
Graph Theory: CMSC 27530/37530 Lecture 4

Lecture by László Babai
Notes by Geoffrey West

April 11, 2019∗

Definition 4.1. For two vertices x, y ∈ V , the distance from x to y, denoted dist(x, y), is
the length of the shortest x...y path. If there is no x...y path, we say dist(x, y) =∞.

Note that the distance defines a metric on the set of vertices:

(i) dist(x, y) = dist(y, x)

(ii) dist(x, y) ≥ 0, with equality if and only if x = y.

(iii) dist(x, z) ≤ dist(x, y) + dist(y, z) (Triangle Inequality).

DO 4.2. Show that dist(, ) satisfies the triangle inequality.

Definition 4.3. The diameter of a graph G is

diam(G) = max
x,y∈V

{dist(x, y)}.

DO 4.4. Show the following.

(a) (∀G)(G or G is connected).

(b) min{diam(G), diam(G)} ≤ 3.

(c) If diam(G) ≥ 4, then diam(G) ≤ 2.

DO 4.5. Show that (c)⇒ (b)⇒ (a).

Recall that we have previously seen maxn{m : G is disconnected} =
(
n−1

2

)
. How can we

prove this? The graph Kn−1 ∪K1 achieves this number. To show the upper bound, we need
to show that if G is disconnected then mG ≤

(
n−1

2

)
, i. e., mG ≥

(
n
2

)
−
(
n−1

2

)
= n − 1. But

this follows from the fact that G must be connected in view of exercise DO 4.4.
Recall the Mantel–Turán: a triangle-free graph has at most bn2

4
c edges. For a bipartite

graph,

max{m : G is bipartite with n vertices} = max
0≤k≤n

k(n− k) = bn
2

4
c.

∗Posted April 11 at 7pm. Revised April 12, 8am.
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This is the same as the result given in Mantel–Turán. Note that every bipartite graph is
K3-free, so

{K3-free graphs} ⊃ {bipartite graphs}.

As a result,

max{m : K3-free with n vertices} ≥ max{m : bipartite with n vertices}.

Mantel–Turán shows that, somewhat surprisingly, the two sides are actually equal.

DO 4.6. The maximum number of edges (given n) for a K3-free graph occurs only if the
graph is bipartite, i.e. Kbn

2
c,dn

2
e.

Similarly, we observe that maxn{m : Kr+1-free} ≥ maxn{m : r-colorable}. The following
theorem shows equality.

Theorem 4.7 (Turán’s Theorem). maxn{m : Kr+1-free} = maxn{m : r-colorable}.

Definition 4.8. The complete r-partite graph Kn1,...,nr has n = n1 + · · · + nr vertices
(ni ≥ 1) divided into r parts where the i-th part has ni vertices and two vertices are adjacent
precicely if they don’t belong to the same part.

Note that for r = 2 we get the definition of the complete bipartite graphs.

DO 4.9. If G is a complete r-partite graph then G is r-colorable. Moreover, G is a maximal
r-colorable graph in the sense that it ceases to be r-colorable if we add any edge.

DO 4.10. Find maxn{m : r-colorable}. Show that this occurs for the complete r-partite
graph with almost equal parts: each part contains either bn

r
c or dn

r
e vertices.

DO 4.11. Prove Turán’s theorem by induction on n. First saturate the graph with respect
to the property of not containing a Kr+1 : keep adding edges as long as you can without
creating a Kr+1. Note that the saturated graph contains Kr. Pick a subgraph Kr ⊆ G
and induct in a manner similar to our inductive proof of Mantel–Turán. The base cases are
n = 0, 1, ..., r − 1.

Proposition 4.12. maxn{m : r-colorable} ≤ (1− 1
r
)n

2

2
.

HW 4.13. (4 points) Prove this Proposition. The proof should be no more than three lines.
(Four if you are verbose.)

Combining this with Theorem 4.7 we obtain the following.

Corollary 4.14 (Turán). If G is Kr+1-free, then m ≤
(

1− 1

r

)
n2

2
.

Next we derive an interesting consequence of Turán’s Theorem regarding the indepen-
dence number α(G). First we make a simple observation. ∆ is the maximum degree.

Observation 4.15 (Naive bound on the independence number). α(G) ≥ n

1 + ∆
.
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Proof 1. Based on previous exercises, α(G) ≥ n

χ(G)
≥ n

∆ + 1
.

Proof 2. Use a greedy independent set algorithm. Let V = {v1, ..., vn}.
initialize I := ∅.
for i = 1 to n:

if vi has no neighbor in I then I ← I ∪ {vi}
end(for)
return I.

DO 4.16. Show that the greedy algorithm returns an independent set of size ≥ n

1 + ∆
.

