Graph Isomorphism course, Spring 2017
Instructor: Laszl6 Babai
Notes by Angela Wu and the instructor
Thursday, April 20, 2017

8 Day 8, ThWk4

8.1 Erdds-Rényi model of random graphs

Last time we talked about how NAIVE REFINEMENT can solve Graph Isomorphism for almost all
graphs. We define what “almost all” means.

Definition 8.1 (Erdds-Rényi random graph). Denote by G,, ,, the probability distribution over the

2(3) graphs on a given set V of n vertices defined below. The Erd6s-Rényi random graph is a
graph chosen according to G,, ;.

A Bernoulli trial with probability p of success is a ranomd variable that takes value 1 with
probability p (“success”) and value 0 with probability 1 — p (“failure”).

Independently for each of the (g) pairs {u, v} of vertices, perform a Bernoulli trial with proba-
bility p of success, and make u and v adjacent if the trial is succeeds; non-adjacent if it fails.

DO 8.2. For a graph X chosen from the distribution G, , (notation: X ~ G, ,), the expected
number of edges is p(g) and the variance of the number of edges is p(1—p) (’;) . Compute the expected
number of triangles in X and the variance V(p,n) of the number of triangles; asymptotically
evaluate the latter when p is fixed and n — oo. Your answer to this last question should be of
the form V(p,n) ~ an® where a,b are constants — determine a and b. The “asymptotic equality”
an ~ by of the sequences a,, b, means lim, o ay, /b, = 1.

Definition 8.3 (“With high probability”). Let A,, be a sequence of events in a sequence of prob-
ability spaces, for n € N. A sequence A,, of events happens with high probability (w.h.p.) if
P[A,] — 1 as n — oo. We say that an event A,, happens with very high probability (w.v.h.p.)
if there exists 0 < ¢ < 1 such that P[4,] > 1 — ™.

The following three results are from Babai-Erdos—Selkow. We consider the uniform Erddés—
Rényi graphs G, 1 /2.
Lemma 8.4. There exists a constant € > 0 such that with high probability the top n® vertex degrees

are distinct.

Let S = (s1,...,s;) be a list (ordered set) of vertices and let S = {s1,...,s;}. Let z € V'\ S.
Define by code(x) to be the string in {0,1}/*! such that the i-th entry is the indicator for the
adjacency {z,s;} (1 if they are adjacent, 0 otherwise).

Lemma 8.5. Let S be the list of vertices of highest 3logyn degrees. Then, w.h.p. all codes code(x)
(x € V\'S) are distinct.

The proof in BES yields the bound 1/ n'/7 on the probability that not all codes are distinct.

Corollary 8.6 (BES). With high probability, NAIVE REFINEMENT completely splits a random
graph in 2 rounds, and thereby solves GI for almost all graphs against any graph in linear time.

Theorem 8.7 (Babai-Kucera (1979)). Consider G, 1/o. W.v.h.p., a random graph is completely
split by NATVE REFINEMENT n 3 rounds.

The following lemma is the first step in the proof of the result.

HW 8.8. W.v.h.p. the random graph has Q(y/n) distinct degrees. In fact, the probability that
this fails is < n~“" for some constant ¢ > 0.

DO 8.9 (~1973). GI is Cook-equivalent to “Orbits of Aut(X),” the decision problem described
by “given z,y € V', does there exist o € Aut(X) such that % = y?”
Hint: Solve for vertex-colored graphs.

DO 8.10 (Babai-Mathon (1978)). GI is Cook-equivalent to both (1) computing [Aut(X)|, and (2)
finding a set of generators of Aut(X).

8.2 “Tower of groups” method

The method appears in a 1979 paper by Babai. The main result of that paper is that GI for
vertex-colored graphs of bounded color multiplicity can be tested in Las Vegas polynomial time
(see definition below). The algorithm was subsequently derandomized by Furst—Hopcroft—Luks
(1980). These results are explained in these notes.

Definition 8.11 (Monte-Carlo algorithm). A Monte-Carlo algorithm is a randomized algorithm
of which the success probability is at least 1 — €, where € > 0 is set by the user. The cost of the
algorithm is proportional to log(1/e).

Definition 8.12 (Las-Vegas algorithm). A Las Vegas algorithm is an algorithm that never errs,
but probability < e reports failure, where ¢ > 0 is set by the user. The cost of the algorithm is
proportional to log(1/€).

Definition 8.13 (Random element). When speaking of a “random element” of a non-empty finite
set S, we mean an element from the uniform distribution over .S, unless expressly specified otherwise.

Consider a chain of subgroups of a finite group G,
G=Gy>G1>-->Gp=1.
We make the following assumptions on access to this chain of groups.

