Graph Theory: CMSC 27530/37530 Lecture 9

Lecture by László Babai Notes by Geoffrey West Revised by instructor

April 30, 2019

ASYMPTOTICS

HW 9.1. (4 points) $n! > (n/e)^n$. The proof is one line using a basic fact about the e^x function. (Do not use Stirling's formula.)

This inequality will help solve a previous exercise: find infinitely many graphs G that have at least 100^n longest paths. K_n has n!/2 longest paths. We need to show that for sufficiently large n we have $n!/2 \ge 100^n$. Indeed, if $n \ge 101e$ then $n!/2 \ge 101^{n+1}/2 > 100^{n+1}/2 > 100^n$.

A previous homework problem was to show $t_n \sim \frac{\sqrt{2}}{3} m_n^{3/2}$ where t_n is the number of triangles in K_n and m_n is the number of edges in K_n .

DO 9.2. Show that a polynomial is asymptotically equal to its leading term.

Using this result, we know that $\binom{n}{3} \sim n^3/6$.

DO 9.3. For all fixed k we have $\binom{n}{k} \sim n^k/(k!)$.

DO 9.4. Show that if $a_n \sim b_n$ and $c_n \sim d_n$ then $a_n \cdot c_n \sim b_n \cdot c_n$ and $\frac{a_n}{c_n} \sim \frac{b_n}{d_n}$.

DO 9.5. Show that \sim is an equivalence relation among sequences $\{a_n\}$ having $a_n \neq 0$ for all sufficiently large n.

DO 9.6. If $a_n \sim b_n$ then $a_n^k \sim b_n^k$ for fixed $k \in \mathbb{R}$, assuming $a_n, b_n > 0$ in case k is not an integer.

We may now undertake the problem armed with new technology.

$$t_n = \binom{n}{3} \sim \frac{n^3}{6}$$

$$m_n = \binom{n}{2} \sim \frac{n^2}{2}$$

$$t_n \sim \frac{n^3}{6} = \frac{\sqrt{2}}{3} \cdot \frac{n^3}{2^{3/2}} \sim \frac{\sqrt{2}}{3} m_n^{3/2}.$$

Definition 9.7. For a graph G = (V, E), the **contraction** of an edge $e = \{i, j\}$ is the graph which is identical to G except that i and j are "merged". This graph is denoted G/e.

CHROMATIC POLYNOMIAL

For a graph G = (V, E), let $f_G(x)$ be the number of legal colorings $c: V \to [x]$, where $x \in \mathbb{N}$.

DO 9.8 (Contraction–deletion recurrence). For an edge $e = \{i, j\}$, we have the recurrence relation

$$f_G(x) = f_{G-e}(x) - f_{G/e}(x). (1)$$

Proof.

$$f_G(x) = f_{G-e}(x) - (\# \text{ of legal colorings of } G - e \text{ where } c(i) = c(j))$$

= $f_{G-e}(x) - f_{G/e}(x)$.

A second proof that f_G is a polynomial follows immediately by induction on m. Base case: m = 0. In this case, $f_{\overline{K_n}} = x^n$ is a polynomial. Next, the contraction-deletion recurrence gives us the inductive step.

DO 9.9. If G is planar, then G - e and G/e are planar.

INDEPENDENCE NUMBER, STRONG PRODUCT, SHANNON CAPACITY

Let us revisit the result that $\alpha(C_5 * C_5) \leq 5$. By finding an independent set of size 5 (by "knight's moves"), we can show that 5 is a lower bound to the independence number. To prove the upper bound, no single example is sufficient, so we require a little theorem that simultaneously handles all independent sets.

One strategy is the "averaging argument". For an independent set S in C_5 , let $x_i \in \{0, 1\}$ be defined

$$x_i = \begin{cases} 1 & i \in S \\ 0 & i \notin S. \end{cases}$$

The following inequalities always hold:

$$x_1 + x_2 \le 1$$

$$x_2 + x_3 \le 1$$

$$x_3 + x_4 \le 1$$

$$x_4 + x_5 \le 1$$

$$x_5 + x_1 \le 1$$
.

By taking the sum and dividing by 2 we have $|S| = \sum_{i=1}^{5} x_i \leq \frac{5}{2}$.

DO 9.10. For any G, $\alpha(K_2 * G) = \alpha(G)$.

We return again to the case of $C_5 * C_5$. Pick an independent set S; let $S_i = S \cap \{i \text{th column}\}$, and let $y_i = |S_i|$. It follows from the previous exercise that for any pair of adjacent columns, k and $k+1 \pmod 5$, we have $y_k + y_{k+1} \le \alpha(C_5) = 2$. Using the averaging approach, we have the inequalities

$$y_1 + y_2 \le 2$$

 $y_2 + y_3 \le 2$
 $y_3 + y_4 \le 2$
 $y_4 + y_5 \le 2$
 $y_5 + y_1 \le 2$.

Taking the sum and dividing by 2, we conclude that $\sum_{i=1}^{5} y_i \leq 5$.

