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EXTREMAL GRAPH THEORY

Recall our terminology: the order of a graph is the number of its vertices; the size of a graph
is the number of edges. Extremal graph theory studies the maximum size of graphs of a
given order, having a given property. The most extensively studied properties are forbidden
subgraphs.

Definition 12.1. For a graph H we write ex(n,H) to denote the maximum size (number
of edges) among the graphs of order n containing no subgraph isomorphic to H.

For instance, the Mantel–Turán theorem states that

ex(n,K3) = bn2/4c. (1)

Turán’s theorem gives the exact value of ex(n,Kt+1) for all t ≥ 2 with the consequence that

ex(n,Kt+1) ≤
(

1− 1

t

)
n2

2
. (2)

Turán’s theorem also describes the extremal graphs – the graphs that have size ex(n,Kt+1).

DO 12.2. For all t ≥ 2 show that inequality (2) is asymptotically tight, i. e.,

ex(n,Kt+1) ∼
(

1− 1

t

)
n2

2
. (3)

It is easy to show that ex(n,C5) ≥ ex(n,K3); in fact, the two quantities are asymptotically
equal as n→∞, but this is much harder to prove.

HW 12.3. (7 points) LetH be a graph and let s = χ(H) ≥ 3. Prove: ex(n,H) ≥ ex(n,Ks).
You may use Turán’s Theorem. State exactly what you use.

Next we state the fundamental theorem of extremal graph theory which states that the
inequality ex(n,H) ≥ ex(n,Kχ(H)) is asymptotically tight for all graph H with chromatic
number ≥ 3.

CH* 12.4 (Erdős–Stone–Simonovits). If χ(H) ≥ 3, then ex(n,H) ∼ ex(n,Kχ(H)).
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The essence of the result was proved by Pál [Paul] Erdős and Arthur H. Stone in 1946 and
two decades later put in this striking form by Erdős and Miklós Simonovits.

Why do we exclude the case when χ(H) = 2? Note that ex(n,K2) = 0. The case of
bipartite graphs H was first studied by Tamás Kővári, Vera T. Sós, and Pál [Paul] Turán in
a 1954 paper. Here is the simplest case of their result.

Theorem 12.5 (Kővári–Sós–Turán).

ex(n,C4) <
n3/2

2
+
n

4
. (4)

In particular, ex(n,C4) = O(n3/2).

Proof. Let N denote the number of copies of P3 (paths of length 2) contained in the graph G
as subgraphs. We count the copies of P3 in two ways: by their center and by their endpoints.
Let V = [n] and for i ∈ V let di = deg(i). Vertex i is the center of

(
di
2

)
copies of P3, so

N =
∑n

i=1

(
di
2

)
. On the other hand, consider a pair {u, v} of distinct vertices. There cannot

be more than one path of length 2 connecting them since two such paths would create a C4

subgraph. It follows that N ≤
(
n
2

)
and therefore(
n

2

)
≥ N =

n∑
i=1

(
di
2

)
.

Multiplying each side by 2,

n(n− 1) ≥
n∑
i=1

di(di − 1) =
n∑
i=1

(d2i − di)

≥ (
∑n

i=1 di)
2

n
−

n∑
i=1

di =
(2m)2

n
− 2m.

The second inequality in this series uses the inequality between the arithmetic and quadratic
means. The last equality uses the Handshake theorem. Now we have

n3 = n2(n− 1) + n2

≥ 4m2 − 2mn+ n2 >
(

2m− n

2

)2
.

The result follows by taking the square root.

DO 12.6. ex(n,K2,100) = O(n3/2).

BONUS 12.7. (6 points) ex(n,K3,3) = O(n5/3).

CH* 12.8. Show that the asymptotic bound in the preceding problem is tight. In other
words, find a constant c > 0 and inifinitely many graphs without K3,3 subgraphs such that
m ≥ cn5/3 for these graphs.

