on vertices in C_i) is regular.
- 2. For all i, j, the graph given by $X[C_i, C_j]$ (the induced bipartite graph on $C_i \times C_j$) is semiregular.

A coloring f splits V into color classes: $V = C_1 \sqcup \cdots \sqcup C_k$ where $C_i = f^{-1}(i)$.

DO 7.40. The coloring f is stable under naive refinement if and only if the corresponding partition is equitable.

Theorem 7.41 (Babai-Erdős-Selkow (1979)). For almost all graphs, naive refinement completely splits the graph in 2 rounds.

Challenge 7.42 (Abe Mowshowitz, 1970). If the characteristic polynomial of A_X is irreducible over \mathbb{Q} , then naive refinement completely splits the graph.