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EXCLUDED SUBGRAPHS VS. CHROMATIC NUMBER

CH 8.1. (7 points) If G 6⊃ C5 then χ(G) = O(
√
n).

CH 8.2. (10 points) If G 6⊃ K4 then χ(G) = O(n2/3).

INDEPENDENCE NUMBER VIA PIGEONHOLE PRINCIPLE

Recall a previous problem, to show that α(Grid(k, `)) = dn/2e where n = k`.
There are two parts to this problem.
The easy part is to prove the lower bound α(Grid(k, `)) ≥ dn/2e.
This, in fact, holds for all bipartite graphs.

DO 8.3. If G is bipartite graph then α(G) ≥ dn/2e.

Proof. 2-color the graph, and pick the largest of the two color-classes.

In fact, we have already proved a more genaral result: for all graphs G we have

α(G) ≥ dn/χ(G)e. (1)

So the substance of the proof that α(Grid(k, `)) = dn/2e is in proving the upper bound

α(Grid(k, `)) ≤ dn/2e (2)

(where n = k`).
So let A be an independent set in Grid(k, `). We need to prove that |A| ≤ dn/2e. The

proof must apply to all possible independent sets, no matter how cleverly designed.
This is an AHA-problem: there is a very short, elegant, convincing argument. When

you see it, you slap your forehead and say “AHA.” No boring case-distinctions like what
happens when we try to describe the structure of the maximum indepedent sets, no tedious
calculations, no subtle manipulation of rounding, no hand-waving like “the other cases can
be treated similarly.”

In fact, we shall give three such proofs.
For a warm-up, let us begin with finding α for paths.
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Proposition 8.4. α(Pn) = dn
2
e.

Proof Prop. 8.4. The lower bound is trivial (DO 8.3). Let us prove the upper bound.
Let us consider the set M consisting of every other edge of the path starting at the left.

So |M | = bn/2c. (M is a maximum matching in Pn.)
Let A be an independent set in Pn. Then A has at most one vertex from each edge in M .

So if n is even then |A| ≤ |M | ≤ n/2. If n is odd then A might also include the rightmost
vertex of the path, so |A| ≤ |M |+ 1 = (n− 1)/2 + 1 = (n+ 1)/2 = dn/2e.

This was a pigeonhole argument; the edges of M plus the rightmost vertex if n is odd are
the dn/2e holes; the pigeons are the elements of the indepedent set A. Each hole can hold
at most one pigeon. AHA!

Proof #1 of Inequality (2). We follow the same idea as in the proof of Lemma 8.4. If n = k`
is even then the grid has a perfect matching, so α ≤ n/2. If n is odd, then removing a
corner, the rest has a perfect matching, so α ≤ dn/2e just as in the proof of Lemma 8.4.
AHA!

After the second proof, you will slap your forehead even harder. How did I miss this ?

Definition 8.5. A subgraph H ⊆ G is a spanning subgraph if V (H) = V (G).

DO 8.6. If H is a spanning subgraph of G, then α(G) ≤ α(H).

Definition 8.7. A spanning path is called a Hamilton path.

Proof #2 of Inequality (2). Observe that Grid(k, `) contains a Hamilton path Pk` = Pn (tra-
verse the grid in a snake-like order). Therefore

α(Grid(k, `)) ≤ α(Pn) = dn/2e. (3)

AHA!!

Last, we give a conceptualized version of the first proof.

Lemma 8.8. For all graphs, α ≤ n− ν.

Proof. α = n− τ ≤ n− ν.

Proof #3 of Inequality (2). In the grid, ν = bn/2c. So, by Lemma 8.8, α ≤ n − ν =
n− bn/2c = dn/2e.

Here’s a classic recreational math puzzle.

DO 8.9. Can we tile a chessboard, with two opposite corners removed, with dominoes?
(A domino covers two adjacent cells of the chessboard.) Give an AHA proof that this is
impossible.

BONUS 8.10. (5 points) For what values of n can we tile the n×n chess board, with one
corner removed, by triominoes? A triomino is a 1 × 3 rectangles placed either horizontally
or vertically.
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HW 8.11. (4 points) Show that α(G ∗G) ≥ n. (Here ‘∗’ indicates the strong product; see
Definition 6.18.)

INDEPENDENTS SETS OF GRAPHS IN INFORMATION THEORY:
THE SHANNON CAPACITY OF GRAPHS

Suppose an alphabet has five characters. How many strings of length ` can be obtained
from this alphabet? The answer is 5`. What if some pairs of characters are easy to confuse?
We want to limit our set of possible messages so as to permit only pairwise distinguishable
messages.

Let G be a graph whose vertex set is the alphabet. Make two vertices adjacent if the
corresponding characters can be confused. How many messages can we now permit? If ` = 1
then this number is α(G). For messages of length `, this number is α(G∗`) where ∗ indicates
the strong product and G∗`) = G ∗G ∗ · · · ∗G︸ ︷︷ ︸

` times

. (Why?)

