
Graph Theory: CMSC 27530/37530 Lecture 15

Lecture by László Babai
Notes by Geoffrey West

Revised by instructor

May 21, 2019

HW+ and Bonus+ indicate homework and Bonus problems due a week from the date the
problem was assigned in class; in this case, due next Tuesday.

GIRTH OF A GRAPH

Definition 15.1. The girth of a graph G, written girth(G), is the length of the shortest
cycle.

Examples 15.2. 1. girth(Kn) = 3.

2. girth(Kr,s) = 4.

3. girth(Petersen) = 5.

4. girth(tree) =∞.

HW 15.3. (5+2 points)

(a) If G is r-regular and girth(G) ≥ 5, then n ≥ r2 + 1.

(b) Show equality can hold for r = 1, 2, 3. “Can hold” means there exists an r-regular
graph for which n = r2 + 1.

Remark 15.4. Equality can also hold for r = 7, but don’t try to show this.
Later we will prove that if equality holds, then r ∈ {1, 2, 3, 7, 57}.

LAPLACIAN, THE MATRIX–TREE THEOREM

Definition 15.5. If G is a graph and AG is the adjacency matrix, then the Laplacian of
G is the matrix LG defined by

LG = diag(deg(1), . . . , deg(n))− AG.

Note that LG is a symmetric matrix.

Notation 15.6. We denote the vector (1, 1, . . . , 1)T by 1.
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Observe that each row sum of the Laplacian is zero and therefore

LG1 = 0. (1)

DO 15.7. Infer from Eq. (1) that det(LG) = 0.

Theorem 15.8 (Matrix–Tree Theorem, Kirchhoff 1848).

det(̂i(LG)̂i) = # of spanning trees.

Here, matrix î(LG)̂i is the (n− 1)× (n− 1) matrix obtained by deleting the i-th row and the
i-th column of LG.

HW 15.9. (5 points) Use Theorem 15.8 to give another proof of Cayley’s formula:

# of spanning trees of Kn = nn−2.

Definition 15.10. A symmetric matrix A ∈ Mn(R) is called positive semidefinite if
(∀x ∈ Rn)(xTAx ≥ 0).

HW 15.11. (5 points) Prove: A symmetric matrix A ∈ Mn(R) is positive semidefinite if
and only if all its eigenvalues are non-negative.

BONUS+ 15.12. (6 points) Prove: LG is positive semidefinite.

INDEPENDENCE OF EVENTS AND OF RANDOM VARIABLES

Let (Ω, P ) be a finite probability space.

Definition 15.13. Two events A,B ⊆ Ω are independent if P (A ∩B) = P (A) · P (B).

Definition 15.14. k events, A1, . . . , Ak, are independent if

(∀I ⊆ [k])

(
P

(⋂
i∈I

Ai

)
=
∏
i∈I

P (Ai)

)
.

Definition 15.15. Random variables X1, . . . , Xk : Ω→ R are independent if

(∀α1, . . . , αk ∈ R)(P (X1 = α1 ∧ · · · ∧Xk = αk) =
k∏
i=1

P (Xi = αi)).

DO 15.16. Events A1, . . . , Ak are independent ⇐⇒ their indicator random variables are
independent.

DO 15.17. If A1, . . . , Ak are independent, then A1, . . . , Ak−1, Ak are independent.

Corollary 15.18. If A1, . . . , Ak are independent, then Aε11 , . . . , A
εk
k are independent

∀εi ∈ {±1}, where

Aεii =

{
Ai εi = 1

Ai εi = −1.
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DO 15.19. If A1, . . . , A5 are independent events, then the events A1 ∪ A2, A3 \ A4, A5 are
also independent.

DO 15.20. If X1, . . . , X5 are independent random variable, then any functions of disjoint
blocks of these variables are also independent. For instance, X1 + eX2 , X2

3 ·
√

2X4 +X2
5 are

independent random variables.

Theorem 15.21. Let X1, . . . , Xn be independent random variables. Then

E

(
n∏
i=1

Xi

)
=

n∏
i=1

E(Xi) .

Definition 15.22. A Bernoulli trial with probability p of success is a random variable X
taking values 0 and 1 only, with

P (X = 1) = p
P (X = 0) = 1− p

Notation 15.23. The abbreviation “i.i.d.” stands for the phrase “independent, identically
distributed.”

