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ASYMPTOTICS

HW 9.1. (4 points) n! > (n/e)n. The proof is one line using a basic fact about the ex

function. (Do not use Stirling’s formula.)

This inequality will help solve a previous exercise: find infinitely many graphs G that have
at least 100n longest paths. Kn has n!/2 longest paths. We need to show that for sufficently
large n we have n!/2 ≥ 100n. Indeed, if n ≥ 101e then n!/2 ≥ 101n+1/2 > 100n+1/2 > 100n.

A previous homework problem was to show tn ∼
√
2
3
m

3/2
n where tn is the number of triangles

in Kn and mn is the number of edges in Kn.

DO 9.2. Show that a polynomial is asymptotically equal to its leading term.

Using this result, we know that
(
n
3

)
∼ n3/6.

DO 9.3. For all fixed k we have
(
n
k

)
∼ nk/(k!).

DO 9.4. Show that if an ∼ bn and cn ∼ dn then an · cn ∼ bn · cn and
an
cn
∼ bn
dn

.

DO 9.5. Show that ∼ is an equivalence relation among sequences {an} having an 6= 0 for
all sufficiently large n.

DO 9.6. If an ∼ bn then akn ∼ bkn for fixed k ∈ R, assuming an, bn > 0 in case k is not an
integer.

We may now undertake the problem armed with new technology.

tn =

(
n

3

)
∼ n3

6

mn =

(
n

2

)
∼ n2

2

tn ∼
n3

6
=

√
2

3
· n

3

23/2
∼
√

2

3
m3/2

n .
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Definition 9.7. For a graph G = (V,E), the contraction of an edge e = {i, j} is the graph
which is identical to G except that i and j are “merged”. This graph is denoted G/e.

CHROMATIC POLYNOMIAL

For a graph G = (V,E), let fG(x) be the number of legal colorings c : V → [x], where x ∈ N.

DO 9.8 (Contraction–deletion recurrence). For an edge e = {i, j}, we have the recurrence
relation

fG(x) = fG−e(x)− fG/e(x). (1)

Proof.

fG(x) = fG−e(x)−
(
# of legal colorings of G− e where c(i) = c(j)

)
= fG−e(x)− fG/e(x).

A second proof that fG is a polynomial follows immmediately by induction on m. Base
case: m = 0. In this case, fKn

= xn is a polynomial. Next, the contraction-deletion
recurrence gives us the inductive step.

DO 9.9. If G is planar, then G− e and G/e are planar.

INDEPENDENCE NUMBER, STRONG PRODUCT, SHANNON CAPACITY

Let us revisit the result that α(C5 ∗ C5) ≤ 5. By finding an independent set of size 5 (by
“knight’s moves”), we can show that 5 is a lower bound to the independence number. To
prove the upper bound, no single example is sufficient, so we require a little theorem that
simultaneously handles all independent sets.

One strategy is the “averaging argument”. For an independent set S in C5, let xi ∈ {0, 1}
be defined

xi =

{
1 i ∈ S
0 i 6∈ S.

The following inequalities always hold:

x1 + x2 ≤ 1

x2 + x3 ≤ 1

x3 + x4 ≤ 1

x4 + x5 ≤ 1

x5 + x1 ≤ 1.

By taking the sum and dividing by 2 we have |S| =
∑5

i=1 xi ≤
5
2
.

DO 9.10. For any G, α(K2 ∗G) = α(G).
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We return again to the case of C5 ∗ C5. Pick an independent set S; let Si = S ∩
{ith column}, and let yi = |Si|. It follows from the previous exercise that for any pair of
adjacent columns, k and k+ 1 (mod 5), we have yk + yk+1 ≤ α(C5) = 2. Using the averaging
approach, we have the inequalities

y1 + y2 ≤ 2

y2 + y3 ≤ 2

y3 + y4 ≤ 2

y4 + y5 ≤ 2

y5 + y1 ≤ 2.

