
Graph Theory: CMSC 27530/37530 Lecture 14

Lecture by László Babai
Notes by Geoffrey West

Revised by instructor

May 16, 2019

Please remember to send the instructor the list of challenge problems you solved
(except 6.23: α(C7 ∗ C7)) so he can check if his records are complete.

FRACTIONAL INDEPENDENCE NUMBER
A HW problem asked to prove α∗(G) · α∗(G) ≥ n.

Proof. We give a simple proof of the stronger statement

α∗(G) · α(G) ≥ n. (1)

For the graph G = (V,E), recall the LP that defines the fractional independence number
α∗(G). We associate the variable xv with vertex v and impose the following constraints:

(1) (∀v ∈ V )(xv ≥ 0)

(2) (∀ clique C in G)(
∑

v∈C xv ≤ 1).

We seek to maximize
∑

v∈V xv under these constraints.
In order to give a lower bound on this maximum, α∗(G), it suffices to guess a feasible

solution. Let us set xv =
1

α(G)
=

1

ω(G)
for each v ∈ V . This is a feasible solution, i. e., it

satisfies the constraints. (Verify this!) Therefore

α∗(G) ≥
∑
v∈V

xv =
n

α(G)
. (2)

Note that we did not use the LP Duality Theorem for this proof.

This was a one-line proof; all that matters is contained in this line.

For v ∈ V let xv =
1

α(G)
. This is a feasible solution. Therefore, α∗(G) ≥

∑
v∈V

xv =
n

α(G)
.

CHROMATIC POLYNOMIAL

BONUS 14.1 (Due Thursday). (6 points) The chromatic polynomial has no roots in the
open interval (0, 1).
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RAMSEY THEORY
Let’s play the Ramsey Game on six vertices: We have a Red player and a Blue player.
The players alternate selecting edges of K6. Every edge is selected only once, so the game is
over in

(
6
2

)
= 15 rounds. A player loses if their selected edges contain a triangle.

Theorem 14.2. No draw is possible in the Ramsey Game on six vertices.

Proof. We prove the following stronger statement.

Claim 14.3 (Baby Ramsey Theorem). No matter how we color E(K6) red and blue, there
exists a monochromatic triangle. (“Monochromatic” means all edges have the same color.)

Choose a vertex u. It has degree 5 in K6. At least three of the edges from u must have
the same color; let’s say {u, vi} are red for i = 1, 2, 3. One of two things must be true.

1. {vi, vj} is red for some {i, j} ⊂ {1, 2, 3}

2. all the three edges {vi, vj} are blue ({i, j} ⊂ {1, 2, 3}).

In the first case, {u, vi, vj} is a red triangle. In the second case, {v1, v2, v3} is a blue triangle.

Notation 14.4 (Erdős–Rado arrow symbol). We write n→ (k, `) if

(∀ Red/Blue coloring of E(Kn))(∃ Red Kk or ∃ Blue K`).

Examples. n→ (n, 2), 6→ (3, 3), 5 9 (3, 3) (prove!)

BONUS 14.5 (Erdős–Szekeres, 1934). (6 points) For k, ` ≥ 1 we have

(
k + `

k

)
→ (k + 1, `+ 1).

Use induction on k + `. The base cases are k = 1 or ` = 1 (infinitely many base cases!); for
the inductive step you may then assume k, ` ≥ 2.

Setting k = 2, ` = 2 we obtain 6→ (3, 3) (the baby case). This is tight: 5 9 (3, 3).
Setting k = 3, ` = 2 we obtain 10→ (4, 3). This can be improved.

BONUS 14.6 (Due Thursday). (6 points) 9→ (4, 3) .

HW 14.7. (5 points) 17 → (3, 3, 3). Define the arrow symbol for this case. (Use three
colors.)

DO 14.8. 4k >
(
2k
k

)
. Use 2n =

∑n
i=0

(
n
i

)
.

But 4k is not much bigger than
(
2k
k

)
.

HW 14.9. (4 points) (
2k
k

)
4k
∼ c√

k
.

Determine the constant c. Use Stirling’s formula, the most famous asymptotic equality:

n! ∼
(n

e

)n√
2πn . (3)
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Notation 14.10 (Diagonal case of the arrow symbol). We write n → (k)2 for n → (k, k)
and n→ (k)3 for n→ (k, k, k), etc.