The general bound for forbidden complete bipartite subgraphs given by Kővári, Sós, and
Turán is the following.
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DO 12.9. For 2 ≤ s ≤ t we have

ex(n,Ks,t) = O(n2− 1
s ). (5)

This bound is tight for s2, 3. It is a long-standing open problem to decide whether this
bound is tight for any value s ≥ 3. The best lower bound known for the case of Ks,s for
s ≥ 4 is

ex(n,Ks,s) = Ω(n2− 2
s ). (6)

LINEAR ALGEBRA

Remark 12.10. A closed-form expression is a formula that is built from variables and
constants using basic functions referred to as “primitives” without the use of

∑
,
∏

, or
“. . .” notation. The primitives include the four arithmetic operations (addition, subtraction,
multiplication, division), taking powers, logarithms, and rounding (the floor and ceiling
functions). In particular, the trigonometric functions and the Fibonacci numbers are included
(why?). Additionally, in this class, we include factorials and therefore binomial coefficients
among our primitives. So for instance

b
√
Fn−2c+ logn

(
n2

n− 1

)
· tan(π/(n!))

is a closed-form expression.

HW 12.11. (6 points) Consider the n× n matrix

A =


a

a b
a

b . . .

a


So, letting A = (aij), we have aii = a and aij = b for i 6= j.
Compute the determinant det(A) as a simple closed-form expression in the variables a, b,
and n.

Notation 12.12. Rk×n denotes the set of k × n matrices over R, i. e., k × n matrices with
real entries. Due to the special role of square matrices, Rn×n is also denoted Mn(R). For
matrices with complex entries, the analogous notation Ck×n and Mn(C) = Cn×n is used.

Definitions 12.13. For a matrix A ∈ Mn(R), an eigenvector of A is a non-zero vector
x ∈ Rn such that (∃λ ∈ R)(Ax = λx).
The number λ is the eigenvalue corresponding to the eigenvector x. The number λ ∈ R is
an eigenvalue of the matrix A if there exists a corresponding eigenvector.

The lower case Greek letter λ is called “lambda” (LATEX: (\lambda)).

Definition 12.14. A polynomial f(t) =
∑n

i=0 ait
i = ant

n + . . . + a1t + a0 in the variable
t has degree n if an 6= 0. In this case we refer to ant

n as the leading term and an as the
leading coefficient. f is a monic polynomial if its leading coefficient is an = 1.
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Recall the Kronecker delta symbol δij. It has value 1 if i = j and zero if i 6= j. The identity
matrix is the n× n matrix I = (δij).

Definition 12.15. The characteristic polynomial of the n× n matrix A is

fA(t) = det(tI − A)

where I is the n× n identity matrix.

DO 12.16. The characteristic polynomial is a monic polynomial of degree n.

DO 12.17. Let I be the n× n identity matrix. Then

fI(t) = (t− 1)n. (7)

Definition 12.18. For an n×n matrix A, the trace of A is the sum of the diagonal entries:

trace(A) =
n∑
i=1

aii.

Example 12.19. Let A be the 2× 2 matrix

A =

(
a b
c d

)
.

Then A has the characteristic polynomial

fA(t) =

∣∣∣∣t− a −b
−c t− d

∣∣∣∣ = (t− a)(t− d)− bc = t2 − (a+ d)t+ (ad− bc)

= t2 − trace(A) · t+ det(A).

Remark 12.20. In the definitions of eigenvalues, eigenvectors, characteristic polynomial, we
can replace R by C and get the analogous concepts over the complex numbers. A polynomial
over R is a polynomial with real coefficients; a polynomial over C is a polynomial with
complex coefficients. Remember that R ⊂ C, i. e., every real number is a complex number
(with imaginary part equal to zero). So, in particular, Mn(R) ⊂Mn(C).
In the context of vector spaces, the numbers permitted as entries in a matrix or as coefficients
in a linear combination (real or complex) are called scalars. So the set of scalars is R or C.

DO 12.21. The eigenvalues are precisely the roots of the characteristic polynomial. In other
words, λ is an eigenvalue of A if and only if fA(λ) = 0.

Corollary 12.22. An n× n matrix has at most n eigenvalues.

Theorem 12.23 (Fundamental Theorem of Algebra). If f is a monic polynomial of degree
n over C then there exist λ1, . . . , λn ∈ C such that

f(t) =
n∏
i=1

(t− λi).
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Definition 12.24. The λi are the roots of f (also called the zeros of f). The multiplicity
of the scalar α ∈ C among the roots of f is the number of subscripts i such that α = λ1. A
simple root is a root with multiplicity is 1; a multiple root is a root with multiplicity is
≥ 2.

Example 12.25. If f(t) = (t− 1)5(t+ 2)3(t+ 8), then the roots of f are 1,−2 and −8 with
respective multiplicities 5, 3, and 1. So 1 and −2 are multiple roots, while−8 is a simple
root.

