
Graph Theory: CMSC 27530/37530 Lecture 16

Lecture by László Babai
Notes by Geoffrey West

Revised by instructor

May 23, 2019

HW+ and Bonus+ indicate homework and Bonus problems due a week from the date of
the class in which most problems of the given problem set were assigned; in this case, due
next Thursday.

SPECTRAL GRAPH THEORY AND CHEBYSHEV POLYNOMIALS

Notation 16.1. For a graph G, we refer to the eigenvalues of the adjacency matrix of G as
the eigenvalues of the graph G and denote them by λ1(G) ≥ · · · ≥ λn(G).

HW 16.2. (4 points) Let H ⊆ G be a subgraph. Prove: λ1(G) ≥ λ1(H).

BONUS 16.3. (7 points) Let H ⊂ G be a proper subgraph, i. e., H ⊆ G and H 6= G.
Assume G is connected. Prove: λ1(G) > λ1(H).

BONUS 16.4. (5 points) Show that for H ⊆ G it is possible that λ2(G) is much smaller
than λ2(H). Specifically, for all sufficienty large n, find a graph–subgraph pair H ⊆ G such
that λ2(G) < 0 while λ2(H) > n/3, where n is the number of vertices of G.

HW 16.5. (4 points) If H is an induced subgraph of G, then

(∀i)(λi(G) ≥ λi(H)). (1)

HW 16.6. (3+3 points) As usual, let α(G) denote the independence number and ω(G)
the clique number of the graph G. Prove:

(a) λα(G) ≥ 0.

(b) λω(G) ≥ −1.

Proposition 16.7. The roots of Un are cos

(
kπ

n+ 1

)
, 1 ≤ k ≤ n, where Un is the n-th

Chebyshev polynomial of the second kind..
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Proof. Using the recurrence for Un it follows by induction that deg(Un) = n. So we just
need to verify that the n distinct numbers listed are indeed roots.

By definition, we have

Un(cos θ) =
sin((n+ 1)θ)

sin θ
. (2)

Trigonometry tells us that sinα = 0 ⇐⇒ α = kπ for an integer k. Therefore, the numerator
sin((n+1)θ) = 0 ⇐⇒ θ = θk := kπ

n+1
. Moreover, for 1 ≤ k ≤ n, the denominator sin(θk) 6= 0

and therefore the quotient is zero, demonstrating that Un(cos θk) = 0 for k = 1, . . . , n.

DO 16.8. sinx ∼ x as x→ 0, i. e., lim
x→0

sinx

x
= 1.

DO 16.9. Un(1) = n+ 1.

Proof. Since cos(0) = 1, and sin((n + 1) · 0)/ sin 0 is undefined, we need to rely on the
continuity of the polynomial Un. So instead of substituting θ = 0, we let θ → 0. By the

previous exercise, Un(1) = lim
t→1−

Un(t) = lim
θ→0

sin((n+ 1)θ)

sin θ
∼ (n+ 1)θ

θ
= n+ 1 as θ → 0.

DO 16.10. The eigenvalues of Pn are the numbers 2 cos

(
kπ

n+ 1

)
, 1 ≤ k ≤ n.

Hint. According to one of the HW problems due Tuesday, we have fPn(t) = Un(t/2).

By an all-positive vector x = (x1, . . . , xn)T ∈ Rn we mean a vector such that all coordi-
nates xi are positive.

HW 16.11. (6 points) Find a graph with n = 100 vertices that does not have an all-positive
eigenvector. Prove.

HW+ 16.12. (6 points) Prove that Un(3/2) is a Fibonacci number. Which one? Recall
that the Fibonacci numbers begin with F0 = 0 and F1 = 1. Do not use results we did not
prove.

BONUS+ 16.13. (8 points) Consider the path Pk+1 with vertices v0, . . . , vk in this order.
Let H be a connected graph with n − k vertices, including vk but none of the other vi
(i ≤ k − 1). Let Gn be the graph H with Pk+1 attached at vk as a “tail,” so V (G) =
V (H) ∪ {v0, . . . , vk−1} and E(G) = E(H) ∪ E(Pk+1). So G has n vertices and we have
degG(v0) = 1, degG(vi) = 2 for i = 1, . . . , k−1, degG(vk) = 1+degH(vk), and for 1 ≤ i ≤ k−1,
the two neighbors of vi in G are vi−1 and vi+1.

Let λ denote the largest eigenvalue of Gn and let x = (x0, . . . , xn−1)
T be an all-positive

eigenvector of Gn such that for 0 ≤ i ≤ k the coordinate xi corresponds to vertex vi. Prove:
xk/x0 = Uk(λ/2).