Next we strengthen this result by replacing the maximum degree by the average degree
(
∑
di)/n = 2m/n. It turns out that this stronger lower bound on α(G) is an immediate

consequence of Turán’s Theorem.

Theorem 4.17 (Turán’s bound on the independence number). α(G) ≥ n

1 +
∑

di
n

.

HW 4.18. (4 points) Derive this inequality from Corollary 4.14. Your proof should be no
more than 3 lines.

Next we state a remarkable further strenthening of the bound.

Theorem 4.19 (Victor Keh-Wei Wei and Yair Caro, independently, cca. 1980).

α(G) ≥
n∑

i=1

1

1 + di
.

Note: Wei’s full name was tracked down by your classmates Jeremiah Milbauer, Shashank
Srivastava, and Can Liu from websites at the City University of Hong Kong and a biograph-
ical sketch that appeared in a 1995 article.

We shall see that the Wei–Caro bound is stronger than Turán’s. Its proof is a gem.

Definition 4.20. If x1, ..., xn > 0, their geometric mean is

G(x1, ..., xn) =

(
n∏

i=1

xi

)1/n

.

DO 4.21. Show that G ≤ A, where A is the arithmetic mean. Equality holds if an only if
all the xi are equal.

Hint for a high-school solution: first prove it for n = 2k by induction on k. Then prove
that if we know the inequality for some value of n then the inequality follows for all smaller
values of n.

A more advanced proof uses Jensen’s inequality and the concavity of the logarithm func-
tion.

If you have difficulty executing these hints, find a couple of proofs online.
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Definition 4.22. If x1, ..., xn > 0, the harmonic mean is

H(x1, ..., xn) =
1

A( 1
xi
, ..., 1

xn
)

=
n∑

1
xi

.

Theorem 4.23. G ≥ H. Equality holds if and only if x1 = . . . = xn.

HW 4.24. (3 points) Prove this inequality, in one line, using G ≤ A.

Corollary 4.25. A ≥ H.

HW 4.26. (3 points) Prove that the Wei–Caro bound is always at least as strong as Turán’s,
i. e., prove that

n∑
i=1

1

1 + di
≥ n

1 +
∑n

i=1 di
n

.

Example 4.27. To illustrate how much stronger Wei–Caro can be than Turán, consider a
graph with two connected components of order n/2 each, one of them 3-regular, the other
a clique. Then the average degree is greater than n/4. Therefore the Turán lower bound is
not greater than 4. Wei–Caro, on the other hand, shows that α ≥ n

2
1

1+3
+ n

2
1

n/2
> n

8
.

To prove Wei–Caro, we need to take an excursion into

random variables over finite probability spaces.

Consider shuffling a deck of 52 cards. There are 52! possible outcomes of this experiment.
If we flip n coins, we get a binary sequence (Heads/Tails) of length n. There are 2n possible
outcomes of this experiment. We can construct a “random graph” by fixing a set of n vertices
and deciding adjacency by flipping a (possibly biased) coin for each pair of vertices. This

experiment has 2(n
2) possible outcomes.

We refer to the set of possible outcomes of each experiment described as the sample
space of the given experiment. This illustrates the first component of the abstract concept
of a probability space. We refer to each outcome of the experiment (each element of the
sample space) as an “elementary event.” We intuitively associate a “probability” with each
elementary event. This illustrates the second component of the concept of a probability space.
After this motivation, we give the abstract definition in terms of two basic mathematical
primitives, sets and functions. “Experiment” is not a mathematical concept and it is not
mentioned in the definition – the examples involving “experiments” only serve to help our
intuition.

Definition 4.28. A probability distribution over a non-empty finite set Ω is a function
P : Ω→ R satisfying

(i) (∀x ∈ Ω)(P (x) ≥ 0)

(ii)
∑

x∈Ω P (x) = 1.

Definition 4.29. A finite probability space is a pair (Ω, P ) where Ω is a non-empty finite
set, called the sample space, and P is a probability distribution over Ω.
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Definition 4.30 (Probability of event). An event is a subset A ⊆ Ω of the sample space.
The probability of an event A is defined as

P (A) =
∑
x∈A

P (x).

DO 4.31. P (∅) = 0 and P (Ω) = 1.

Definition 4.32. A trivial event is an event with probability 0 or 1.

DO 4.33 (Complement). For an event A, we have P (A) = 1− P (A), where A = Ω \ A.

DO 4.34. If A ∩B = ∅, then P (A ∪B) = P (A) + P (B).

DO 4.35 (Modular equation). If A,B ⊆ Ω are events then

P (A ∪B) + P (A ∩B) = P (A) + P (B).