Let X1, . . . , Xn be i.i.d. Bernoulli random variables with probability p of success. Let
Y =

∑n
i=1Xi denote the number of successes. We say that Y has binomial distribution

with parameters n and p. The distribution of Y can be expressed as

P (Y = k) =

(
n

k

)
pk(1− p)n−k. (2)

UNIMODAL AND LOG-CONCAVE SEQUENCES

Definition 15.24. A sequence a0, . . . , an of real numbers is unimodal if there is a k such
that ai−1 ≤ ai for all i < k and ai−1 ≥ ai for i > k.

Remark 15.25. A monotone non-increasing sequence is unimodal (take k = 0);
a monotone non-decreasing sequence is unimodal (take k = n).

Definition 15.26. A sequence a0, . . . , an of real numbers is strictly unimodal if there is
a k such that ai−1 < ai for all i < k and ai−1 > ai for i > k.

Remark 15.27. Note that this definition permits ak−1 = ak; these two are then the largest
elements of the sequence.

HW+ 15.28. (9 points) Consider the binomial distribution (Eq. (2)). Prove that the
sequence
P (Y = k) (k = 0, . . . , n) is strictly unimodal. Show that the peak occurs at some ak such
that |k − np| < 1. At most two top values are equal.

We shall see shortly that the following stronger result holds.
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Theorem 15.29. If X1, . . . , Xn are independent (not necessarily i.i.d.) Bernoulli trials and
Y =

∑n
i=1Xi, then

P (Y = 0), P (Y = 1), . . . , P (Y = n)

is unimodal.

Definition 15.30. A sequence a0, . . . , an of positive real numbers is log-concave if
(∀i)(ai−1 · ai+1 ≤ a2i ).

HW 15.31. (5 points) If a sequence of positive reals is log-concave, then it is unimodal.

REAL-ROOTED POLYNOMIALS AND LOG-CONCAVITY

Definition 15.32. Let f = a0 + a1t + · · · + ant
n be a polynomial of degree n with real

coefficients. We say that f is real-rooted if all roots of f are real, i. e., f can be written as
f(t) = an

∏n
i=1(t− αi) where αi ∈ R.

Theorem 15.33. Let f(t) = a0+a1t+· · ·+antn be a real-rooted polynomial with non-negative
coefficients Then the sequence a0, . . . , an is log-concave.

Examples 15.34. The polynomial (1+x)n =
∑n

k=0

(
n
k

)
xk has all real roots (all are negative

one), so by Theorem 15.33, the sequence
(
n
k

)
, 0 ≤ k ≤ n, is log-concave. Similarly, the

polynomial (
(1− p) + px

)n
=

n∑
k=0

(
n

k

)
pk(1− p)n−kxk

has all real roots (x = −1−p
p

), so the values
(
n
k

)
pk(1− p)n−k, 0 ≤ k ≤ n, are log-concave.

Theorem 15.35 (Newton’s Inequalities). Let f(x) = a0 + a1x+ · · ·+ anx
n be a real-rooted

polynomial with non-negative coefficients, satisfying a0an 6= 0. Then the sequence

ak(
n
k

) , 0 ≤ k ≤ n

is log-concave.

DO 15.36. If a sequence {ak}nk=0 of positive numbers satisfies Newton’s inqualities then
the sequence is strictly log-concave. the sequence of coefficients ak, 0 ≤ k ≤ n, is strictly
log-concave:

a2k > ak−1ak+1.

Definition 15.37. Suppose f(x) = a0 + a1x + · · · + anx
n and a0an 6= 0. Then f ∗(x) :=

an+an−1x+· · ·+a0xn is the reciprocal polynomial to f(x). In particular, f ∗(x) = xn·f( 1
x
).

DO 15.38. Let f(x) = a0 + a1x+ · · ·+ anx
n be a real-rooted polynomial with non-negative

coefficients and a0an 6= 0 with roots (αi)
n
i=1. Let f ∗ be the polynomial reciprocal to f . Then

g is also real-rooted, having roots ( 1
αi

)ni=1.

4



HW+ 15.39. (6 points) Prove Newton’s Inequalities. Hint. If f(t) has degree n, let

g = dk−1

dtk−1f(t), and let h be the reciprocal to g. Let ` = dn−k−1

dtn−k−1h. Then deg ` = 2. ` being
real-rooted implies its discriminant is greater or equal to zero.

CHEBYSHEV POLYNOMIALS

The function cos(nθ) is a polynomial of cos(θ).

