Graph Theory: CMSC 27530/37530 Lecture 13

Lecture by Laszl6 Babai
Notes by Geoftrey West,

Revised by instructor

May 14, 2019

Email the instructor a list of challenge problems submitted, except a(C7 * C7).

MULTISET, SPECTRUM

Definition 13.1. A multiset is a set where we allow an element to appear multiple times.
To distinguish it from a set, we often use double braces, for example,

{{2,2,2,3,7,7,7,7}}.

In this case we say that the element 2 has multiplicity 3, the element 3 has multiplicity 1,
and the element 7 has multiplicity 4. Two multisets are equal if they have the same entries
and each entry has the same multiplicity (order doesn’t matter).

Example 13.2. A monic polynomial is characterized by the multiset of its complex roots.

Example 13.3. For A € M, (C), the spectrum of A is the multiset of its eigenvalues. For
example, the spectrum of the identity matrix is {{1,1,...,1}}.
——

n times

Exercise 13.4. Consider a previous homework problem, to calculate the determinant of the
matrix

First solution. We use basic determinat operations. For two columns a;,a; (j # i), we can
replace column a; with a; + fa; without affecting the determinant. Let us add each of the



first n — 1 columns to the last column, obtaining the following.

a b ... a+(n—1)b a b ... 1
b a ... a+(n—1)b b a ... 1
det A=det| . . | , =(a+ (n—1)b) - det .
b b ... a+(n—1)b b b ... 1
a—b 0 1
0 a-0 1
=(a+ (n—1)b) - det :
0 0 1

The last equality is by subtracting b times the last column from each of the first n — 1
columns. Since now the matrix has triangular form, its determinant is the product of its
diagonal elements. We obtain

det A= (a+ (n—1)b)-(a—Db)""" (1)
[

HW 13.5. (4+2 points) Determine the characteristic polynomial and the spectrum of the
adjacency matrix of K,, and K,.

Next we determine the spectrum of the all-ones matrix and use it for a more elegant
solution of Exercise [13.4l

Recall that an eigenbasis of a matrix A € M,(R) (or A € M,(C)) is a basis of R" (or
alternatively C") consisting of eigenvectors of A.

Definition 13.6. The rank of a matrix is the maximum number of linearly independent
columns. We write rk(A) to denote this number.

Definition 13.7. The kernel of a matrix A € R¥*¢ is the set {x € R’ | Ax = 0}, denoted
ker(A).

Definition 13.8. The nullity of a matrix A is the dimension of ker(A), denoted nullity(A).
Theorem 13.9 (Rank-Nullity). For a matriz A € R¥** we have rk(A) + nullity(A) = £.

Consider the n x n all-ones matrix J = (j;;) having each entry j;, = 1. Clearly rk(J) = 1,
and by Rank-Nullity it follows that nullity(J) = n — 1. The eigenvalues of J are easy to
find: any non-zero element of ker(.J) is an eigenvector having eigenvalue equal to 0, so we
already have n — 1 of the eigenvalues (all zero), only one is missing. The missing eigenvalue
can be calculated from the trace, which is n, so the spectruem of J is spec(J) = {{0"" ! n}}.

Instead of employing the trace trick, we could also have noticed that the all-ones vector
X = (1 1 ... 1)T is an eigenvector with eigenvalue n.

Next we try to find an eigenbasis of J.



The elements x = (x1,...,x,) of the kernel are the nonzero vectors satifying Jx = 0,
or, in other words, Y x; = 0. Here are n — 1 linearly independent vectors satisfying this
condition.

a=(1 -10 ...0)"
a,=(10 -1 ... 0)"
a, 1 =100 ... -1)".

These vectors form a basis of ker(.J) (because they are linearly independent and their number
is right.) The vectors ay, ..., a,_1 together with x constitute an eigenbasis to .J.