Definition 4.36 (Union bound). If A1, . . . , Ak ⊆ Ω are events then

P

(
k⋃

i=1

Ai

)
≤

k∑
i=1

P (Ai).

Definition 4.37. P is the uniform distribution if (∀x ∈ Ω)

(
P (x) =

1

|Ω|

)
.

DO 4.38. If P is uniform then the probability of event A is
|A|
|Ω|

(“number of good cases

divided by the number of all cases”) – the naive notion of probability.

Convention 4.39 (Default distribution: uniform). To specify a probability space, we need
to state the sample space and the probability distribution. If we omit the probability distri-
bution, then the probability distribution is assumed to be uniform.

Definition 4.40. A random variable is a function X : Ω→ R.

Example 4.41. The number of heads in a random sequence of n coin flips is a random
variable. (The sample space is the set of possible coin-flip sequences.)

Definition 4.42. For a random variable X, the expected value of X is the quantity

E(X) =
∑
x∈Ω

X(x) · P (x). (1)

Note that this is a weighted average of the values of X.

DO 4.43. Show that
minX ≤ E(X) ≤ maxX.
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DO 4.44. If the distribution P is uniform then the expected value is simply the average of
the values taken by X:

E(X) =
1

|Ω|
∑
x∈Ω

X(x).

The most important fact about the expected value is that it is linear:

(i) E(X + Y ) = E(X) + E(Y )

(ii) E(c ·X) = c · E(X)

where X and Y are random variables over the same probability space )Ω, P ) and c is a scalar
(real number).

DO 4.45 (Linearity of Expectation). Show that

E
(∑

ciXi

)
=
∑

ciE(Xi).

(This is equivalent to the two preceding statements.)

The sample space is often much larger than the range of values of a random variable. (The
random variable may take the same value on large subsets of the sample space.) Grouping
together those terms in Eq. (1), we obtain the expression in the next exercise; this has only
as many non-zero terms as the size of the range of X.
Notation: The expression “X = y” denotes the event {x ∈ Ω | X(x) = y}.

DO 4.46. Prove: E(X) =
∑

y∈R y · P (X = y).

Definition 4.47. An indicator variable is a random variable that takes values 0 and 1
only.

There is a 1-1 correspondence between indicator variables and events. Let A ⊆ Ω be an
event. We define the corresponding indicator variable ϑA as follows. For x ∈ Ω we set

ϑA(x) =

{
1 x ∈ A
0 x 6∈ A

DO 4.48. Find the inverse of this correspondence: show that if X is an indicator variable
then letting A = X−1(1) we have X = ϑA.

Remark 4.49. Events have probabilities; they don’t have expected values. Random variables
have expected values; they don’t have probabilities.

Next we illustrate the power of the linearity of expectation on a problem.
The hat-check problem, first variant.

On entering a club, n patrons check their hats at a counter. On leaving, the hat-check clerk
returns a random hat to each patron. What is the expected number of patrons who get their
own hat?

Let us formalize this question.
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Definition 4.50. A permutation of a set S is a bijection f : S → S. A fixed point of f
is a value x ∈ S such that f(x) = x.

So the question is, what is the expected number of fixed points of a random permutation.
To further formalize this question, we consider the uniform probability space of which

the sample space Ω is the set of n! permutations of a set S of n elements. For f ∈ Ω, let
X(f) denote the number of fixed points of f . So X is a random variable and the question is
to find E(X).

To do so, we use indicator variables. Let S = {s1, . . . , sn}. Let Yi be the indicator of the
event f(si) = si (si is a fixed point). Then

X = Y1 + . . .+ Yn (2)

DO 4.51. Verify Eq. (2). What it means is that for every f ∈ Ω we have X(f) =
∑n

i=1 Yi(f).

From Eq. (2) it follows, by the linearity of expectation, that

E(X) =
n∑

i=1

E(Yi). (3)

Now E(Yi) = P (f(si) = si) (the probability of the event indicated by Yi). This probability is
1/n by symmetry: f(si) could be any member of S, with equal probability, so the probability
that si is fixed by f is 1/n.

Summarizing,

E(X) =
n∑

i=1

E(Yi) =
n∑

i=1

1

n
= 1.

So the expected number of hats returned to their owner is 1.

BONUS 4.52. (6 points) Prove Wei–Caro in this manner.
Hint. Given a graph G, first you need to construct a probability space. State the size of the
sample space. Then you need to construct a random variable X such that

• X ≤ α(G)

• E(X) =
∑ 1

1 + di

Use indicator variables to compute the expected value of your random variable X. This hint
should suffice. DO NOT spoil your fun by looking up the solution online.
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