DO 12.26. Let f be a polynomial over C. The value α ∈ C is a multiple root of f if and
only if f(α) = f ′(α) = 0. Here f ′ is the derivative of f . Solve this over R if you are not
comfortable with complex numbers.

Definition 12.27. The multiplicity of eigenvalue λ for the n× n matrix A is the mul-
tiplicity of λ in the characteristic polynomial fA.

DO 12.28. The n × n identity matrix has the number 1 as its sole eigenvalue; it has
multiplicity n.

DO 12.29. Let fA(t) = det(tI − A) =
∏n

i=1(t− λi).

(a) trace(A) =
∑n

i=1 λi.

(b) det(A) =
∏n

i=1 λi.

HW 12.30. (4 points) Let A ∈ Rk×n and B ∈ Rn×k. Prove: trace(AB) = trace(BA).

Definition 12.31. A list of vectors, v1, . . . ,vk ∈ Rn, is linearly independent if

(∀α1, . . . , αn ∈ R)

(
n∑
i=1

αivi = 0 ⇐⇒ (∀i)(αi = 0)

)
.

In other words, a list of vectors is linearly independent if the trivial linear combination is the
only linear combination of the list that evaluates to the zero vector. (A linear combination∑

i αivi is the trivial linear combination if all coefficients αi are zero.)

Definition 12.32. The dimension of a vector space V is the maximum number of linearly
independent vectors in V . This number is denoted dim(V ).

Remark 12.33. If you are not comfortable with the abstract definition of a vector space,
think of V as either Rn or a subspace of Rn, here as well as later in these notes.)

DO 12.34. dim(Rn) = n. This central fact of linear algebra is not straightforward; you
need to prove that any list of n + 1 vectors in Rn is linearly dependent. If you get stuck,
look up a proof.

HW 12.35. (4 points) If v1, . . . ,vk ∈ Rn is an orthonormal system, then it is linearly
independent.

HW 12.36. (6 points) Let A ∈ Mm(R). If a1, . . . , ak are eigenvectors corresponding to
distinct eigenvalues, then they are linearly independent. (The condition says that the ai are
nonzero vectors such that Aai = λi where for i 6= j we have λi 6= λj.)
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The converse does not hold: linearly independent eigenvectors may or may not share the
same eigenvalue.

DO 12.37. Show that all non-zero vectors are eigenvectors of the identity matrix.

Definition 12.38. A scalar matrix is a matrix of the form λI where λ is a number.

DO 12.39. If A is a scalar matrix then all nonzero vectors are eigenvectors of A.

BONUS 12.40. (6 points) Let A ∈ Mn(R). Prove: if every nonzero vector x ∈ Rn is an
eigenvector of A ∈Mn(R) then A is a scalar matrix.

Definition 12.41. We say that a list L of vectors spans the vector space V is every vector
in V is a linear combination of L.

Definition 12.42. A list L of vectors is a basis of the vector space V if

1. L is linearly independent

2. L spans V .

DO 12.43. A list L of vectors is a basis for a vector space V if and only if every vector in V
is uniquely expressible as a linear combination of L. In other words, the list L = (bi)

n
i=1

is a basis if and only if

(∀w ∈ V )(∃! scalars α1, . . . , αn)

(
w =

n∑
i=1

αibi

)
.

Notation 12.44. The phrase “with respect to” is a preposition which requires three separate
words–what an extroardinary excess! We abbreviate the phrase by writing “wrt”.

Definition 12.45. For a vector w and a basis b1, . . . ,bn, the coordinates of w wrt the
basis (bi)

n
i=1 are the unique scalars (α1, . . . , αn) such that w =

∑n
i=1 αibi.

Definition 12.46. An eigenbasis of A ∈Mn(R) is a basis of Rn consisting of eigenvectors
of A.

Remark 12.47. WARNING. An eigebasis of A ∈ Mn(R) is NOT a “basis of A” but a basis
of the space Rn. In particular, it consists of n vectors, regardless of the rank of A.

DO 12.48. Find an eigenbasis of the n× n all-zero matrix. Find all eigenbases.

Definition 12.49. A matrix A ∈Mn(R) is diagonalizable over R if A has an eigenbasis.

Remark 12.50. As usual, we have the analogous definitions over C.
In the next exercises we shall encounter real matrices that are diagonalizable over C but not
diagonalizable over R.

