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THE PENTAGON AND THE GOLDEN RATIO
If a and b satisfy that a

b
= b

a−b , then we say this ratio is the golden ratio, denoted by
the symbol ϕ (\varphi). We have

ϕ =
a

b
=

b

a− b
=

1
a
b
− 1

=
1

ϕ− 1

So ϕ2 − ϕ = 1. The positive solution of this quadratic equation is ϕ = (1 +
√

5)/2 ≈ 1.618.
One place the golden ratio arises is the regular pentagon, shown in Figure 1.

Figure 1: The regular pentagon. Image: Wikimedia Commons Regular Pentagon Geometry

DO 11.1. Prove that the ratio of the diagonal of the regular pentagon to its side is the

golden ratio:
|BE|
|BA|

= ϕ. Use similar triangles in Figure 1.

DO 11.2. ∠(ABE) = π/5.

DO 11.3. Infer from the previous two exercises that
cos(π/5) = ϕ/2 = (

√
5 + 1)/4 = 1/(

√
5− 1).
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ORTHONORMAL SYSTEMS

Definition 11.4. An orthonormal system v1, . . . , Vk ∈ Rn is a set of pairwise orthogonal
unit vectors, i. e., vT

i vj = δij. An orthonormal basis (ONB) is an orthonormal system that
is a basis.

Here δij is the Kronecker delta notation:

δij =

{
1 i = j

0 i 6= j

DO 11.5. Every orthonormal system of vectors is linearly independent.

DO 11.6. Every orthonormal system in Rn can be extended to an orthonormal basis.

(Use Gram-Schmidt orthogonalization.)

Let b1, ...,bn be a basis of Rn. This means that every vector v ∈ Rn can be uniquely
expressed as a linear combination

v =
n∑

j=1

βjbj

where the coefficients βj ∈ R are called the coordinates of v with respect to the basis
b1, ...,bn. To compute the coordinates is usually a tedious job; we need to solve a system
of linear equations. However, if the basis is orthonormal, the task reduces to computing dot
products. With respect to an ONB, the coordinates are called the “Fourier coefficients” of
the vector v.

DO 11.7. Let b1, ...,bn be an ONB of Rn and v =
∑n

i=1 βibi a vector in Rn. Then

βi = bT
i v. (1)

Coordinates with respect to an ONB easily express the dot product.

DO 11.8. Let β = (β1, . . . βn)T denote the the coordinate vector of v and γ = (γ1, . . . γn)T

the coordinate vector of w with respect to an ONB. Then

vTw = βTγ. (2)

The Pythagorean identity follows: if b1, . . . ,bn is an ONB then

‖v‖2 =
n∑

i=1

(bT
i v)2. (3)

Proof. Let v =
∑n

i=1 βibi. Then

‖v‖2 = vTv = βTβ =
n∑

i=1

β2
i =

n∑
i=1

(bT
i v)2.

Here we used several of the preceding results. Which ones?
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A corollary that applies to orthonormal systems follows.

DO 11.9 (Parseval’s inequality). If b1, . . . ,bk is an orthonormal system then

‖v‖2 ≥
k∑

i=1

(bT
i v)2.

Proof. Extend the system to an ONB and apply the Pythagorean theorem.

KRONECKER PRODUCT, LOVÁSZ DIMENSION, SHANNON CAPACITY

Let a ∈ Rk and x ∈ Rn be column vectors. Recall that the Kronecker product of a and x
is the vector (a⊗ x) having entries (a⊗ x)(i,j) = (aibj) where the pairs (i, j) ∈ [k]× [n] are
arranged in lexicographic order.

Lemma 11.10. For a,b ∈ Rk and x,y ∈ Rn,

(a⊗ x)T (b⊗ y) = (aTb)(xTy).

HW 11.11. (4 points) Let e1, . . . , en be an ONB of Rn and let α1, . . . , αn ∈ R. Consider
the vector

g =
n∑

i=1

αi(ei ⊗ ei) ∈ Rn2

.