DO 13.10. Let A € M,(R) and let B = (by, ..., b,) be an eigenbasis of A with corresponding
eigenvalues \q,..., \,, so Ab; = \;b;. Let «, 8 € R.

1. B is an eigenbasis of «A with corresponding eigenvalues a;.
2. B is an eigenbasis of A + 51 with corresponding eigenvalues \; + (.
3. B is an eigenbasis of a A + fI with corresponding eigenvalues a\; + .
So we find that if A is diagonalizable and spec(A) = {{A1,..., A\, }} then
spec(aA + BI) = {{a 1 + 5,...,a\, + 5} }. (2)
The same holds over C.

BONUS 13.11. (5 points) (Due Tuesday) Prove that over C, equation ([2) always holds,
regardless of whether A is diagonalizable. You may use the result, to be explained later,
that over c, every square matrix is similar to a triangular matrix.

Second solution to Ezercise[15.4. Consider again the matrix A discussed in Exercise [13.4]
Notice that A = bJ + (a — b)I. Using the result that J is diagonalizable and spec(J) =
{{0,...,0,n}}, together with Eq. [2| we obtain that

spec(A) ={{a—0,...,a—b,a+ (n—1)b}}. (3)

Now the determinant is the product of the eigenvalues, so we again proved Eq. , this time
without any tedious, ad hoc calculations. O

SIMILARITY OF MATRICES
Recall the multiplicativity of the determinants: if A, B € M,,(R) then

det(AB) = det(A) - det(B). (4)
Recall that a square matrix A is invertible if and only if det(A) # 0.

DO 13.12. )

det(A)

det(A™1) =



Definition 13.13. A, B € M,(R) are similar if (35,57!)(B = S7'AS). In this case we
write A ~ B.

Remark 13.14. The similarity relation gains intuitive understanding from the following idea:
two matrices are similar if they represent the same linear transformation in different bases.
The matrix S describes the change of basis.

DO 13.15. Similarity is an equivalence relation on M, (R).
DO 13.16. A~ B = trace(A) = trace(B).

Proof. We use the previous exercise that for matrices K, L € M, (R) we have
trace( K L) = trace(LK).
Apply this with K = S~ and L = AS:

trace(B) = trace(S™' - AS) = trace(AS - S71) = trace(A).

DO 13.17. A~ B = det(A) = det(B).

DO 13.18. A~ B = f4= f5.
Hint. The matrix t/ — A is called the characteristic matrix of A. So the characteristic
polynomial is the determinant of the characteristic matrix. Show that

if A~ B then (tI — A) ~ (t] — B).

Now apply DO [13.17]

Remark 13.19. We say that the characteristic polynomial is an invariant of the similarity
relation, meaning that if A ~ B then fy = fg. It is not a complete invariant, meaning
that the converse does not hold: the characteristic polynomial does not characterize the
similarity class of a matrix (see next exercise). The Jordan normal form (with appropriately
ordered diagonal blocks) is a complete invariant over C.

HW 13.20. (5 points) Find two matrices A, B € M(R) such that f4 = fg but A % B.
Prove that they are not similar.

DO 13.21. f4(t) = t" — trace(A)t" 1 + ... 4+ (—=1)"det(A).
Three of the statements we have made can be summarized as follows:
(1) A~ B = trace(A) = trace(B)
(2) A~ B = detA=detB
(3) AvB = fa=f5.

DO 13.22. Show that statement (3) implies (1) and (2).
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Notation 13.23. We write B = [by, ..., by] to express that by, ..., b, are the columns of the
matrix B.

DO 13.24. Let A € R™* and B € Rt If B = [by, ..., b,], then AB = [Ab, ..., Ab,].
DO 13.25. If A = [aj,...,a,] and x = (21, ...,7,)" then then Ax = z;a;.

DO 13.26. Let e; denote the i-th standard basis vector, i.e., the i-th column of the identity
matrix. Then
Ae; = a;, the i-th column of A.