Consider the case of $\alpha(C_7*C_7*C_7)$. From the result that $\alpha(C_7*C_7) = 10$ together with supermultiplicativity, it follows that $\alpha(C_7*C_7*C_7) \geq 30$. By the averaging technique, we can obtain the result that $\alpha(C_7*C_7*C_7) \leq 35$.

CH 9.11. Prove that $\alpha(C_7 * C_7 * C_7) \leq 33$.

One of your classmates has shown $\alpha(C_7*C_7*C_7)=33$. Improving the lower bound $\alpha(C_7*C_7*C_7)\geq 30$ is no longer assigned.

Recall the Shannon capacity of G, defined by

$$\Theta(G) = \lim_{k \to \infty} \sqrt[k]{\alpha(G^k)} = \sup_{k} \sqrt[k]{\alpha(G^k)}.$$

(The exponent here corresponds to a strong product.)

The right-hand equality helps us find a lower bound for $\Theta(G)$. Given that $\alpha(C_7*C_7)=10$, it follows that

$$\Theta(C_7) \ge \sqrt{\alpha(C_7 * C_7)} = \sqrt{10} \approx 3.16.$$

Given that $\alpha(C_7*C_7*C_7)=33$, we can improve this bound to $\Theta(C_7)\geq\sqrt[3]{33}\approx 3.21$. In 2017, Ashik Mathew and Patrick Östergøard published the inequality $\alpha(C_7^5)\geq 350$, thus further improving the Shannon capacity bound to $\Theta(C_7)\geq\sqrt[5]{350}\approx 3.227$.

LINEAR PROGRAMMING

A linear programming problem consists of a set of linear constraints

$$a_{11}x_1 + \ldots + a_{1n}x_n \le b_1$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$a_{n1}x_1 + \ldots + a_{nn}x_n \le b_n$$

$$x_i \ge 0, \quad 1 \le i \le n$$

and a linear objective function

$$c_1x_1 + \ldots + c_nx_n$$

which we seek to maximize. A feasible solution is a solution $(x_i)_{i=1}^n$ which satisfies the linear constraints. A linear program is feasible if there exists a feasible solution. If an LP is infeasible, we say the maximum to the objective function is $-\infty$.

We can express a linear program using matrix notation.

$$A = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & & \vdots \\ a_{n1} & \dots & a_{nn} \end{pmatrix} \quad \mathbf{x} = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \quad \mathbf{b} = \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix} \quad \mathbf{c} = \begin{pmatrix} c_1 \\ \vdots \\ c_n \end{pmatrix}$$

The transpose of a matrix is its reflection across the diagonal, so that $(a_{ii}^T) = (a_{ii})$.

DO 9.12.
$$(A^T)^T = A$$
.

DO 9.13.
$$(AB)^T = B^T A^T$$
.

Definition 9.14. For vectors $\mathbf{x} = (x_1, \dots, x_n)^T$ and $\mathbf{y} = (y_1, \dots, y_n)^T$ over the reals we write $\mathbf{x} \leq \mathbf{y}$ if $(\forall i)(x_i \leq y_i)$. This is a partial order on the vectors.

The linear program now takes the form

$$\max \leftarrow \mathbf{c}^T \mathbf{x}$$
 subject to $A\mathbf{x} < \mathbf{b}, \ \mathbf{x} > \mathbf{0}$.

The dual LP can be expressed similarly as

$$\min \leftarrow \mathbf{b}^T \mathbf{y} \text{ subject to } A^T \mathbf{y} \ge \mathbf{c}, \ \mathbf{y} \ge \mathbf{0}.$$

Definition 9.15. A vector **x** is a **feasible solution** if it satisfies the constraints

$$A\mathbf{x} < \mathbf{b}, \quad \mathbf{x} > 0.$$

DO 9.16. If $\mathbf{v}_1 \leq \mathbf{v}_2$ are vectors and $\mathbf{x} \geq 0$, then it follows that

$$\mathbf{v}_1^T \mathbf{x} \le \mathbf{v}_2^T \mathbf{x}.$$

DO 9.17. If \mathbf{x} is a feasible solutions of the primal LP and \mathbf{y} is a feasible solutions to the dual LP then

$$\mathbf{c}^T \mathbf{x} \leq \mathbf{b}^T \mathbf{y}$$
.

Proof. Using exercise DO 9.16, from the constraints

- (i) $A\mathbf{x} \leq \mathbf{b}$
- (ii) $A^T \mathbf{y} \ge \mathbf{c}$
- (iii) $x, y \ge 0$

we deduce that

$$\mathbf{c}^T \mathbf{x} \le (A^T \mathbf{y})^T \mathbf{x} = \mathbf{y}^T A \mathbf{x} \le \mathbf{y}^T \mathbf{b} = (y^T \mathbf{b})^T = \mathbf{b}^T \mathbf{y}.$$

The equality $\mathbf{y}^T\mathbf{b} = (y^T\mathbf{b})^T$ hold because the matrix $\mathbf{y}^T\mathbf{b}$ is 1×1 , so it is equal to its transpose.

Theorem 9.18 (LP Duality). If both the primal and the dual are feasible, then the maximum of the primal is equal to the minimum of the dual.