Compute ‖g‖. Your answer should be a simple expression in terms of the αi.

Recall that an orthonormal representation (ONR) of a graph G = (V,E) in dimension d
is a collection of vectors, v1, ...,vn ∈ Rd, satisfying

(i) (∀i)(‖vi‖ = 1)

(ii) (∀i � j)(vi ⊥ vj).

The Lovász dimension of a graph G, written L-dim(G), is the minimum dimension of an
ONR of G.

Next we prove that the Lovász dimension is submultiplicative with respect to the strong
product.

Lemma 11.12. L-dim(G ∗H) ≤ L-dim(G) · L-dim(H).

Proof. Let (v1, . . . ,vn) and (w1, . . . ,wk) be ONRs of minimum dimension for G and H,
respectively. To construct an ONR for G ∗ H, assign the vector vi ⊗ wj to vertex (i, j) ∈
V (G ∗H). For any two vertices (i, j) 6∼= (a, b), at least one of the following must hold:

1. i 6∼= a

2. j 6∼= b.
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From Lemma 11.10 we have

(vi ⊗wj)
T (va ⊗wb) = (vT

i va)(w
T
j wb).

Now the right-hand side is zero since at least one of its terms is zero. It follows that
(vi ⊗wj)(i,j)∈V (G∗H) is an ONR of G ∗H and it has dimension L-dim(G) · L-dim(H).

Corollary 11.13. L-dim(G) ≥ α(G).

Proof. Let A ⊆ V (G) be independent. The the vectors of an ONR corresponding to the
vertices in A form an orthonormal system, so |A| ≤ dim by exercise DO 11.5.

This result combined with the submultiplicativity of the Lovász dimension (Lemma 11.12)
gives the following important result.

Theorem 11.14. Θ(G) ≤ L-dim(G).

This follows from our general criterion for upper bounds on the Shannon capacity (HW 9.23):

Theorem 11.15. If f : {Graphs} → R+ and

(i) (∀G)(α(G) ≤ f(G))

(ii) (∀G,H)(f(G ∗H) ≤ f(G) · f(H))

then (∀G)(Θ(G) ≤ f(G)).

LOVÁSZ CAPACITY : THE LOVÁSZ ϑ FUNCTION

Definition 11.16. By a “handle” we mean any unit vector. We think of an ONR as the
ribs of an “umbrella.” Given an ONR (a1, ..., an) and a handle c in Rd, we define Value(·, ·)
as

Value
(
(a1, ..., an), c

)
= max

i=1,...,n

1

(cTai)2
.

Note that the quantity cTai is the cosine of the angle ∠(c, ai) so the definition of the value
selects the largest angle between the handle and the ribs.

Definition 11.17. The Lovász Capacity of a graph G is defined as the minimum value:

ϑ(G) = min
(a1,...,an),c

Value
(
(a1, ..., an), c

)
where the minimum is taken over all possible choices of the ONR (a1, ..., an) of G and the
handle c.

(The letter ϑ (\vartheta) is the Greek lower case “theta.”)
So this definition seeks to minimize the largest angle between the handle and the ribs.

We now state the central result of Lovász’s theory.

Main Theorem 11.18 (Lovász). For every graph G we have Θ(G) ≤ ϑ(G).
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As with all known upper bounds on the Shannon capacity, the proof will be based on
Theorem 11.15, so we need to prove the following two inequalities.

(1) ϑ(G) ≥ α(G)

(2) ϑ(G ∗H) ≤ ϑ(G) · ϑ(H).

Proof of ϑ ≥ α. Pick any ONR (a1, ..., an) and handle c. We need to show α(G) ≤ Value(ONR, c).
Pick any independent set |A|. Then

1 = ‖c‖2 ≥
∑
i∈A

(cTai)
2

≥ |A| ·min
i∈A

(cTai)
2

≥ |A| · min
i=1,...,n

(cTai)
2

= |A| · 1

Value(ONR, c)

In the first step we used Parseval’s inequality through the observation that {ai | i ∈ A} is
an orthonormal system.