Definition 12.51. For θ ∈ R, the rotation matrix Aθ is defined as

Aθ =

(
cos θ − sin θ
sin θ cos θ

)
.
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Remark 12.52 (Why “rotation matrix?”). One can use coordinates wrt a given basis to
establish a one-to-one correspondence between linear transformations of Rn and the matrices
in Mn(R). The matrix Aθ turns out to be the matrix corresponding to the rotation of the
plane by the angle θ or −θ wrt any ONB of the plane. (When is it θ and when is it −θ?
Note that the ONBs of the plane can naturally be divided into two kinds. (Explain.)

HW 12.53. ♥ (5 points) Find the characteristic polynomial of Aθ. Find its complex roots.

Remark 12.54. The ♥ indicates that this is a sweet problem. In this case, we start by turning
the geometry (rotation of the plane) into algebra, then a polynomial, then its roots), and
the output (a pair of complex numbers) turns out to be intimately related to the geometry
we started with (rotation). Question: how are the complex numbers you get related to the
rotation of the plane by angle θ ?
You find many sweet problems on the Puzzle Problems sheet.

BONUS 12.55. (4 points) Find a complex eigenbasis of the rotation matrix Aθ . So,
even though Aθ is a real matrix, you need to view it as a complex matrix.

DO 12.56. If θ 6= kπ, then Aθ has no real eigenvalues, and therefore no real eigenvectors.

HW 12.57. (Due Thursday) (6 points) Let A ∈Mn(R) be the matrix

A =



0 1 0 0 . . . 0
0 0 1 0 . . . 0
0 0 0 1 . . . 0
...

...
...

...
. . .

...
0 0 0 0 . . . 1
1 0 0 0 . . . 0


.

Find the characteristic polynomial of A.

BONUS 12.58. (Due Thursday) (2+5 points) A the same as in the preceding problem,
viewed as a complex matrix.

(a) Find the eigenvalues of A over C.

(b) Find an eigenbasis of A over C.

HW 12.59. (5 points) The matrix B =

(
0 1
0 0

)
has no eigenbasis over R, and no eigenbasis

over C. (The first statement follows from the second, but ignore the second if you don’t like
complex numbers.)

Definition 12.60. A = (aij) is a triangular matrix if i > j =⇒ aij = 0. In picture,

A =


∗
∗ ∗
∗

0 . . .

∗

 .

(The stars indicate arbitrary entries, possibly including zero)
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DO 12.61. If A is a triangular matrix, then

fA(t) =
n∏
i=1

(t− aii).

In particular, the eigenvalues of a diagonal matrix are its diagonal elements.

Definition 12.62. Let f be a monic polynomial of degree n with real coefficients. We say
that all roots of f are real if f(t) =

∏
i=1(t− λi) where all the λi are real.

We say that all eigenvalues of A ∈ Mn(R) are real if all roots of the characteristic
polynomial fA are real.

DO 12.63. All eigenvalues of a real triangular matrix are real.

Definition 12.64 (Interlacing). Let λ1 ≥ λ2 ≥ . . . ≥ λn and µ1 ≥ µ2 ≥ . . . ≥ µn−1, where
the λi and the µj are real numbers. We say the two sequences interlace if

λ1 ≥ µ1 ≥ λ2 ≥ µ2 ≥ . . . ≥ µn−1 ≥ λn.

We also say that the µj interlace the λi.

HW 12.65. (Due Thursday) (6 points) Let f be a monic polynomial of degree n over R.
Suppose all roots of f are real. Prove:

(a) All roots of f ′ are real.

(b) The roots of f and f ′ interlace.

SPECTRAL THEOREM, QUADRATIC FORMS, INTERLACING EIGENVALUES We

now state one of the central results of linear algebra.

Theorem 12.66 (The Spectral Theorem). If A ∈ Mn(R) is a symmetric real matrix (i. e.,
A = AT ), then A has an orthonormal eigenbasis over R. In particular, all eigenvalues of A
are real.

While in the results stated so far, R can simply be replaced by C to obtain an analogous
result for complex numbers, the situation is not so simple in this case. There is an analogous
result for complex Hermitian matrices which we shall state later.

The Spectral Theorem is said to be the second-most often applied theorem of (higher)
mathematics, in terms of applications both within mathematics and to the sciences. (It
is preceded by the Fundamental Theorem of Calculus.) In particular, graph theory is a
voracious consumer of the Spectral Theorem.

