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HW 6.1. (5 points) Count the independent sets in P,. (Note that the empty set is
independent. More generally, every subset of an independent set is independent.) The
answer has a simple form in terms of a known quantity.

HW 6.2. (4 points) What is the maximum possible number of maximal paths in a tree
with n vertices? Your answer should be a simple expression.

HW 6.3. (4 points) For all sufficiently large n, find a connected graph with at least 100"
longest paths.

BONUS 6.4. (5 points) For infinitely many values of n, find a connected, 3-regular graph
with n vertices and exponentially many longest paths. “Exponentially many” means more
than (14 ¢)" for some constant ¢ > 0. State your constant. (As usual, n is the number of
vertices.)

Recall a previous challenge problem: Find a connected graph where no vertex is shared
by all longest paths. — Solutions that have been found so far share the property that any
eight longest paths share a vertex, but you can find nine longest paths that do not share a
vertex.

CH+ 6.5. Does there exist a connected graph with three longest paths that do not share a
vertex?

Definition 6.6. A vertex v € V(@) is a cut vertex if the number of connected components
in G increases when v is removed.

Definition 6.7. For k£ > 1 we say that a connected graph is k-connected if it remains
connected when any k — 1 or fewer vertices are removed. Note that if G is k-connected and
¢ < k then, by definition, G is also ¢-connected. — This definition does not apply to the case
when the graph is complete since no matter how many vertices we remove from a complete
graph, it remains connected. K, is said to be n — 1-connected, but not n-connected. (So it
is also k-connected for all K < mn — 1.) The reason of this convention will be explained later.

CH+ 6.8. Does there exist a 3-connected 3-regular graph where the longest paths do not
share a vertex?



Recall the definition of a finite probability space: a pair (£, P), where ) is a non-empty
finite set called a sample space, and P : {2 — R is a function satisfying

(i) (Ve e Q)(P(z) > 0)
(i) >peq Pz) = 1.

Such a function is called a probability distribution over €2, We say that P is the uniform

distribution if (Vz € Q)(P(z) = ).

An event is a subset A C (). For an event A, we define

P(A) =) P(x).

r€A

It follows that P(@) = 0, and P(2) = 1. Furthermore, 0 < P(A) <1 for any event A,
and P(A) =1— P(A), where A= Q\ A.

DO 6.9 (Union bound). Show that

A random wvariable on the probability space (€2, P) is a function X : Q — R.
For a random variable X, we define the expected value as E(X) = > o P(z)- X(z). In
the case P is the uniform distribution,

is the arithmetic mean of the values taken by the random variable at each element of the
sample space €.
Recall a previous DO exercise: min X < F(X) < max X.

Theorem 6.10.
E(X)=> y-P(X =y).

yEeR

Recall that a random variable Y is an indicator variable if Y : Q@ — {0,1}. There is
a 1-1 correspondence between indicator variables and events. For an event A, there is an
associated indicator variable 94 defined by

9 a() 1 ifzeA
xTr) = .
4 0 ifrdA

For an arbitrary indicator variable Y, the event A defined by A =Y 1(1) gives 94 =Y.

DO 6.11.  E(9,) = P(A).



The most important fact about expectation is that it is linear. This means the following.
Given random variables X7, ..., X on (2, P) and real numbers ¢, ..., ¢,, the expected value
of the linear combination Zle ¢; - X, distributes over its terms as follows:

i=1 i=1

Example 6.12. Let us flip n biased coins, with the probability
P(i-th coin is heads) = p;.

Let X be the total number of heads. What is E(X)? We can write

X:Zn:Yi
i=1

where Y; is the indicator variable indicating that the event that the i-th coin comes up heads.
By the linearity of expectation,

E(X) = ZE(Yz) = sz

Recall that a permutation of a set V is a bijection 7 : V' — V. If |V| = n, then there are
n! permutations of the set V.

Lecture 4 stated the Wei-Caro lower bound on the independence number. We now present
a proof of this bound.

Proof of Wei-Caro. Recall the greedy independent set algorithm for a graph G with vertex
set V= {v,...,0.}:

initialize [ := @.

fori=1ton

if v; has no neighbor in I then I < I U {v;}

end(for)

return /.
Clearly, the set I returned is an independent set and therefore o(G) > |I|.

We shall use a randomized version of this algorithm: first we randomly permute the
vertices and then apply the greedy independent set algorithm. Let X denote the expected
size of the independent set we get. We claim that

n

B(x) >3 (1)

L1+ d;

Since a(G) > X (always), it follows that a(G) > max X > E(X), proving the Wei-Caro
bound.

Let us formalize and prove these statements. Let €2 be the set of all permutations of V(G),
and P be the uniform distribution over Q. For 7w € ), let I(7) denote the independent set
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obtained by the greedy algorithm after applying the permutationn 7 to the set of vertices.
Let X(m) = |I(m). So X is a random variable over the probability space (€2, P). We can

write .
X=>)Y
=1

where Y] is the indicator variable indicating the event that i € I(m).
We need to estimate
P(v; € I(m)).

If v; is the first among all of its neighbors under permutation 7 then v; € I(7). So

1
P(v; € I) > P(n(v;) < w(u) for every u € N(v;)) = T

The reason for the rightmost equation is that when all vertices are randomly permuted, then
in particular the set {v;} U N(v;) of 1+ d; vertices comes in random order, so each element
of this set has an equal chance to come first.

As a result,

E(X) = Z E(Y;) = Z P(v; € I(n))

> Z P(m(v;) < w(u) for every u € N(v;))

"1
:;1+di'

]

HW 6.13. (4 points) For alln > 1, find a graph G,, with n vertices such that a(G,,) = Q(n)
but the Wei-Caro bound is O(1). Recall the meaning of the big-Oh and big-Omega notation:
what you need to do is find constants ¢, C' > 0 such that «(G,) > en but WC(G,,) < C.

HW 6.14. (6 points) Prove that every graph has a bipartite subgraph of size > m/2 (i.e.,
you can delete at most half the edges and get a bipartite subgraph). It is required that you
use a method analogous to the Wei-Caro proof. This involves

1. defining a probability space;

2. defining a random variable X such that the value of X is always a lower bound on the
maximum size of a bipartite subgraph;

3. proving that F(X) =m/2

There are also non-randomized ways of solving this problem but such a solution will not
earn you credit.

HW 6.15. (3 points) Count the shortest paths between two opposite corners of the k x ¢
grid. The answer is a very simple expression.



HW 6.16. (3 points) In the d-cube @), count the shortest paths between 00...0 and 11...1.
The answer a very simple expression.

Notation 6.17. For two vertices u, v, we write u = v if either u = v or u ~ v. In this case
we say that u and v are adjacent or equal.

Definition 6.18. Given graphs G = (V, E) and H = (W, F), the strong product of G and
H is a graph G « H with the vertex set

V(G+H)=V x W.

For two vertices vertices (v, w;) and (vg, wsy), we define (vy,w;) = (vg,wy) if v = vy and
w1 = wsy.

HW 6.19. (5 points) Consider the graph Cs * C5 (the ‘King’s graph’ on the 5 x 5 toroidal
grid). Find an independent set of size 5.

BONUS 6.20. (5 points) Show that a(C5 * C5) < 5.
These two problems together assert that a(Cs x C5) = 5.

DO 6.21. Show that a(C7 x C7) > 9.

BONUS 6.22. (3 points) Show that a(C; * C7) < 10.

CH+ 6.23. Find o(C7 x C7).