(0) Black-box access to G. Not very precisely, this means that all group elements have names
(strings of equall length over a finite alphabet) and we have oracles that perform group opera-
tions (multiplication, inversion, recognizing the identity).

1) Each Gj is recognizable in G: given g € G and ¢ < m, an oracle determines whether g € G;.
2) An upper bound M on the jumps is given: (Vi)(|Gi—1 : Gi| < M).
4) The order of G is given.

(1)
(2)
(3) Independent random elements of Gy are available.
(4)
(5)

A set of generators of GG is given.

(An “oracle” is a device that accepts certain types of queries.)

Theorem 8.14 (Tower-of-groups, randomized (B 1979)). Under assumptions (0), (1), (2), (3).
there is a randomized algorithm that will, w.h.p., (a) find the order of each G;, (b) find generators
for each G;, and (c) generate random elements of each G;, at the a cost of poly(m, M) group
operations and membership queries. If additionally we assume (4) then the algorithm is Las Vegas.

This result was subsequently derandomized by Furst, Hopcroft, and Luks (1980).

Theorem 8.15 (Tower-of-groups, deterministic (FHL 1980)). Under assumptions (0), (1), (2),
(5), there is a deterministic algorithm that will, w.h.p., (a) find the order of each G;, (b) find
generators for each G, and (c) generate random elements of each G;, at the a cost of poly(m, M)
group operations and membership queries.

Let T; be a set of right coset representatives of G; in G;_1 A collection of the form 7 =
(Th,...,Ty) is a coset table for this tower. To prove Theorem 8.14 and Theorem 8.15, it suffices
to find a coset table for the subgroup chain (see DO exercises below).

DO 8.16 (Prove (a)). Show that |G, = [];-,[T}]-

DO 8.17 (Prove (b)). G; = (U;~; Tj)-

DO 8.18. G;—1 = G;T; uniquely (each g € G;_1 can uniquely be written as g = ht where h € G;
and t € T;). Infer that Go = T, - Tyn—1 - . .. - 11 uniquely.

DO 8.19 (Prove (c)). To obtain a random element of G, take a product of the form t,,t,,—1 -t
where ¢; is a random element of T;.

Definition 8.20. We say that 7 = (11,...,T},) is a partial coset table if for every i < m,
o I; CGi
e 1T

e 10 two elements of T} are in the same right coset of Gj, i.e., if 2,y € T; and zy~' € G; then
x=y.

The algorithm will start from the smallest partial coset table (7; = {1} for all i) and gradually
build it up to a full coset table.

8.2.1 Sifting

First we present a subroutine, SIFT, due to Schreier—Sims, that takes an element g € G and either
represents it as a product g € Ty, - - - T} from the current partial coset table (T1,...,T),), or uses g
to add an element to the coset table.

Procedure S1FT(T,g)
Input: access (0) and (1) to the subgroup chain

partial coset table (T1,...,T),) and an element g € G
Output: either a representation g = t,, - --t; where t; € T;

or a new element to be added to the coset table.
Loop invariant: g € G;_1

fort=1tom
for t € T;
if gt_l e G;
thent; «+t, g+ gt—' (: peeling off a coset rep :)
exit inner “for” loop
(: no more t € T; will be tested, we move to i < i+ 1 :)
end(for) (: (VteT;)(gt™ ¢ Gy))
add g to T;
return updated coset table
exit SIFT
end(for) (: g “sifted all the way down” :)
return (t1,...,tn) (¢ g=tmtm-1...11:)
end(Procedure)

DO 8.21. Prove the correctness of the procedure.

DO 8.22. Let N = > ,|Gi—1 : G;|. The cost of SIFT is < N group operations and the same
number of membership queries (membership in G;).

8.2.2 Tower of Groups, randomized

This procedure appears in [B 1979].

Procedure TOWER-OF-GROUPS, RANDOMIZED
Input: access (0), (1), (2), (3) to the subgroup chain
Output: coset table 7 = (T1,...,Tn)

Loop invariant: 7 is a partial coset table

Initialization
fori=1...m
T; = {1}

Body of algorithm

repeat a sufficient number of times — this will be Mm + r, r determined below.
pick a random g € Gg
SIFT(T, 9)

end(repeat)

return 7 = (T1,...,T},)

end(Procedure)

DO 8.23. In applying SIFT to random elements of g € G, some get stuck in 7} for some j > 4,
the others reach G; (after having peeled off a sequence of coset representatives). Prove: those that
reach G; form a sequence of independent random elements of Gj;.

Determining the number of iterations.

Proposition 8.24. Let e > 0 and let r > M (In(Mm)—Ine). Then the probability that after Mm+r
rounds, the coset table is not full, is less than €.

