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INDEPENDENT SETS
DO 7.1. Show that 30 < a(C7 x C7 x C7) < 35.

CH+ 7.2. (10 points) Determine a(C; * C7 x C7), or at least narrow the gap between the
upper and the lower bounds.

7
Theorem 7.3 (Laszlé Lovasz, 1979). a(Cy * ... x C7) < wh where wy; = 1T sec(a /7).’
t copies
The secant function is defined as sec(a) = 1/cos(c). This result remains valid if we

replace every occurrence of “7” by an odd integer n > 3.
The bound is not exact—for instance, ws ~ 37.1.

CH-++ 7.4. (100 points) Beat the Lovdsz bound wt on «(C7 x ... x C7) (¢ copies) for all
values of ¢ in the following sense. Find a number z < w; such that a(C7 x ... x C7) < 2 for
all ¢ > 1. (Or, prove that no such z exists.)

Either outcome would have significance to Information Theory.

MATCHINGS

Definition 7.5. A perfect matching is a matching M which reaches every vertex, i.e.,
|M| = n/2. Note that if a graph has a perfect matching then its order must be even.

HW 7.6 (Kénig 1916). (4 points) If G is a regular bipartite graph of degree at least 1, then
G has a perfect matching. Use either Kénig’s Theorem 7 = v or Hall’s Marriage Theorem.

Remark 7.7. Note that in 1916, Kénig was not in the position to use either Kénig’s Theorem
(1931) or Hall’s Theorem (1935).

DO 7.8. Find a regular graph G of degree at least 1 that does not have a perfect matching.
It should satisfy

(a) n is even



(b) m is even and G is connected.

Recall K6nig’s Theorem, which says for that a bipartite graph G, we have 7(G) = v(G).
From Konig’s Theorem we can derive Hall’s Theorem: for a bipartite graph G, with V' =
LUR,if (VA C L)(|N(A)| > |A|) then L can be matched, i.e., v = |L|. We outline one
possible proof.

One direction is trivial (if L can be matched, then the Hall conditions are immediate).

Going in the other direction, we assume the Hall conditions hold and from this we infer
that v = |L|. By Ko6nig’s Theorem, this is equivalent to 7 = |L|, which is equivalent to
saying 7 > |L| (why?), which is the same saying that if C' is a cover then |C| > |L|. So it
suffices to prove this last statement.

Let C be a cover, and let A=CNL, B=CNR. Let A” = L\ A. By the Hall condition,
IN(A")| > |A’|. But N(A’) C B. As a result,

|Cl = Al + B
> Al + [N(A)]
> Al + AT = |L].

DO 7.9. (a) If M is a matching and C' is a cover, then |M| < |C|.
(b) If |M| = |C| then both M and C' are optimal and therefore v = 7.

Proof of Konig’s Theorem. Let M be a maximal matching obtained by the greedy algorithm.
How can we improve M? Say that the edges contained in M are red, and the edges not
contained in M are blue. Suppose we can find a path ly71lors ... [, where the [; € L,
r; € R, vertices l; and 7, (the endpoints of the path) are unmatched, and the edges satisfy
the following conditions.

1. {l;,r;} is blue (not contained in the matching)
2. {ri,lix1} is red (contained in the matching).

We call a path of this type an augmenting path, for the following reason: if we remove all
of the red edges on the path from M (there are k — 1 red edges) and add all of the blue
edges on the path to M (there are k blue edges on the path), then the resulting set M’ is a
matching, and |[M'| = | M| + 1.

Since we cannot increase M indefinitely, after a finite number of rounds we shall have a
matching so that there is no augmenting path. In this case we claim that M is maximal,
and we shall demonstrate this by finding a cover C' such that |M| = |C|. Accoring to DO
exercise 7.9 this proves that 7 = v.

Here is how we construct C'. Let W be the set of vertices of M, let P = W N R and
Q@ =WnNL. Let A be the set of unmatched vertices of R and let U be the set of vertices
reachable from A along alternating paths (a path which uses alternately blue/red edges,
necessarily starting with blue since no red edge ends in A). Note that A C U.

DO 7.10. A vertex is reachable from A along an alternating path if and only if it is reachable
along an alternating walk.