The LP Duality theorem gives us a "good characterization" result about a linear program. To prove that a solution to the primal is maximum, we only need to exhibit a solution to the dual giving the same value.

DO 9.19. It follows from LP Duality that $\alpha^*(G) = \chi^*(\overline{G})$.

ESTIMATING THE SHANNON CAPACITY. ORTHONORMAL REPRESENTATION OF GRAPHS

Shannon showed that

$$\alpha(G) \le \Theta(G) \le \alpha^*(G). \tag{2}$$

Using the previous exercise, we deduce that

$$\alpha(G) \le \Theta(G) \le \alpha^*(G) = \chi^*(\overline{G}) \le \chi(\overline{G}).$$

We have seen that the independence number is supermultiplicative:

$$\alpha(G * H) \ge \alpha(G) \cdot \alpha(H)$$
.

DO 9.20. $\chi(\overline{G*H}) \leq \chi(\overline{G}) \cdot \chi(\overline{H})$.

DO 9.21. (a) $\overline{G} * \overline{H} \subseteq \overline{G * H}$

(b) If $\overline{G} * \overline{H} = \overline{G * H}$ then either one of the graphs G, H has just one vertex, or both graphs are empty, or both graphs are complete.

Lemma 9.22. If $f : \{Graphs\} \to \mathbb{R}$ is such that

- (i) $(\forall G)(\alpha(G) \le f(G))$
- (ii) the function f is submultiplicative: $(\forall G, H)(f(G*H) \leq f(G) \cdot f(H))$

then $(\forall G)(\Theta(G) \leq f(G))$.

HW 9.23. (5 points) Prove the lemma.

Corollary 9.24. $\Theta(G) \leq \chi(\overline{G})$.

DO 9.25. $\chi^*(\overline{G})$ is submultiplicative.

Corollary 9.26 (Shannon). $\Theta(G) \leq \chi^*(\overline{G}) = \alpha^*(G)$.

Recall the exercise that $\alpha(G * \overline{G}) \ge n$. The proof is simple: $S = \{(x, x) \mid x \in V\}$ is an indepedent set. It follows from this result that for self-complementary graphs, $\alpha(G^2) \ge n$ and therefore $\Theta(G) \ge \sqrt{n}$, solving another exercise.

Using the fact that C_5 is self-complementary, it follows that $\Theta(C_5) \geq \sqrt{5}$. Lovász proved that this is the exact value of $\Theta(C_5)$.

Definition 9.27. The **norm** of a vector $\mathbf{x} \in \mathbb{R}^d$ is $\sqrt{\mathbf{x}^T \mathbf{x}}$. We denote this value by $\|\mathbf{x}\|$.

Definition 9.28. The standard **dot product** in \mathbb{R}^d is $\mathbf{x}^T\mathbf{y} = \sum_{i=1}^d x_i y_i$, denoted by $\mathbf{x} \cdot \mathbf{y}$.

Definition 9.29. Two vectors $\mathbf{v}_1, \mathbf{v}_2$ are **orthogonal** if $\mathbf{v}_1 \cdot \mathbf{v}_2 = 0$. In this case we write $\mathbf{v}_1 \perp \mathbf{v}_2$.

Definition 9.30 (Lovász). An orthonormal representation (ONR) of a graph G = (V, E) in dimension d is a collection of vectors $\mathbf{v}_1, ..., \mathbf{v}_n \in \mathbb{R}^d$ satisfying

- (i) $(\forall i)(\|\mathbf{v}_i\| = 1)$
- (ii) $(\forall i \ncong j)(\mathbf{v}_i \perp \mathbf{v}_j)$.

Definition 9.31. The **Lovász dimension** of a graph G is the minimum dimension d such that the graph has an ONR in \mathbb{R}^d . We denote this number L-dim(G).

DO 9.32. L-dim(G) = 1 if and only if G is complete.

HW 9.33. (5 points) L-dim $(G) \le \chi(\overline{G})$.

Last night's version of this problem set erroneously claimed that there exists a non-bipartite graph with L-dim= 2. In fact, no such graph exists, so here is the revised version of the problem. Thanks to Shashank for pointing out my error.

DO 9.34 (Updated May 1, 1pm). Show that L-dim $(G) \leq 2$ if and only if \overline{G} is bipartite.

HW 9.35. (3 points) L-dim $(C_5) = 3$.

HW 9.36. (2+2 points) True or false:

- (a) For all graphs G, L-dim $(G) \le \chi^*(G)$.
- (b) For all graphs G, L-dim $(G) \ge \alpha^*(G)$.

If true, prove; if false, give a counterexample and reason why it is a counterexample.

The following three problems were stated in class and in last night's version of this sheet as HW for Tuesday. I am downgrading their status (May 1, 1pm); I will discuss them in Thursday's class. Please solve the two DO exercises among them before Thursday's class.

DO 9.37. L-dim(G) $\geq \alpha(G)$.

Exercise 9.38. The L-dim function is submultiplicative.

DO 9.39. Infer $\Theta(G) \leq \text{L-dim}(G)$ from the preceding two problems.