BONUS+ 16.14. (8 points) Let G be a connected graph, λG its largest eigenvalue,
and xG = (x1(G), . . . , xn(G))T the (unique) all-positive eigenvector with unit norm. Let
xmin(G) = mini xi(G). We know that xmin(G) > 0, but how small can it be? Prove:
xmin(G) ≥ n−n.
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CH 16.15. (9 points) How tight is the lower bound in the preceding exercise? Let ξn =
minG xmin(G) where the minimum is taken over all connected graphs G with n vertices. The
preceding exercise says that ξn ≥ n−n. Prove that this lower bound is not too bad: there
exists a constant c > 0 such that for all sufficiently large n we have ξn < n−cn. (The Greek
letter ξ spells “xi” as in “oxigen” (LATEX: \xi).)

INNER PRODUCTS

The standard dot product in Rn is a function Rn × Rn → R: it takes as input a pair
(a,b) of vectors and assigns to them the value aTb.

The dot product is an instance of the general concept of inner products.
Informally, a vector space over R is a set of objects we call “vectors,” where linear

combinations of vectors with real coefficients are defined and the usual rules hold. Please
look up the formal definition. The examples that most matter for us are Rn and spaces of
real functions such as C[I], the set of continuous functions over the interval I ⊆ R, and
subspaces of these. Foremost among the latter is the space R[t] of polynomials with real
coefficients (where t is the variable).

Terminology 16.16. In certain contexts, a function F : D → W is called a form if the
codomain is W = R. This is usually the case when D is represented as a direct product of
vector spaces and F is described by homogeneous polynomials.

A function F : V × V → R is linear in the first argument if the following conditions hold.

(i) F (λa,b) = λF (a,b).

(ii) F (a1 + a2,b) = F (a1,b) + F (a2,b).

Similarly, F is linear in the second argument if the following hold.

(iii) F (a, λb) = λF (a,b).

(iv) F (a,b1 + b2) = F (a,b1) + F (a,b2).

Definition 16.17. A function F : V × V → R is a bilinear form if it is linear in the first
argument and linear in the second argument.

Example 16.18. Let B ∈Mn(R). Then the function FB : Rn × Rn → R defined by

FB(x,y) = xTBy (3)

is a bilinear form.

DO 16.19. Prove that Eq. (3) defines all bilinear forms with domain Rn × Rn: if F :
Rn × Rn → R is a bilinear form then there exists B ∈Mn(R) such that F = FB.

Example 16.20. C[a, b] denotes the space of continuous real functions defined on the closed

interval [a, b] (a < b). The function F : C[a, b]×C[a, b] defined by F (f, g) =
∫ b
a
f(t)g(t)dt is

a bilinear form. More generally, let w ∈ C[a, b] and define the function Fw : C[a, b]× C[a, b]
as follows:

Fw(f, g) =

∫ b

a

f(t)g(t)w(t)dt . (4)

Then Fw is a bilinear form. We refer to w as the weight function.

3



Definition 16.21. A form F : V ×V → R is symmetric if (∀u,v ∈ V )(F (u,v) = F (v,u)).

DO 16.22. The bilinear form FB defined by Eq. (3) is symmetric if and only if the matrix
B is symmetric. — The bilinear form Fw defined by Eq. (4) is always symmetric.

Definition 16.23. A symmetric bilinear form F : V × V → R is positive semidefinite if
(∀x)(F (x,x) ≥ 0). If in addition F (x,x) > 0 for all x 6= 0, then F is positive definite.

Definition 16.24. An inner product on a vector space V is a positive definite bilinear
form V × V → R. We often use the notation 〈a,b〉 to denote the value of the inner product
of vectors a,b ∈ V .

Definition 16.25. A symmetric matrix B ∈Mn(R) is positive definite if (∀x ∈ Rn)(x 6=
0 =⇒ xTBx > 0). When we say “the matrix B is positive definite,” we always assume
that B is symmetric.

DO 16.26. The symmetric matrix B ∈ Mn(R) is positive definite if and only if all of its
eigenvalues are positive.

DO 16.27. Let B ∈ Mn(R) be a symmetric matrix. Consider the symmetric bilinear form
FB on Rn defined by Eq. (3): FB(x,y) = xTBy (cf. exercise DO 16.22). Prove: FB is
positive definite if and only if the matrix B is positive definite.

DO 16.28. Consider the symmetric bilinear form Fw on C[a, b] defined by Eq. (4). Prove:
Fw is positive definite if and only if the weight function w is non-negative and not everywhere
zero in [a, b].

In the rest of this section we assume that a positive definite symmetric bilinear form has
been designated as the inner product; the inner product of vectors a,b ∈ V is denoted 〈a,b〉.