DO 12.67. If A ∈ Rk×n and x ∈ Rk, y ∈ Rn, then

xTAy =
k∑
i=1

n∑
j=1

aijxiyj.
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If A ∈Mn(R) is symmetric, then it follows from the previous exercise that

xTAx =
∑
i,j

aijxixj =
∑
i

aiix
2
i + 2

∑
i<j

aijxixj. (8)

An expression of this form is called a quadratic form, also known as a “homogenous
polynomial of degree 2.”

Definition 12.68. An expression of the form
∑n

i=1 αixi is a linear form (where the xi are
variables and the αi are scalars). These are exactly the homogeneous linear polynomials.

In the problems below, use the Spectral Theorem.

HW 12.69. (Due Thursday) (5 points) Let A ∈ Mn(R) be a real symmetric matrix. Let
b1, . . . ,bn be an orthonormal eigenbasis of A with corresponding eigenvalues λ1 ≥ · · · ≥ λn.
(So Abi = λibi.) Let x ∈ Rn be expressed as x =

∑n
i=1 βibi (so β1, . . . , βn are the coordinates

of x wrt the basis (bi)
n
i=1). Then

xTAx =
n∑
i=1

λiβ
2
i . (9)

Definition 12.70. If A ∈Mn(R) is a symmetric real matrix, then the Rayleigh quotient
of A is the function

RA(x) =
xTAx

xTx

defined for x ∈ Rn, x 6= 0.

DO 12.71. RA(αx) = RA(x) whenver α ∈ R, α 6= 0.

HW 12.72 (Rayleigh’s Principle). (Due Thursday) (5 points)
Let A ∈Mn(R) be a real symmetric matrix with eigenvalues λ1 ≥ . . . ≥ λn.

(i) λ1 = maxxRA(x).

(ii) λn = minxRA(x).

Lord Rayleigh (1842–1919) was a British physicist. He spent his entire academic career
at Cambridge. He won the Nobel prize in physics in 1904 and was cited, among other things,
for the discovery of the noble gas argon. His actual last name is Strutt; his full name is John
William Strutt, 3rd Baron Rayleigh.

BONUS 12.73 (Courant–Fischer). (Due Thursday) (8 points) Let A ∈ Mn(R) be a
symmetric real matrix with eigenvalues λ1 ≥ . . . ≥ λn. Then, for all k (1 ≤ k ≤ n),

λk = max
U≤Rn

dimU=k

min
x∈U
x 6=0

RA(x)

Here the maximum ranges over all k-dimensional subspaces of Rn.
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Richard Courant (1888–1972) was a German–Jewish–American mathematician. Hover and
click here to read his fascinating biography, his rise from a kid who at some point in el-
ementary school was rated “less than satifactory” in arithmetic, to a prominent German
mathematician, even while his father’s business went into bankruptcy at Richard’s age of
14 from which time on he had to support himself fully by tutoring. At 19 he was admitted
to the University of Göttingen, Germany, one of the world centers of mathematics at the
time, and within a year became David Hilbert’s assistant. Hilbert was considered the leading
mathematician of the time. Courant received his PhD under Hilbert at the age of 22. Much
of Courant’s work was in mathematical physics. He was wounded in WWI. From 1918 he
was a member of the faculty at Göttingen and founded the Mathematical Institute there. In
1933 the Nazis came to power, Courant was driven from his position and had to leave the
country. In 1934 he moved to New York. At NYU, Courant almost single-handedly created
a first-class mathematical institute, now named the Courant Institute.

Ernst S. Fischer (1875–1954) was a mathematician born in Vienna. Austria. He spent most
of his career in Erlangen, Germany. His work was in analysis, specifically in orthogonal
functions. His most famous result is the Riesz–Fischer theorem, asserting the completeness
of the L2 space, a fundamental result in the theory of Hilbert spaces and at the foundations
of the field of functional analysis. The result was proved in 1907 independently by Fischer
and Hungarian mathematician Frigyes (Frederic) Riesz (1880–1956).

BONUS 12.74 (Interlacing eigenvalues). (Due Thursday) (8 points) Let A ∈ Mn(R) be
a symmetric real matrix. Let B ∈Mn−1(R) be the matrix obtained by deleting the i-th row
and the i-th column of A, as shown below.

a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...
an1 an2 . . . ann


︸ ︷︷ ︸

A

→


a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...
an1 an2 . . . ann


︸ ︷︷ ︸

B

So B is also a symmetric real matrix. Prove that the eigenvalues of B interlace the eigenvalues
of A. (Hint: Courant–Fischer.)
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