DO 7.11. UNL =UNQ . (Hint. The reason is that there is no augmenting path (or walk).
Explain.)

DO 7.12. R\ U = P\ U . (Hint. The reason is that A C U. Explain.)

Now define the set C' by C := (UN Q) U (P \ U). Since C picks one vertex from each
edge of M, it follows that |C| = |M|. We claim that C' is a cover.

If e is a red edge, it is covered by C' since we picked one endpoint of each red edge.

Let e = xy be a blue edge where x € R and y € L.
Case 1. © € U. In this case y € U. Indeed, if = is reachable by an alternating walk and
x € R then the last step in this walk was red, so we can add the xy edge to the walk. But
theny € UNL =UNQ (by DO exercise 7.11; note that this is the point in the proof where
we use the assumption that there is no augmenting path). Therefore y € C, so C covers e.
Case 2. x ¢ U,sox € R\U = P\ U. (Here we used DO exercise 7.12.) But then 2 € C, so
again, C covers e.

This completes the proof that C'is a cover, and therefore it completes the proof of Konig’s
Theorem. O

DO! 7.13. Prove that C' is a cover without reading the proof above again, so don’t read the
part after the paragraph where C' is defined.

EXTREMAL GRAPH THEORY

Here is an exercise in extremal graph theory. It is unusual in that the parameter we fix
is not the order but the size of the graph.

CH 7.14. (12 points) For a graph G, let (G) be the number of triangles. Show that

t < Qmi“’/z.
= 3

(1)

HW 7.15. (3 points, elegance counts) Prove: for K, inequality (1) is asymptotically

tight, i.e., t, ~ ‘/?im,g/Q, where t,, = t(K,), m, = |E(K,)|. (Recall that the “asymptotic

equality” notation a,, ~ b, means lim,_ . a,/b, = 1; see Definition 2.9.)

This exercise shows that Eq. (1) the coefficient v/2/3 is best possible for infinitely many
values of m.

CHROMATIC POLYNOMIAL

Recall the chromatic polynomial fg(z), which counts the legal colorings g : V' — [x],
where x € N.

Theorem 7.16 (George David Birkhoff, 1912). (VG)(fq is a polynomial).

Proof. Let II be a partition! of V into k independent sets, A, Ay, ...A;. Note that every
legal coloring of G defines such a partition II: the blocks of the partition are the sets of

!By a partition II of the set V we mean a set Il = {4, ..., Az} where the A; are subsets of V such that
(Vi)(A; # 2), (Vi # j)(AiNAj; =), and | J; A; = V. The A; are called the blocks of the partition II.



vertices of equal color. (In other words, these are the equivalence classes of the equivalence
relation “vertices u and v have the same color.)

Let Np(x) be the number of colorings that produce the partition II. Then Np(z) =
x(x —1)...(x — k+1). So this is a polynomial in z. There is only a finite number of such
partitions (the number depends on G), and fg(z) = > ; Nu(z). Since every term on the
right-hand side is a polynomial in x, so is their sum. O]

HW 7.17. (3 points, due Tuesday, April 30) Given a graph, determine the degree
and the leading coefficient of the chromatic polynomial of G. (Example: the polynomial
523 + 8z — 32 has degree 3 and leading coefficient 5. The leading term of this polynomial is

53.)

Definition 7.18. An orientation of a graph G is an assignment of a direction to each edge.
So a graph has 2™ orientations. An orientation is acyclic if no directed cycle arises.

CH 7.19. (7 points) The number of acyclic orientations of a graph G is +fz(—1). (Do
NOT look it up!)

DO 7.20. Show that every graph has an acyclic orientation.
HW 7.21. (3+4+1 points, due Tuesday, April 30)

(a) Determine the chromatic polynomials of all trees, complete graphs, and empty graphs
(complements of complete graphs).

(b) Count the acyclic orientations of all trees, complete graphs, and empty graphs.
(c) Verify CH 7.19 for these classes of graphs.

In each case you should get simple expressions.

PLEASE SUBMIT ALL HOMEWORK ON ITS DUE DATE. Early submission
causes clerical problems for the TA and the instructor; it makes it more difficult for us to
keep track of your solution and to properly credit it.