From the Erdős–Szekeres Theorem we get(
2k

k

)
→ (k + 1)2 (4)

Combining this with the inequality 4k >
(
2k
k

)
we obtain

4k → (k + 1)2 (5)

or, writing n = 2k,

n→
(

1 +
1

2
log2 n

)
2

(6)

QUESTION 14.11. How far is this from best possible? In other words, can we estimate
the smallest value of k such that n9 (k)2 ?

To better understand this question, let us rephrase the meaning of the arrow notation. Given
a graph G = (V,E), let us say that a subset A ⊆ V is homogeneous if A is either a clique
or an independent set in G.

DO 14.12. The statement n→ (k, `) is equivalent to the following:

For all graphs G with n vertices we have

ω(G) ≥ k or α(G) ≥ ` . (7)

In particular, the statement n→ (k)2 is equivalent to saying that

every graph on n vertices has a homogeneous subset of size k.

Erdős showed (1949) that for all sufficiently large n,

n9 (1 + 2 log2 n)2. (8)

Comparing this with Eq. (6) we see a gap of 4 between the upper and lower bounds. These
bounds have been known for 70 years, yet nobody has been able to reduce the gap of 4 by
any constant amount (say to 3.99). This remains one of the great open questions in graph
theory and in Ramsey theory.

Integrality gap. Erdős’s result (Eq. (8)) tells us that there exist graphs that simultane-
ously satisfy

α(G) = O(log n) and α(G) = O(log n) . (9)

In particular, such graphs satisfy

α(G) · α(G) = O((log n)2) . (10)
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Contrast this with the result we proved at the beginning of this class:

α∗(G) · α(G) ≥ n . (11)

So for Erdős’s graphs we have α(G) = O(log n) while α∗(G) = Ω(n/ log n), a huge “integrality
gap.” Moreover, Erdős’s bounds hold for almost all graphs (they hold for random graphs
with probability approaching 1 as n → ∞), which shows that α∗ is an extremely poor
approximation to α for most graphs.

DO 14.13. Prove: for all sufficiently large n we have (log2 n)100 < n .

Proof of existence vs. explicit construction. Erdős’s result says that there exist
graphs without a homogenous subset of size 1 + 2 log2 n. But Erdős did not construct such
graphs. In an early display of the power of his probabilistic method, he just proved that
such graphs exist, by proving that almost all graphs have this property. The next question
is, construct explicit graphs with only very small homogeneous subsets.

HW 14.14. (4 points) Give a constructive proof of the relation k2 9 (k + 1)2. In other
words, for all k, construct a graph with k2 vertices that does not have a homogeneous subset
of size k + 1.

This will show that n9 (1+
√
n)2 for infinitely many values of n (namely, the values n = k2).

CH 14.15 (H. L. Abbott). (8 points) Give a constructive proof of the relation
5k 9 (2k + 1)2 . Hint: invent another graph product. Don’t look it up.

This will show that n9 (1 + nlog 2/ log 5)2 for infinitely many values of n (verify!).
Since log 2/ log 5 ≈ 0.43, this is an improvement over exercise 14.14.

POLYNOMIALS OF MATRICES

DO 14.16. Let A ∈Mn(C). If λ ∈ spec(A) then λ2 ∈ spec(A2).

Proof. Let x be an eigenvector to eigenvalue λ, so x 6= 0 and Ax = λx. Then
A2x = A(Ax) = A(λx) = λAx = λ2x.

HW 14.17. (5 points) Let A ∈ Mn(C). If g is a polynomial and λ ∈ spec(A), then
g(λ) ∈ spec(g(A)).

HW 14.18. (5 points) Let g be a polynomial. If A is a diagonalizable matrix and spec(A) =
{{λ1, . . . , λn}}, then g(A) is also diagonalizable and spec(g(A)) = {{g(λ1), . . . , g(λn)}}.

CH 14.19. (6 points) Over C every matrix is similar to a triangular matrix. Do not use
Jordan normal form.

BONUS 14.20. (6 points) Use the preceding problem to show that over C the same
relation as in problem 14.18 holds between the spectrum of A and the spectrum of g(A)
regardless of the diagonalizability of A. In other words, prove the following. If A ∈ Mn(C)
and spec(A) = {{λ1, . . . , λn}}, then spec(g(A)) = {{g(λ1), . . . , g(λn)}}.
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CH 14.21. (4 points) Diagonalizable matrices are dense in Mn(C). Use any reasonable
metric.