We conclude that |A| ≤ Value(ONR, c). Since this holds for an arbitrary ONR, handle,
and independent set, it follows that α(G) ≤ ϑ(G).

We leave the submultiplicativity of the ϑ function as an exercise.

HW 11.19. (5 points) Prove: ϑ(G ∗H) ≤ ϑ(G) · ϑ(H).

This exercise will complete the proof of the Main Theorem.
We remark that Lovász also proved the following. We say that a pair (ONR, handle) is

optimal if its value is ϑ(G).

Theorem 11.20 (Equal angles). There exists an optimal (ONR, handle) pair for which all
values cTai are equal (and therefore their common value is 1/

√
ϑ(G)) .

This phenomenon will be illustrated by the “Lovász umbrella” in the next section. Theo-
rem 11.20 will be an ingredient in the dual characterization of the ϑ function, see Cor. 11.29.

THE SHANNON CAPACITY OF C5: THE LOVÁSZ UMBRELLA
Shannon (1956) proved that

√
5 ≤ Θ(C5) ≤ 5/2 . Closing this gap remained a major

open problem in Information Theory until Lov’asz’s 1979 paper,
“On the Shannon capacity of a graph,” IEEE Transactions on Information Theory, Vol. 25
(1979), pp. 1–7.

Theorem 11.21 (Lovász). Θ(C5) =
√

5.

Most of the material in this course regarding the Shannon capacity is from the first two
pages of that paper. Today we shall also state a result from page 4.

But first, back to page 2: we prove Theorem 11.21. All we need is find an ONR of
C5 and a handle such that the value is

√
5. This implies that ϑ(C5) ≤

√
5 and therefore
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Θ(C5) ≤
√

5. Given that we already know the inequality Θ(C5) ≥
√

5 (recall that this
follows from the exercise that we can place 5 kings on the 5 × 5 toroidal chessboard), we
conclude that Θ(C5) =

√
5 and incidentally the ONR and handle we found are optimal. But

for we do not need to prove optimality in advance, we just need to guess the right ONR and
handle. This choice will be quite natural from symmetry considerations.

So here is the construction of the Lovász umbrella for C5 in R3. First draw a regular
pentagon in the unit circle in the XY plane, centered around the origin ø = (0, 0, 0) and
with one of its vertices the point u1 = (1, 0, 0), the others numbered clockwise as u2, . . . ,u5.
Pick a point p = (0, 0, z) on the Z axis, z ≥ 0. Note that p ⊥ ui.

We choose z such that p−u1 ⊥ p−u3. Let ai be the unit vector in the direction p−ui:

ai =
p− ui

‖p− ui‖
. (4)

We take {a1, . . . , a5} for our ONR and we choose the handle to be the unit vector c in the
direction −p:

c =
−p

‖p‖
. (5)

This is illustrated in Figure 2.

Figure 2: The Lovász umbrella for C5. Image: cs.chalmers.se

The condition p − u1 ⊥ p − u3 together with the 5-fold rotational symmetry of the
configuration about the handle ensures that this is indeed an ONR of C5. Next we determine
the right value of z to achieve this.

DO 11.22. z2 = cos(π/5) .

Proof. Recall that p = (0, 0, z) be the tip of the umbrella and u1 = (1, 0, 0). Observe that
u3 = (cos(4π/5), sin(4π/5), 0). We wish to have

0 = (p− u1)
T (p− u3)

= p · p− p · u1 − p · u3 + u1 · u3

= z2 − 0− 0 + u1 · u3

= z2 + cos(4π/5).

Finally, note that cos(4π/5) = − cos(π/5) .
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Let us now evaluate our ONR and handle.

Evaluating the Lovász umbrella. We have

1

(cTa1)2
=
‖p‖2 ‖p− u1‖2

(pT (p− u1))2
=
z2(z2 + 1)

z4

= 1 +
1

z2
= 1 +

1

cos(π/5)
=
√

5.