We can measure the information content of our alphabet by the number θ` such that the
number of messages of length ` we permit is θ`. We are interested in large `, we take the
limit of θ` as ` → ∞. This limit is called the Shannon capacity of the graph, introduced
by Claude E. Shannon (1916–2001), creator of information theory, in 1956 in a paper titled
“The zero-error capacity of a noisy channel.”

Definition 8.12. The Shannon capacity of a graph, denoted Θ(G), is defined

Θ(G) = lim
`→∞

√̀
α(G∗`).

The ‘∗’ in the exponent indicates that the power is taken with respect to the strong product.

We shall see later that this limit always exists (Thm. 8.18).

DO 8.13. Show that

(a) Θ(G) ≥ α(G)

(b) Θ(G) ≤ χ(G).

Corollary 8.14. If α(G) = χ(G), then this number is Θ(G).

DO 8.15. If G is bipartite, then α(G) = χ(G).

BONUS 8.16. (6 points) If G is bipartite, then α(G) = χ(G).

The smallest graph G such that neither G nor its complement is bipartite is the pentagon.
The value of Θ(C5) was an open problem for more than two decades. The above results

show that 2 ≤ Θ(C5) ≤ 3. Shannon showed (1956) that
√

5 ≤ Θ(C5) ≤ 5/2. (4)

For the upper bound, he used Linear Programming. The exact value of Θ(C5) remained an
open problem for two decades. Finally, in one of the most influential papers in combina-
torics over the past half century, László Lovász (1979) introduced powerful linear algebraic
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techniques to prove upper bounds on the Shannon capacity; in particular, he settled the
Shannon capacity of the pentagon: Θ(C5) =

√
5.

However, the value of Θ(C7) remains open to this day. Lovász proved that for all odd
values n ≥ 3 we have

Θ(Cn) ≤ n

1 + sec(π/n)
.

This bound gives the exact value of Θ(Cn) for n = 3 (Θ(C3) = 1) and n = 5 (Θ(C5) =
√

5,
see DO 8.17), and it remains the best upper bound known for all odd n ≥ 7.

DO 8.17. Show that
5

1 + sec(π/5)
=
√

5. (5)

Hint. Consider a regular pentagon. Prove that the ratio of a diagonal to a side is the golden
ratio. Use this fact to calculate cos(π/5).

After this brief history, let us study the math. Given the definition of the Shannon capacity,
the first question that arises: does that limit exist?

Theorem 8.18. The limit lim`→∞
√̀
G∗` exists for all graphs G and is equal to sup`

√̀
G∗` as

well as to lim sup`

√̀
G∗`.

To see this, first we need the following useful lemma.

DO 8.19 (Fekete’s Lemma). If {a`}`∈N is a sequence of positive reals and ak+` ≥ ak ·a` then

lim
`→∞

√̀
a` = sup

`

√̀
a` = lim sup

`

√̀
a`.

DO 8.20 (Associativity). Show that

G ∗ (H ∗K) ∼= (G ∗H) ∗K.

It follows from this exercise that the k-th strong power G∗k is well-defined: it does not
depend on the parenthesisation of the expression G ∗ G ∗ · · · ∗ G. In particular, we obtain
G∗(k+`) = G∗k ∗G∗`.

Next we establish that α is a supermultiplicative function on graphs with respect to the
strong product.

Lemma 8.21 (Supermultiplicativity). α(G ∗H) ≥ α(G) · α(H).

Proof. Let A and B be independent sets in G and H, respectively. We claim that A×B is
an independent set in the strong product.

Let g1, g2 ∈ A and h1, h2 ∈ B, and suppose (g1, h1) ∼ (g2, h2) in G ∗H. By the definition
of the strong product, it must be that g1 ∼= g2 and h1 ∼= h2. Since neither g1 ∼ g2 nor
h1 ∼ h2, equality must hold in both cases. As a result, (g1, h1) = (g2, h2), contradicting the
assumption of adjacency.

Proof of Theorem 8.18. We have G∗(k+`) = G∗k ∗ G∗`. It follows by Lemma 8.21 that
α(G∗(k+`)) ≥ α(G∗k) · α(G∗`). So Fekete’s conditions holds for the sequence a` = α(G∗`).
Now Fekete’s lemma yields the desied conclusion.
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HW 8.22. (3 points) (∀`)(
√̀
α(G∗`) ≤ Θ(G)).

Corollary 8.23. Θ(C5) ≥
√

5 .

Proof. We have seen that α(C5 ∗C5) ≥ 5. Now the result follows by HW 8.22 (applied with
` = 2).

HW 8.24. (3 points) Prove: if G is self-complementary (isomorphic to its complement)
then Θ(G) ≥

√
n.