GRAPH SPECTRA

Recall that for a graph G = ([n], E), the adjacency matrix AG = (aij) is the n× n matrix
defined by

aij =

{
1 i ∼ j

0 o/w

In particular, aii = 0. An important observation about the adjacency matrix is that it is

symmetric: AG = AT
G. This permits us to apply the Spectral Theorem to it; this will be our

basic tool.
In particular, the eigenvalues of AG are real; we shall list them in decreasing order:

λ1(G) ≥ λ2(G) ≥ · · · ≥ λn(G) . (12)

Notation 14.22. For a graph G, we speak of the spectrum of the graph, meaning the
spectrum of its adjacency matrix: spec(G) := spec(AG).

DO 14.23.
n∑

i=1

λi(G) = 0 . (13)

DO! 14.24. Let Ak
G = (a

(k)
ij ). Then a

(k)
ij = # of i...j walks of length k.

Let us look at the trace of the powers of AG. We have trace(AG) = 0 because aii = 0.

DO 14.25. trace(A2
G) = 2m. Hint. a

(2)
ii = deg(i).

HW 14.26. (5 points) What is trace(A3
G)? Explain the answer in terms of counting certain

subgraphs.

A previous challenge problem stated the following. If tG is the number of triangles in G
and mG is the number of edges, then

tG ≤
√

2

3
m

3/2
G . (14)

We have also seen that for G = Kn we have LHS ∼ RHS (previous HW).

BONUS 14.27 (Due Thursday). (7 points) Prove inequality (14). Use only the tools from
class.

Once done with this problem, take a moment to marvel at the power of linear algebra.
Naturally, this problem ceases to be a challenge problem.

The effect of transforming a vector x by the adjacency matrix.
Let y = AGx. Then each entry yi in the vector y has a simple form:

yi =
∑
j : j∼i

xj . (15)
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DO 14.28. Verify Eq. (15).

What is the effect on the all-ones vector?

DO 14.29.

AG


1
1
...
1

 =


deg(1)
deg(2)

...
deg(n)

 .

DO 14.30. If G is r-regular, meaning (∀v)(deg(v) = r), then r is an eigenvalue of G.

In fact, it is the largest eigenvalue. This follows from the following exercise.

HW 14.31. (6 points) For every graph G, (∀i)( |λi(G)| ≤ degmax).

HW 14.32. (6 points) Prove:

λ1(G) ≥
∑n

i=1 deg(i)

n
. (16)

Hint. Give a one-line solution using Rayleigh’s Principle.

CH 14.33. (9 points) Prove:

λ1(G) ≥
√∑n

i=1 deg(i)2

n
. (17)

In the light of the inequality between the arithmetic mean and quadratic mean, this lower
bound is stronger than Eq. (16).

BONUS 14.34. (5 points) Use Eq. (17) to prove that equality holds in Eq. (16) if and
only if G is regular.

HW 14.35 (Herbert Wilf, 1961). (7 points) Prove: χ(G) ≤ 1 + λ1(G) .

In the light of exercise 14.31, this result strengthens the easy upper bound χ(G) ≤ 1+degmax.

Notation 14.36. The characteristic polynomial of a graph G is fG := fAG
.

DO 14.37. If a matrix A has the 2× 2 block-triangular form

A =

[
A11 A12

0 A22

]
where the diagonal blocks A11 and A22 are square matrices then det(A) = det(A11) ·det(A22)
and consequently fA = fA11 · fA22 .
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This works for k×k block-triangular matrices as well. Here is a picture of the 3×3 case.

A =

 A11 A12 A13

0 A22 A23

0 0 A33


In this case, det(A) = det(A11) · det(A22) · det(A33) and consequently fA = fA11 · fA22 · fA33 .

We use this to reduce the determination of the charactristic polynomial of a matrix to
its connected components.

Denote a disconnected graph G by G = H1tH2t . . . tHk where the Hi are the connected
components. Then AG has the block-diagonal form diag(AH1 , . . . , AHk

), illustrated here in
the k = 3 case.

AG =

 AH1 0 0
0 AH2 0
0 0 AH3

 .
It follows by the lemma that fG(t) = fH(t) · fL(t).