In the last line we used exercise DO 11.3.

HW 11.23. (6 points) Let e1, e2, e3 be an orthonormal basis of R3. Consider the following
list of vectors: a1 = e1, a2 = e1, a3 = e2, a4 = e2, a5 = e3. Most of you verified that
(a1, . . . , a5) form an ONR of C5. Find the optimal handle to this ONR (the handle that
minimizes the value) and compute the value of this ONR with its optimal handle. Prove
that your handle is best possible.

GOOD CHARACTERIZATION OF ϑ

Lovász also obtained the following remarkable dual characterization of the ϑ function. This
result, combined with the definition of ϑ, provide a “good characterization” for ϑ(G).

Theorem 11.24.

ϑ(G) = max
(wi),d

n∑
i=1

(dTwi)
2

where the maximum is taken over all choices (wi)
n
i=1 of an ONR of G and handle d.

Note that this statement links ϑ(G) to the ONRs of the complement of G.
We shall not prove this result, but we illustrate its power on some consequences.

DO 11.25. ϑ(G ∗H) ≥ ϑ(G) · ϑ(H).

Corollary 11.26. ϑ(G ∗H) = ϑ(G) · ϑ(H).

Another consequence will be that ϑ beats L-dim as an upper bound for the Shannon
capacity.

Theorem 11.27. ϑ(G) ≤ L-dim(G).

Lemma 11.28. If a1, ..., an are an ONR of G and c is a handle, and b1, ...,bn are an ONR
of G with d a handle, then

n∑
i=1

(cTai)
2(dTbi)

2 ≤ 1.

Proof. Based on Lemma 11.10 and the observation that for any i, j, either ai ⊥ aj or bi ⊥ bj,
it follows that {ai ⊗ bi | i = 1, ..., n} is an ON system. Thus

1 = ‖c‖2 ‖d‖2 = ‖(c⊗ d)‖2 ≥
n∑

i=1

((c⊗ d)T (ai ⊗ bi))
2

=
n∑

i=1

(cTai)
2(dTbi)

2.

The inequality in the first line was based on Parseval’s inequality.
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Combined with Theorem 11.20, this result gives the following corollary.

Corollary 11.29. If b1, . . . ,bn is an ONR of G with d a handle, then ϑ(G) ≥
∑n

i=1(d
Tbi)

2.

This proves the “easy” direction (min ≥ max) of the good characterization of ϑ.

Proof. Let a1, . . . , an be an ONR and of G and c a handle with equal angles, i. e.,
cTai = 1/

√
ϑ for all i. Now apply Lemma 11.28.

HW 11.30. (6 points) Prove that ϑ(G) · ϑ(G) ≥ n. Use any of the stated results without
proof; state what you use. Your proof should not be more than a few lines.

HW 11.31. (4 points) Prove: for perfect graphs, α(G) · α(G) ≥ n. (2 lines.)

HW 11.32. (2 points) Find a graph for which α(G) · α(G) < n.

CH 11.33. (20 points) Find a graph for which α(G) · α(G) < n/100.

HW 11.34 (Due Tuesday; please do not hand in before Tuesday). (5 points)
Prove: α∗(G) · α∗(G) ≥ n.

HW 11.35 (Due Tuesday; please do not hand in before Tuesday). (6 points)
Prove: ϑ(G) ≤ L-dim(G).
Hint. Let a1, . . . , an be an ONR of G in Rd where d = L-dim(G). Prove that the vectors
a1 ⊗ a1, . . . , an ⊗ an also form an ONR of G (in dimension d2); denote it by ONR2. Let
e1, . . . , ed be an ONB in Rd. Let

g =
1√
d

d∑
j=1

ej ⊗ ej.

Prove that this is a unit vector. Take g as the handle with ONR2. Prove that the value of
this pair is ≤ d.
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