Taking the sum and dividing by 2, we conlcude that
∑5

i=1 yi ≤ 5.
Consider the case of α(C7 ∗C7 ∗C7). From the result that α(C7 ∗C7) = 10 together with

supermultiplicativity, it follows that α(C7 ∗ C7 ∗ C7) ≥ 30. By the averaging technique, we
can obtain the result that α(C7 ∗ C7 ∗ C7) ≤ 35.

CH 9.11. Prove that α(C7 ∗ C7 ∗ C7) ≤ 33.

One of your classmates has shown α(C7 ∗ C7 ∗ C7) = 33. Improving the lower bound
α(C7 ∗ C7 ∗ C7) ≥ 30 is no longer assigned.

Recall the Shannon capacity of G, defined by

Θ(G) = lim
k→∞

k
√
α(Gk) = sup

k

k
√
α(Gk).

(The exponent here corresponds to a strong product.)
The right-hand equality helps us find a lower bound for Θ(G). Given that α(C7∗C7) = 10,

it follows that
Θ(C7) ≥

√
α(C7 ∗ C7) =

√
10 ≈ 3.16.

Given that α(C7 ∗ C7 ∗ C7) = 33, we can improve this bound to Θ(C7) ≥ 3
√

33 ≈ 3.21. In
2017, Ashik Mathew and Patrick Östergøard published the inequality α(C5

7) ≥ 350, thus
further improving the Shannon capacity bound to Θ(C7) ≥ 5

√
350 ≈ 3.227.

LINEAR PROGRAMMING
A linear programming problem consists of a set of linear constraints

a11x1 + . . .+ a1nxn ≤ b1
...

...
...

an1x1 + . . .+ annxn ≤ bn

xi ≥ 0, 1 ≤ i ≤ n

and a linear objective function
c1x1 + . . .+ cnxn
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which we seek to maximize. A feasible solution is a solution (xi)
n
i=1 which satisfies the linear

constraints. A linear program is feasible if there exists a feasible solution. If an LP is
infeasible, we say the maximum to the objective function is −∞.

We can express a linear program using matrix notation.

A =

a11 . . . a1n
...

...
an1 . . . ann

 x =

x1...
xn

 b =

b1...
bn

 c =

c1...
cn


The transpose of a matrix is its reflection across the diagonal, so that (aTij) = (aji).

DO 9.12. (AT )T = A.

DO 9.13. (AB)T = BTAT .

Definition 9.14. For vectors x = (x1, . . . , xn)T and y = (y1, . . . , yn)T over the reals we
write x ≤ y if (∀i)(xi ≤ yi). This is a partial order on the vectors.

The linear program now takes the form

max← cTx subject to Ax ≤ b, x ≥ 0.

The dual LP can be expressed similarly as

min← bTy subject to ATy ≥ c, y ≥ 0.

Definition 9.15. A vector x is a feasible solution if it satisfies the constraints

Ax ≤ b, x ≥ 0.

DO 9.16. If v1 ≤ v2 are vectors and x ≥ 0, then it follows that

vT
1 x ≤ vT

2 x.

DO 9.17. If x is a feasible solutions of the primal LP and y is a feasible solutions to the
dual LP then

cTx ≤ bTy.

Proof. Using exercise DO 9.16, from the constraints

(i) Ax ≤ b

(ii) ATy ≥ c

(iii) x,y ≥ 0

we deduce that
cTx ≤ (ATy)Tx = yTAx ≤ yTb = (yTb)T = bTy.

The equality yTb = (yTb)T hold because the matrix yTb is 1 × 1, so it is equal to its
transpose.
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Theorem 9.18 (LP Duality). If both the primal and the dual are feasible, then the maximum
of the primal is equal to the minimum of the dual.

The LP Duality theorem gives us a “good characterization” result about a linear program.
To prove that a solution to the primal is maximum, we only need to exhibit a solution to
the dual giving the same value.