DO 14.38. If G = H1 tH2 t . . . tHk where the Hi are the connected components of G,
then λ1(G) = max(λ1(Hi) | i = 1, . . . , k).

DO 14.39. If G is r-regular and has k connected components then λ1 = · · · = λk = r.

We shall show that λ1 = λ2 can only occur for disconnected graphs.

Theorem 14.40. If G is connected then λ2 < λ1.

This condition is not “if and only if.”

HW 14.41. (5 points) Find a disconnected graph G with λ1 = 87 and λ2 = 14.

RAYLEIGH’S PRINCIPLE REVISITED

Recall that for A ∈ Mn(R), the function RA : Rn \ {0} → R, called the Rayleigh quotient
of A, is defined by

RA(x) =
xTAx

xTx
.

DO 14.42. Prove that the RA function has a maximum value. Do not use the Spectral
Theorem.

DO 14.43. Prove: if v is an eigenvector of A to eigenvalue µ then RA(v) = µ.

What we previously stated as “Rayleigh’s Principle” is only part of the story. Here is a
more complete form.

Theorem 14.44 (Rayleigh’s Principle). Let A ∈Mn(R). Let λ = max
x∈Rn,x 6=0

RA(x) .

If u ∈ Rn satisfies RA(u) = λ then u is an eigenvector.
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DO 14.45. Show that the eigenvalue corresponding to the vector u in Theorem 14.44 is
necessarily λ, and λ is the largest real eigenvalue of A. Do not use the Spectral Theorem.
Hint. Use Exercise 14.43.

DO 14.46. Use Theorem 14.44 to prove the same result regarding the minimum value of
RA and the smallest real eigenvalue of A. Do not use the Spectral Theorem.
Hint. Apply Theorem 14.44 to the matrix −A.

Remark 14.47. The significance of not using the Spectral Theorem in several of the problems
above is that a simple inductive proof of the Spectral Theorem is based on an elegant direct
proof of Rayleigh’s Principle.

CH 14.48. (6 points) Give a direct proof of Rayleigh’s Principle. Do not use the Spectral
Theorem. Do not hand in your solution if you looked it up.
Hint. Let u be a vector that maximizes the Rayley quotient. (Why does such a vector
exist?) Show that u is an eigenvector. To prove this, let v ⊥ u. Consider the function
h(t) = RA(u + tv) (t ∈ R). Use the fact that this function attains its maximum at t = 0.

MORE SPECTRAL GRAPH THEORY
We define the Rayleigh quotient of a graph G as RG = RAG

.

Theorem 14.49. λ1(G) has a non-negative eigenvector.

Proof. Let x = (x1, . . . , xn)T be an eigenvector to eigenvalue λ1; therefore RG(x) = λ1 by
Exercise 14.43. Let x̃ = (|x1|, . . . , |xn|). Then

λ1 ≥ RG(x̃) ≥ RG(x) ≥ λ1 . (18)

(Why?) So we have RG(x̃) = λ1. Therefore, by Rayleigh’s Principle, x̃ is an eigenvector to
eigenvalue λ1 (see Remark 14.47).

BONUS 14.50. (7 points) Assume G is connected. Let x = (x1, . . . , xn) be an eigenvector
to λ1. Then either all the xi are positive or all the xi are negative.

DO 14.51. If G is connected, then λ1 is unique.

Proof. Suppose u and v are two linearly independent eigenvectors to eigenvalue λ1. Then
every nontrivial linear combination of u and v is also an eigenvector to λ1 (why?). Among
these one can find a vector w that is orthogonal to u. Now either all coordinates of u are
positive or all are negative by Problem 14.50, and the same holds for w. But two such
vectors cannot be orthogonal. (Why?)

Corollary 14.52. If G is connected then λ2(G) < λ1(G).

Indeed, this is just a restatement of the uniqueness of λ1.

HW 14.53. (6 points) If G is bipartite, then spec(G) = − spec(G).
What this means is that λn = −λ1 , λn−1 = −λ2 , . . . , i. e., λn−i = −λi+1 for every i.

BONUS 14.54 (Due Thursday). (7 points) If G is connected and λn = −λ1, then G is
bipartite.

CH 14.55. (8+8 points) (a) Prove: If G is connected and has diameter d then G has at
least d+ 1 distinct eigenvalues. (b) This bound is tight for the d-cube Qd.
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