Definition 15.40. The polynomial Tn, called the Chebyshev polynomial of the first
kind, is defined by the identity

cos(nθ) = Tn(cos θ) . (3)

For example, the identity cos(2θ) = 2(cos θ)2 − 1 yields the Chebyshev polynomial
T2(t) = 2t2 − 1.

The function
sin((n+ 1)θ)

sin(θ)
is also a polynomial of cos θ.

Definition 15.41. The polynomial Un, called the Chebyshev polynomial of the second
kind, is defined by the identity

sin((n+ 1)θ)

sin(θ)
= Un(cos θ) . (4)

For example, the identity
sin(2θ)

sin(θ)
= 2 cos θ yields the Chebyshev polynomial

U1(t) = 2t.

Here are the first few Chebyshev polynomials.

T0(t) = 1 U0(t) = 1
T1(t) = t U1(t) = 2t
T2(t) = 2t2 − 1 U2(t) = 4t2 − 1
T3(t) = 4t3 − 3t U3(t) = 8t3 − 4t
T4(t) = 8t4 − 8t2 + 1 U4(t) = 16t4 − 12t2 + 1
T5(t) = 16t5 − 20t3 + 5t U5(t) = 32t5 − 32t3 + 6t

Theorem 15.42. The Chebyshev polynomials satisfy the following two identical recurrences:

Tn+1(t) = 2t · Tn(t)− Tn−1(t) Un+1(t) = 2t · Un(t)− Un−1(t)

HW 15.43. (5 points) Prove these recurrences. Hint: use the following trigonometric
identities:

cos(α + β) + cos(α− β) = 2 cosα cos β (5)

(for Tn) and
sin(α + β) + sin(α− β) = 2 sinα cos β (6)

(for Un).
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HW+ 15.44. (8 points) Prove:

fPn(t) = Un(t/2) . (7)

(Here fPn is the characteristic polynomial of the adjacency matrix of the path of length
n− 1.)

HW 15.45. (3+3 points) Find the roots of Tn and Un. Your answer should be simple
trigonometric formulas.

MATCHINGS POLYNOMIAL

Notation 15.46. For a graph G, let mk(G) denote the number of k-matchings, i. e., match-
ings of G consisting of k disjoint edges.

So m0(G) = 1 and m1 = m. The largest k for which mk 6= 0 is k = ν(G), the matching
number. For even n, the number mn/2 counts perfect matchings.

Notation 15.47 (Matching generator function).

mG(t) =

ν(G)∑
i=0

mi(G)ti .

The central result of the theory of this function was discovered in 1972 by statistical
physicists Ole Heilmann and Elliot H. Lieb and published in their paper titled “The theory
of monomer-dimer systems.”

Theorem 15.48 (Heilmann and Lieb, 1972). The matching generating function is real-
rooted.

Corollary 15.49. The sequence m0(G),m1(G), . . . ,mν(G) is strictly log-concave.

The consequences of the reality of the roots go way beyond this log-concavity and are at
the heart of Heilmann and Lieb’s proof of the absence of phase transitions in the physical
systems named in the title. of their paper.

For reasons that will soon become evident, a variant of this generating function is the pre-
ferred object of study.

Definition 15.50. The matchings polynomial of a graph G is the polynomial

µG(t) =

ν(G)∑
k=0

(−1)kmkt
n−2k = tn −m1t

n−2 +m2t
n−4 − . . . .

The connection between the matchings polynomial and the matching generator function
is simple.

DO 15.51. µG(t) = tn−νm∗G(−t2), where m∗G is the reciprocal polynomial of mG.
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Theorem 15.52. µG is real-rooted.

DO 15.53. µG real-rooted ⇐⇒ mG real-rooted.

Theorem 15.54. If G is a tree then µG = fG, where fG is the characteristic polynomial of
the adjacency matrix.

As we shall see, the matchings polynomials are related to several families of classical
orthogonal polynomials:

µPn(t) = Un(t/2)

µCn(t) = 2 · Tn(t/2)

µKn(t) = Hen(t)

where Hen is the degree-n Hermite polynomial, to be defined later.
Orthogonal polynomials have been known to be real-rooted for a century and a half; this

includes Chebyshev’s polynomials and the Hermite polynomials. Moreover, each of these
polynomial sequences shows interlacing of their roots. The same holds for the characteristic
polynomials of the adjacency matrices of graphs and therefore for the matchings polynomials
of trees. Theorem 15.48 is a remarkable generalization of these facts. Time permitting, we
shall prove most statements made.
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