DO 9.19. It follows from LP Duality that α∗(G) = χ∗(G).

ESTIMATING THE SHANNON CAPACITY.
ORTHONORMAL REPRESENTATION OF GRAPHS

Shannon showed that
α(G) ≤ Θ(G) ≤ α∗(G). (2)

Using the previous exercise, we deduce that

α(G) ≤ Θ(G) ≤ α∗(G) = χ∗(G) ≤ χ(G).

We have seen that the independence number is supermultiplicative:

α(G ∗H) ≥ α(G) · α(H).

DO 9.20. χ(G ∗H) ≤ χ(G) · χ(H).

DO 9.21. (a) G ∗H ⊆ G ∗H

(b) If G ∗ H = G ∗H then either one of the graphs G, H has just one vertex, or both
graphs are empty, or both graphs are complete.

Lemma 9.22. If f : {Graphs} → R is such that

(i) (∀G)(α(G) ≤ f(G))

(ii) the function f is submultiplicative: (∀G,H)(f(G ∗H) ≤ f(G) · f(H))

then (∀G)(Θ(G) ≤ f(G)).

HW 9.23. (5 points) Prove the lemma.

Corollary 9.24. Θ(G) ≤ χ(G).

DO 9.25. χ∗(G) is submultiplicative.

Corollary 9.26 (Shannon). Θ(G) ≤ χ∗(G) = α∗(G).

Recall the exercise that α(G ∗ G) ≥ n. The proof is simple: S = {(x, x) | x ∈ V } is an
indepedent set. It follows from this result that for self-complementary graphs, α(G2) ≥ n
and therefore Θ(G) ≥

√
n, solving another exercise.

Using the fact that C5 is self-complementary, it follows that Θ(C5) ≥
√

5. Lovász proved
that this is the exact value of Θ(C5).

5



Definition 9.27. The norm of a vector x ∈ Rd is
√

xTx. We denote this value by ‖x‖.

Definition 9.28. The standard dot product in Rd is xTy =
∑d

i=1 xiyi, denoted by x · y.

Definition 9.29. Two vectors v1,v2 are orthogonal if v1 · v2 = 0. In this case we write
v1 ⊥ v2.

Definition 9.30 (Lovász). An orthonormal representation (ONR) of a graphG = (V,E)
in dimension d is a collection of vectors v1, ...,vn ∈ Rd satisfying

(i) (∀i)(‖vi‖ = 1)

(ii) (∀i � j)(vi ⊥ vj).

Definition 9.31. The Lovász dimension of a graph G is the minimum dimension d such
that the graph has an ONR in Rd. We denote this number L-dim(G).

DO 9.32. L-dim(G) = 1 if and only if G is complete.

HW 9.33. (5 points) L-dim(G) ≤ χ(G) .

Last night’s version of this problem set erroneously claimed that there exists a non-
bipartite graph with L-dim= 2. In fact, no such graph exists, so here is the revised version
of the problem. Thanks to Shashank for pointing out my error.

DO 9.34 (Updated May 1, 1pm). Show that L-dim(G) ≤ 2 if and only if G is bipartite.

HW 9.35. (3 points) L-dim(C5) = 3.

HW 9.36. (2+2 points) True or false:

(a) For all graphs G, L-dim(G) ≤ χ∗(G).

(b) For all graphs G, L-dim(G) ≥ α∗(G).

If true, prove; if false, give a counterexample and reason why it is a counterexample.

The following three problems were stated in class and in last night’s version of this sheet
as HW for Tuesday. I am downgrading their status (May 1, 1pm); I will discuss them in
Thursday’s class. Please solve the two DO exercises among them before Thursday’s class.

DO 9.37. L-dim(G) ≥ α(G).

Exercise 9.38. The L-dim function is submultiplicative.

DO 9.39. Infer Θ(G) ≤ L-dim(G) from the preceding two problems.

6


