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Definition 2.1. The Fibonacci Numbers are the numbers defined by F0 = 0, F1 = 1,
and Fn = Fn−1 + Fn−2 for n ≥ 2.

We say that a sequence a = (a0, a1, . . . ) is of Fibonacci type if an = an−1 + an−1 for
n ≥ 2.

Definition 2.2. A geometric progression is a sequence of the form (a, aq, aq2, aq3, . . . ).

DO 2.3. For a 6= 0, this sequence is Fibonacci type if and only if q = q1,2 = (1±
√

5)/2 ≈
1.618 and −0.618.

The number q1 = (1 +
√

5)/2 is the golden ration.

DO 2.4. Every Fib-type sequence is a linear combination of the sequences (1, q1, q
2
1, . . . ) and

(1, q2, q
2
2, . . . ), i. e., ∀ Fib-type seq. (an) ∃α, β ∈ R s.t. an = αqn1 + βqn2 . (Here q1 and q2 are

the values from the previous exercise.)

DO 2.5. Find α, β for an = Fn.

Corollary 2.6. The Fibonacci Numbers have the following form.

Fn =

⌊
1√
5
·

(
1 +
√

5

2

)n⌉

where the half-brackets indicate “nearest integer.”

DO 2.7. Prove previous corollary.

Theorem 2.8 (Mantel–Turán). If G is a triangle-free graph, then m ≤ n2/4.

Definition 2.9. If an, bn are sequences, we say an, bn are asymptotically equal if

lim
n→∞

an
bn

= 1.

In this case we write an ∼ bn.
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Lemma 2.10. If G is triangle free and x, y ∈ V (G) are adjacent, then deg(x) + deg(y) ≤ n.

Proof. Every u ∈ V is adjacent to at most one of x, y.

First proof of Mantel–Turán. By induction on n. Inductive step: If m = 0 we are done.
Otherwise pick an edge xy. Remove the edge and let G′ be the resulting graph. We have

mG ≤ 1 + (n− 2) +mG′ .

(Why (n − 2)? Because the edge xy is being counted twice.) By the inductive hypothesis

mG′ ≤ (n−2)2
4

. Therefore we have

mG ≤ 1 + (n− 2) +
(n− 2)2

4
=
n2

4
.

Note that this argument requires two base cases: n = 1 and n = 2, These cases are obvious.

Definition 2.11. If x1, . . . , xn ∈ R then the arithmetic mean is defined as

A(x1, . . . , xn) =
x1 + · · ·+ xn

n
.

Definition 2.12. If x1, . . . , xn ∈ R then the quadratic mean is defined as

Q(x1, . . . , xn) =

√
x21 + · · ·+ x2n

n
.

DO 2.13. Show A ≤ Q; equality holds if and only if x1 = . . . = xn.

Second proof of Mantel–Turán. Let’s add up the m inequalities stated in the Lemma (one
inequality per edge).

mn ≥
∑
{x,y}∈E

(deg(x) + deg(y)) =
∑
x∈V

(deg(x))2

On the other hand, using the inequality between the Arithmetic and the Quadratic mean,
we obtain the relation

(2m)2

n
=

(
∑

deg(x))2

n
≤
∑
x∈V

(deg(x))2 ≤ mn.

Conclude that m ≤ n2

4
.

BONUS 2.14. (5 points) Prove: If C4 6⊂ G then m = O(n3/2). Specifically, m ≤ n3/2

2
+ n

4
.

Notation 2.15 (Big-Oh notation). For two sequences an, bn we write an = O(bn) and say
that an is big-Oh of bn if

(∃C)(∀ sufficiently large n)( |an| ≤ C · |bn| ).

C is called the implied constant.

2



CH 2.16. (12 points) Show that the upper bound in Bonus problem 2.14 is tight, up to
a constant factor. Specifically, there exist infinitely many graphs G not containing C4 s.t.
mG = Ω(n

3/2
G ).

Notation 2.17 (Big-Omega notation). The Ω notation is the inverse of the big-Oh notation:
bn = Ω(an) if an = O(bn).

Remark 2.18. Challenge problems have no deadline.

Theorem 2.19 (Binomial Theorem).

(x+ y)n =
n∑

k=0

(
n

k

)
xkyn−k

Theorem 2.20 (Trinomial Theorem).

(x+ y + z)n =
∑

k1,k2,k3≥0:
∑

ki=n

(
n

k1, k2, k3

)
xk1yk2zk3

where the trinomial coefficient
(

n
k1,k2,k3

)
is defined by(

n

k1, k2, k3

)
=

n!

k1! · k2! · k3!

Theorem 2.21 (Multinomial Theorem).

(x1 + · · ·+ xr)
n =

∑
k1,...,kr≥0:

∑
ki=n

(
n

k1, . . . , kr

)
xk11 . . . xkrr

where the multinomial coefficient
(

n
k1,...,kr

)
is defined by(

n

k1, . . . , kr

)
=

n!∏
ki!