Definition 16.29. Two vectors a,b are orthogonal if 〈a,b〉 = 0. We write a ⊥ b.

Definition 16.30. We define a norm on V by ‖x‖ =
√
〈x,x〉. We say that ‖·‖ is the norm

induced by the given inner product.

DO 16.31 (Cauchy–Schwarz). For all a,b ∈ V we have

|〈a,b〉| ≤ ‖a‖ · ‖b‖ .

Hint. Consider the function f(t) = ‖a + t · b‖2 (t ∈ R). Then f(t) ≥ 0 for all t. Notice that
f(t) is a quadratic polynomial of t. Compute its discriminant.

DO 16.32 (Triangle inequality). For all a,b ∈ V we have

‖a + b‖ ≤ ‖a‖+ ‖b‖ .

Hint. Prove that this is equivalent to Cauchy–Schwarz.
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HW 16.33. (5 points) Consider the space C[0, 2π] with the inner product

〈f, g〉 =

∫ 2π

0

f(t)g(t)dt .

(So the weight function is the constant function w(t) = 1.) Prove: the functions
1, cos θ, cos(2θ), cos(3θ), . . . are pairwise orthogonal. Find their norms.
Hint: cos(α + β) + cos(α− β) = 2 cosα · cos β.

ORTHOGONAL POLYNOMIALS

Recall that R[t] denotes the set of polynomials with real coefficients.

Definition 16.34. The degree of the polynomial f(t) =
∑n

i=0 ait
i is the largest value k

such that ak 6= 0. If all coefficients are zero (the zero polynomial) then the degree is −∞.

DO 16.35. With this definition, the following two rules hold without exception.

(1) deg(f + g) ≤ max{deg(f), deg(g)}

(2) deg(fg) = deg(f) + deg(g)

Notation 16.36. We write R≤j[t] to denote the set of polynomials of degree at most j.
Note that this set includes the zero polynomial.

R[t] is a vector space.

DO 16.37. R≤j[t] is a subspace of R[t].

What is a basis of R[t]? We want a list of polynomials such that each member of R[t] can
be uniquely expressed as a linear combination of the polynomials on the list.

DO 16.38. Let f0, f1, f2, · · · ∈ R[t] be a sequence of polynomials such that deg(fi) = i.
Then this sequence forms a basis of R[t].

One simple choice is the basis B = {1, t, t2, t3, . . . }. We shall refer to this sequence as the
standard basis of R[t].

Consider an interval [a, b] and a weight function w ∈ C[a, b]. Assume (∀t ∈ [a, b])(w(t) ≥ 0)
and (∃t ∈ [a, b])(w(t) > 0). Then, according to exercise DO 16.28, Eq. (4) defines an inner
product on R[t].

We relax the condition on w in two directions. First, we only require w to be defined (and
continuous) in the interior of the interval: w ∈ C(a, b). For this to work we need to add the
condition ∫ b

a

w(t)dt <∞ . (5)

DO 16.39. If the non-negative, not identically zero weight function w ∈ C(a, b) satisfies
Eq. (5) then Eq. (4) defines a positive definite bilinear form on R[t].
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The other direction in which we relax the condition is that we permit all of R to be the
domain of w, so w ∈ C(−∞,∞). In this case we need to make the following additional
restriction on w: for every n, the (2n)-th moment of w is finite:∫ ∞

−∞
t2nw(t)dt <∞ . (6)

More generally, we also permit an infinite interval of the form I = (a,∞) or I = (−∞, b),
and require the integral over I to be finite.

DO 16.40. Let I be any (finite or infinite) open interval. If the non-negative, not identically
zero weight function w ∈ C(I) satisfies∫

I

t2nw(t)dt <∞ . (7)

then the equation

Fw(f, g) =

∫
I

f(t)g(t)w(t)dt . (8)

defines a positive definite symmetric bilinear form on R[t].

For the rest of this section we shall fix a finite or infinite open interval I ⊆ R and a non-
negative, not identically zero weight function w ∈ C(I) that satisfies Eq. (7). Such a weight
function defines a positive definite inner product on R[t] which we call the inner product
defined by w.

Having thus fixed an inner product on R[t], we are interested in an orthonormal basis.

Definition 16.41. Let f0, f1, . . . be an infinite sequence of polynomials. We say that this
is a sequence of orthogonal polynomials (with respect to I and w) if

(a) (∀k)(deg fk = k)

(b) (∀i, j)(i 6= j =⇒ fi ⊥ fj)

Multiplication of each fi by a non-zero scalar retains the property of being a sequence of
orthogal polynomials. Therefore WLOG we may additionally assume that all the fi are
monic.