Proof. During the nM +r rounds, at most mM elements get stuck in the coset table; all the others
sift all the way down, providing a shower of at least r independent random elements for each G;.
It follows that

P[a coset of G; in Gi_1 is missed] < (1 — 1/M)" < e™"/M.

So,

P[coset table is not full | < Mme /M < ¢
as long as r > M (In(Mm) — lne). O
DO 8.25. The partial coset table 7 = (11,...,Ty,) is full if and only if |G| + [~ |T;|.

DO 8.26. Suppose we add assumption (4): |G| is known. Then, this algorithm is Las Vegas
(honestly reports failure, which occurs with probability < €).

8.2.3 Tower of Groups, deterministic

Next we present the FHL derandomization (1980) of this procedure.

Procedure TOWER-OF-GROUPS, DETERMINISTIC

Input: access (0), (1), (5) to the subgroup chain: a list S of generators of G is given
Output: coset table 7 = (T1,...,Tp)

Loop invariant: 7T is a partial coset table

Initialization
fori=1...m
T, = {1)
Body of algorithm
for s € S
SIFT(T, s)
end (for)

for t,t' e UL, T;
SIFT(T, tt")

end(for)
return 7 = (T1,...,Ty)
end(Procedure)

HW 8.27. Prove correctness of the procedure (i.e., prove that in the end, the coset table is full).
DO 8.28. The number of rounds (siftings) is < |S| + (mM)2.

Remark 8.29. A more efficient termination rule was found more than a decade earlier by C. C.
Sims. His algorithm was analyzed by Knuth (1982-91).

8.3 Graphs with bounded color multiplicity

A vertex-colored graph is a triple X = (V, E, f), where f : V' — {colors} is the coloring. We write
C; = f~1(i) for the i-th color class. The multiplicity of color i is |Cy|.

Theorem 8.30. GI of graphs with bounded color multiplicity can be tested
(i) [B 1979] in Las Vegas (defined below) polynomial time

(ii) [FHL 1980] in deterministic polynomial time

We will prove this by determining Aut(X) for a vertex-colored graph X = (V, E, f) that has
bounded color multiplicity.

First we set some notation: Let X = (V, E, f). Name the color classes V = Cy U--- U Cp,. Let
n; = |Ci|, son =ny + -+ ny,. The number of potential isomorphisms is [[n;!. Let d be a bound
on the color classes, so (Vi)(|C;| < d).

Denote by F;; the set of edges between C; and C;. Denote by Ej; the set of edges within Cj.

We will build a tower of groups.

Here we build the “beginning” of the tower. Let Xy be the colored set X¢ := (V,0, f). Then,
Aut(X()) = Sn1 X +-e X Snm- Let X7 = (%,Ell,f), let Xo = (‘/, Fi U Elg,f)), etc. Then,
X(k+1) = X. Let Gz = Aut(XZ) Then we have:

2
Go>G1>---> G(k+1) = Aut(X). (1)
2
DO 8.31. Show that indeed G; < G;_;.

But, is G; recognizable? Yes, because Aut(“anything”) is recognizable. By “anything” we really
mean any explicit mathematical object.
To complete the chain in Equation (1), we append a stabilizer chain of Aut(X), explained below.

Definition 8.33. Let H < S,,. A stabilizer chain is formed by stabilizing one more point in [n]
at every step in the chain: let H; be the pointwise stabilizer of the set [i]. So

H=Hy>H,>-->H,=1.
DO 8.34. |H : H,| < n for every H < S,, and z € [n].

DO 8.35. Show that the members of the stabilizer chain of the automorphism group of a graph
are recognizable.

DO 8.36. Let G < S, be the automorphism group of a colored set with color multiplicity < d and
let H < G and z € [n]. Then |H : H;| <d.

DO 8.37. Complete the proof of Theorem 8.30.
We shall say that a permutation group is “given” or “known” if a list of generators is given/known.

Theorem 8.38 (FHL 1980). Given G < S,, and o € S,,, membership of o in S,, can be determined
in polynomial time; and the order of G can be found in polynomial time.

DO 8.39. Prove this result. (Apply the Tower-of-Groups method to the stabilizer chain.)

Definition 8.40 (Normal closure). Let H < G. The normal closure of H in G is the smallest
normal subgroup of G containing H, i.e., the group generated by all conjugates of H.

DO 8.41 (FHL, 1980). Given H < G < S,, we can find the normal closure of H in G in polynomial
time.

	Day 8, ThWk4
	Erdos-Rényi model of random graphs
	``Tower of groups'' method
	Sifting
	Tower of Groups, randomized
	Tower of Groups, deterministic

	Graphs with bounded color multiplicity