Proof. Immediate from DO [13.25] m
Definition 13.27. A matrix D € M,(R) is diagonal if it has the form

v o0

D = A3

An
We abbreviate using the notation D = diag(A1, Aa, ..., Ap)-
DO 13.28. If A = [ay,...,a,] and D = diag(\1, Az, ..., \p), then AD = [A\jay, ..., Asay).
Recall our definition of diaginalizability.
Definition 13.29. We say that A is diagonalizable if it admits an eigenbasis.
The following result explains this terminology.
Theorem 13.30. A is diagonalizable <= A is similar to a diagonal matriz.
DO 13.31. If A ~ diag(\y, ..., A,) then {{\1,...; A\, }} = spec(A).
Proof. A~D = fa=fp=][t—-N\). O

Definition 13.32. A matrix A € M,(R) is called nonsingular if any of the following
equivalent conditions hold.

(a) det A#0
(b) tkA=n
(c) JA™L

DO 13.33. Prove that these conditions are equivalent.

Proof of Theorem [13.30}. We prove the “only if” direction. Suppose A has an eigenbasis,

(bl,...,bn), such that Abz = /\zbz Let B = [bl,...,bn]. Then AB = [)\1b1,.‘.,/\nbn] =

B - diag(Aq, ..., \n). (Here we used DO exercises |13.25| and [13.28.) So AB = BD and
—_———

D
therefore B-'AB = B~'BD = D. (Why is B invertible? O]
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DO 13.34. Prove the converse: if A is similar to a diagonal matrix, then A has an eigenbasis.

HW 13.35. (5 points) If all eigenvalues of A are distinct over C (i.e., A has no multiple
roots), then A is diagonalizable over C.

HW 13.36. (4 points) Show that the converse is false: find a 2 x 2 matrix which is
diagonalizable but has a multiple eigenvalue. Find all such matrices.

MIRACLES OF LINEAR ALGEBRA

I can’t cease to view some of the basic facts of Linear Algebra with wonderment. I call the
fact that dim(R™) = n the First Miracle of linear algebra. It expresses the impossibility of
boosting linear independence. R"™ is spanned by n vectors, and try as hard as you might,
you will never be able to find more than n linearly independent vectors in R™. This feature
distinguishes linear algebra from much of algebra. For instance, the free group with 2
generators contains a free group with infinitely many generators: two “independent” elements
generate infinitely many.

I view the fact that rk(A) = rk(AT) the Second Miracle. This is true even if A is not a
square matrix. Rows and columns live in different worlds. What do linear combinations of
rows have to do with linear combinations of columns? Yet, the maximum number of linearly
independent rows and columns is the same.

Next we draw some inferences from the first two miracles, in preparation for the third one.

Definition 13.37. Let A € R**! and B, C € R**. We say that B is a right inverse of A
if AB = I (the k x k identity matrix). We say that C' is a left inverse of A if CA = I,
(the ¢ x ¢ identity matrix).

DO 13.38. A matrix A € R¥*¢ has a right inverse if and only if tk(A) = k. This means its
rows are linearly independent. In this case we say that A has full row rank.

DO 13.39. A has a left inverse if and only if rk(A) = ¢, i.e., its columns are linearly
independent. In this case we say that A has full column rank.

A corollary of the last two results is that only square matrices can have inverses on both
sides. A remarkable fact following from the first two miracles is that, for a square matrix, if
it has either inverse, then it has both!

And these two inverses are necessarily equal.

DO 13.40. If B is a left inverse and C' is a right inverse of the matrix A then B = C..
Proof. We have BA = I and AC' = I. Therefore

B = BI =B(AC) = (BA)C =1IC=C.
Note that this proof works in any semigroup with identity. O
DO 13.41. Prove: if A € M,(R) has a right inverse then this right inverse is unique.

The next exercise summarizes what we have found.