DO 2.22. Prove the Multinomial Theorem.

HW 2.23. (3 points) Count the terms in the Multinomial Theorem, i. e., how many so-

lutions does the equation
r∑

i=1

ki = n have in integers k1, . . . , kr ≥ 0? Hint: answer is very

simple expression in terms of n, r involving a binomial coefficient.

Recall: a tree is a connected, cycle-free graph.

Theorem 2.24. For a tree, m = n− 1.

Lemma 2.25. Every tree with n ≥ 2 vertices has a vertex of degree 1.

Terminology 2.26 (Maximal vs. maximum). An object is maximal if it cannot be ex-
tended. An object is maximum if it is the largest among all objects under consideration.
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Proof. Take any maximal path. Claim: Its endpoints have degree 1.

DO 2.27. Prove the claim.

Proof of theorem. We proceed by induction on n. The case n = 1 is a base case. Inductive
step: let T be a tree with n ≥ 2. Pick a vertex x of degree 1. Let T ′ be the tree obtained
by removing x. Apply IH to T ′, so we get m′ = n′ − 1. But m′ = m− 1 and n′ = n− 1, so
(m− 1) = (n− 1)− 1, i. e., m = n− 1, as desired.

To justify our use of the IH, we need to show: T ′ is still a tree.
Claim 1: T ′ is cycle free (trivial). Claim 2: T ′ is connected.
To show Claim 2, let u, v ∈ VT ′ . We need to show ∃u . . . v path in T ′. We know such a

path P exists in T . We claim that x /∈ V (P ). Indeed, x cannot be an endpoint of P , since
x 6= u, v. Moreover, x cannot be an interior point of the path, because x has degree 1.

Remark 2.28. Do not forget to show that the assumptions of the IH hold for the smaller
object to which you are trying to apply the IH. (In the above case, we had to show that T ′

was still a tree).

Given a set V of n vertices what is the number of graphs on V ? The anwer is 2(n
2).

How many among them are trees? The remarkably simple answer is given by Cayley’s
Formula.

Theorem 2.29 (Cayley’s Formula). The number of trees on a given set of n vertices is

nn−2

How can we prove Cayley’s Formula? We outline one approach.

Theorem 2.30 (Counting trees with prescribed degrees). Let d1, . . . , dn ≥ 1 be integers
such that

∑
di = 2n− 2. The number of trees with vertex set [n] such that deg(i) = di is

(n− 2)!∏
(di − 1)!

.

DO 2.31. Prove this theorem. Hint: induction on n.

HW 2.32. (3 points) Use Theorem 2.30 to prove Cayley’s Formula.

An alternative proof of Cayley’s Formula is a bijective proof called Prüfer’s Code.

DO 2.33. Study Prüfer’s Code.

DO 2.34. G is a tree if and only if (∀u, v ∈ V )(∃!u . . . v path) (the exclamation point means
“unique”).

DO 2.35. In a connected graph, every pair of longest (maximum length) paths share a
vertex.

BONUS 2.36. (12 points) In a tree, all longest paths share a vertex.

4



CH 2.37. (15 points) Show that the previous statement is not true for all connected
graphs.

Definition 2.38. A subgraph H ⊆ G is called a spanning subgraph if V = W (no vertices
removed). H is moreover called a spanning tree if H is a tree.

Theorem 2.39. A graph G has a spanning tree if and only if G is connected.

Proof. We prove the theorem by a greedy algorithm. Let E = {e1, . . . , em}, and ei =
{ui, vi}. The desired spanning tree will be (V, F ).

initialize F := ∅.
for i = 1 to n:

if ui and vi are not in the same component of (V, F ) then F ← F ∪ {ei}
end(for)
return (V, F )

DO 2.40. Prove that this algorithm produces a spanning tree assuming G is connected.
What does it do if G is not connected?

Definition 2.41. A legal coloring of a graph is a mapping f : V → {colors} such that if
u ∼ v then f(u) 6= f(v). The goal is to use as few colors as possible.

A greedy coloring algorithm:

for v ∈ V use the first available color (the colors are ordered).

Definition 2.42. The chromatic number of a graph is the minimum number of colors
needed for a legal coloring. We denote this number χ(G).

HW 2.43 (Dismal failure of greedy coloring). (4 points) For every even value of the positive
integer n, find a graph G with vertex set V = [n] such that χ(G) = 2 but the greedy coloring
requires n/2 colors.

DO 2.44 (Success of greedy coloring). Prove: (∀G)(χ(G) ≤ ∆ + 1). Here ∆ denotes the
maximum degree in G.
Use greedy coloring for the proof.

DO 2.45. For asymptotic notation (asymptotic equality, big-Oh, big-Omega) study the
instructor’s “Discrete Mathematics” online lecture notes (linked among Texts/Online
references on the course home page).
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