BONUS 8.25 (Submultiplicativity). (4 points) χ(G ∗H) ≤ χ(G) · χ(H).

LINEAR PROGRAMMING

Definition 8.26. A linear program (LP) consists of a set of linear inequality constraints
and a linear objective function. The linear programming problem is to maximize (or
minimize) the objective function over the reals subject to the constraints. (The LP specifies
whether we seek to maximize or minimize the objective function.) An integer linear
program (ILP) is the same as an LP except that we are only interested in integral solutions
(xi ∈ Z). The optimum value of the LP/ILP is the optimum value (maximum or minimum)
of the objective function under the given constraints.

Definition 8.27 (Independent set LP/ILP). Consider the graph G = ([n], E). Let us
associate the real variable xi with vertex i. Consider the following set of linear constraints:

(1) (∀i)(xi ≥ 0)

(2) (∀ clique C in G)(
∑

i∈C xi ≤ 1).

We wish to maximize the objective function
∑n

i=1 xi under these constraints.

Note that the constraints imply that 0 ≤ xi ≤ 1.

DO 8.28. Prove: the optimum value of the ILP given by Def. 8.27, is α(G).

Hint: Note that in this case, the value of each xi must be 0 or 1. View the vector (x1, . . . , xn)
as the indicator function (characteristic function) of a subset; then constraints (2) say that
this is an independent set, and the objective is to maximize its size.

Definition 8.29 (Fractional independence number). Let us define the fractional indepen-
dence number α∗(G) as the the optimum of LP the given by Def. 8.27.

(So we permit the xi to take any real values.) We call α∗ the linear relaxation of α.

DO 8.30. α(G) ≤ α∗(G) .

This is because in the ILP we are maximizing over a smaller set of vectors (x1, . . . , xn),
namely, only integral vectors, whereas for the LP, we allow the xi to be real.

Proposition 8.31. α∗(C5) = 5/2
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Proof. We have the following LP.

x1 + x2 ≤ 1

x2 + x3 ≤ 1

x3 + x4 ≤ 1

x4 + x5 ≤ 1

x5 + x1 ≤ 1

Our objective function is
∑5

i=1 xi. Let L denote the optimim value.
First we observe that L ≥ 5/2 by assigning the value x1 = · · · = x5 = 1/2 to the variables.
To show that L ≤ 5/2, add up all the inequalities. This gives 2(x1 + · · ·+ x5) ≤ 5.

Theorem 8.32 (Shannon). Θ(G) ≤ α∗(G). In particular, Θ(C5) ≤ 5/2.

The constraints we have described for C5 can be expressed in matrix form as
1 1 0 0 0
0 1 1 0 0
0 0 1 1 0
0 0 0 1 1
1 0 0 0 1



x1
x2
x3
x4
x5

 ≤


1
1
1
1
1


where the inequality is entry-wise. Likewise, we can express the objective function in matrix
form as the matrix product

(
1 1 1 1 1

)

x1
x2
x3
x4
x5


The constraints correspond to the cliques. With every clique C, we associate a new

“dual” variable yC . Define a new linear program as follows. For every column Ai in the
constraint matrix, require that AT

i Y ≥ ci, where Y is the column vector whose entries are
the variables yC (C a clique), and ci is the coefficient of xi in the objective function. The
coefficents of the dual objective function will be the entries on the right-hand size in the LP.
This is called the dual LP; and the original LP is referred to as the primal LP.

The dual of the linear program has the constraints

(1) (∀ clique C)(yC ≥ 0)

(2) (∀v ∈ V )(
∑

C:v∈C yC ≥ 1).

We wish to minimize the objective function
∑

C yC under these constraints.
Consider the {0, 1}-solutions: the minimum number of cliques that cover all of V . Since

a clique in G is an independent set in G, this number is the same as the minimum number
of independent sets of G that cover all of V .
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DO 8.33. Show that the minimum number of independents sets in the graph G which cover
all of V is χ(G).

So the optimum of the dual ILP above is χ(G).

Definition 8.34. The fractional chromatic number of the graph G, denoted χ∗(G), is
the optimum of the above dual LP, applied to the complement G (so the dual variables are
labeled by independent sets rather than cliques of G).

HW 8.35. (3 points) Prove: χ(G) ≥ χ∗(G).

HW 8.36. (5 points) Show that α∗(G) ≤ χ∗(G). Prove this directly from the definitions.

HW 8.37. (4 points) Determine the fractional chromatic number of C5 directly from the
definition. (Do not use Cor. 8.38.)

The Duality Theorem for Linear Programming asserts that if both the primal and
the dual are feasible (the constraints can be satisfied) then their optima are equal.

Corollary 8.38. α∗(G) = χ∗(G).

So we have α(G) ≤ α∗(G) = χ∗(G) ≤ χ(G).
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