DO 13.42. For an n X n matrix the following are equivalent:
(1) rk(A) =n (A has full rank)
(2) A has a left inverse
(3)

(4) A has an inverse (2-sided)

A has a right inverse

Moreover, in this case the inverse is unique, and there is no left or right inverse other than
this unique inverse.

DO 13.43. Let k # /. Prove: if A € R¥** has a right inverse then it has infinitely many
right inverses.

Of course the same can be said about left inverses.
ORTHOGONAL MATRICES, THE THIRD MIRACLE

Definition 13.44. A matrix A € M,(R) is an orthogonal matrix if the columns of A
form an ONB of R".

Contrary to most definitions before, this one does not work over C, it is essential that
our scalars are real numbers.

cosf) —sinb

Example 13.45. The rotation matrix Ry = | .
sinf  cosf

) is an orthogonal matrix.
cosf sinf

Example 13.46. The reflection matrix Fy = (sin@ —cosh

) is an orthogonal matrix.
BONUS 13.47. (6 points) (Due Tuesday) These two classes of examples comprise all
orthogonal 2 X 2 matrices.

1 0

HW 13.48. (5 points) Fj ~ <O 1

) for all 4 € R.

The rotation matrix R, has eigenvalues e*®. What happens to the complex plane if
we multiply every number by e i.e., what is the transformation z + ¢?z (z € C)? The
plane rotates by angle §. We started from geometry (rotation), turned it into algebra (ma-
trix, characteristic polynomial, eigenvalues), and the output gives us back the geoimetric
transformation we started from.

Theorem 13.49. A is orthogonal (its columns form an ONB) <= its rows form an ONB.

I like to call this the Third Miracle of Linear Algebra.

Ortonormality of the columns is a set of equations on the elements of the matrix. Ortonor-
mality of the rows is another set of equations. The equations for the columns combine entirely
different sets of variables than those for the rows. What do the two sets of equations have to
do with each other? Well, they are equivalent, and we shall derive this fact from the Second
Miracle.



DO 13.50. A is orthogonal if and only if ATA = 1.

Proof. If A = [ay, ..., a,], what is the (ij)th entry of ATA? The answer is al a;. Therefore,
ATA=1 < (Vi,j)(ala; = ;) < the a; form an ONB. O

So A € M,(R) is orthogonal if and only if AT is the left inverse of A. But then, by
exercise DO [13.42] we have the following corollaries.

DO 13.51. A is orthogonal if and only if AT is orthogonal.

Proof. A is orthogonal if A is the left inverse of A, and AT is orthogonal if AT is the right
inverse of A. But these two conditions are equivalent. O

DO 13.52. Notice that exercise DO [13.51]is just a restatement of the Third Miracle (The-
orem (13.49)), and completes its proof.

DO 13.53. A is orthogonal if and only if AT = A1

HW 13.54. (4 points) Prove: if A is an orthogonal matrix then det(A4) = +1.

HW 13.55. (4 points) If A, B are orthogonal matrices, then AB is an orthogonal matrix.
HW 13.56. (4 points) If A € M, (R) is an orthogonal matrix then (vVx € R")(||Ax|| = ||z||)-

BONUS 13.57. (5 points) Prove the converse: if (vx € R")(||Ax|| = ||z||) then A is
orthogonal.

Remark 13.58. The last two exercises say that orthogonal matrices represent precisely those
linear transformations that preserve norm and therefore, distance: they are those congruences
of R™ that fix the origin.

ORTHOGONAL SIMILARITY. THE SPECTRAL THEOREM RESTATED

Definition 13.59. Let A, B € M,(R). We say that A and B are orthogonally similar if
there exists and orthogonal matrix S such that B = S™'AS. We say that A is orthogonally
diagonalizable if A is orthogonally similar to a diagonal matrix.

DO 13.60. Prove the following statement is equivalent to the Spectral Theorem.
Every symmetric real matrix is orthogonally diagonalizable.