DO 16.42. With this additional assumption, the sequence fi is uniquely determined by
the weight function w. Moreover, this unique sequence of orthogonal polynomials can be
obtained by applying Gram–Schmidt orthogonalization to the standard basis of R[t].

Terminology 16.43. An orthogonal polynomial (with respect to a given interval I and
weight function w) is a (not necessarily monic) polynomial that belongs to a sequence of
orthogonal polynomials defined by I and w.

Classical examples of orthogonal polynomials follow in the next section.
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SOME FAMILIES OF CLASSICAL ORTHOGONAL POLYNOMIALS

DO 16.44. Prove that the weight function w(t) =
1√

1− t2
satisfies Eq. (5), and therefore

also Eq. (7), on the interval I = (−1, 1).

HW 16.45. (6 points) Prove: the weight function w(t) =
1√

1− t2
on the interval I =

(−1, 1) defines the orthogonal polynomials Tn, the Chebyshev polynomials of the first kind.
Hint: change variables in exercise HW 16.33. Don’t forget to verify that this weight function
is permitted.

DO 16.46. The weight function w(t) =
√

1− t2 on the interval I = (−1, 1) defines the
orthogonal polynomials Un, the Chebychev polynomials of the second kind.

Let us now consider the weight function w(t) = e−t
2/2 on the entire real line. First we

need to verify that the moments exist.

DO 16.47. Prove that the weight function w(t) = e−t
2/2 satisfies Eq. (6).

Definition 16.48. The Hermite polynomials He0,He1, . . . are the monic orthogonal poly-
nomials defined by the weight function w(t) = e−t

2/2 on the interval I = R.

Definition 16.49. Confusingly, another family of polynomials, denoted H0, H1, . . . , are also
called “Hermite polynomials.” They are orthogonal w.r.t. the weight function w(t) = e−t

2

on R.

Remark 16.50. The Hermite polynomials Hen are popular among probabilists, while the Hn

are popular among physicists. One relates the Guassian density to its n-th derivative:

Hen(t)e−t
2/2 = (−1)n

dn

dtn
e−t

2/2 . (9)

The other solves the Schrödinger equation for a quantum harmonic oscillator. The two forms
are related by the equation

Hn(t) = 2n/2He(2n/2t). (10)

When speaking of Hermite polynomials, in this class we shall always mean the probabilists’
sequence Hen. These polynomials obey the following recurrence.

Hen+1(t) = t · Hen(t)− nHen−1(t). (11)

Here are the first few.
He0(t) = 1

He1(t) = t

He2(t) = t2 − 1

He3(t) = t3 − 3t

He4(t) = t4 − 6t2 + 3

He5(t) = t5 − 10t3 + 15t
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ORTHOGONAL POLYNOMIALS: REAL-ROOTED, INTERLACING

The following remarkable result holds for all sequences of orthogonal polynomials, regardless
of the weight function.

Theorem 16.51. Let f0, f1, . . . be a sequence of orthogonal polynomials (having fixed the
interval I and the weight function w). Then

(1) The fi are real-rooted, and all roots are distinct.

(2) The roots of fk−1 strictly interlace the roots of fk.

Strict interlacing means λi > µi > λi+1 where the λi are the roots of fk and the µi the
roots of fk−1.

The proof will be based on the following lemma.

Lemma 16.52 (3-term recurrence). If f0, f1, . . . are orthogonal polynomials, then

(∀n)(∃αn, βn, γn ∈ R)(fn+1(t) = (αnt+ βn)fn − γnfn−1)

where αn · γn > 0.

BONUS 16.53. (10 points) Prove the lemma. You may assume without loss of generality
that all the fi are monic. Show that under this assumption αn = 1 and γn > 0.

Proof of Theorem 16.51 using the 3-term recurrence. We prove the two statements simulta-
neously by induction on n. Assume (1) and (2) hold up to degree n. Let λ1 > λ2 > . . . > λn
be the roots of fn and µ1 > µ2 > . . . > µn−1 the roots of fn−1. We need to show (1) and (2)
hold for fn+1. Assume all the fi are monic. In particular, f0 = 1 and for i ≥ 2 we have

lim
t→∞

fi(t) =∞ . (12)

Since µ1 < λ1 and Eq. (12) holds for i = n − 1, it follows from the intermediate value
theorem that fn−1(λ1) > 0. But then, again by the intermediate value theorem, fn−1(t) < 0
for µ2 < t < µ1. In particular, fn−1(λ2) < 0. Continuing in the same fashion, or better yet,
by induction on i, we can prove that

sgn(fn−1(λi)) = (−1)i+1 .

By the 3-term recurrence with αn = 1 (because the fi are monic), we have

fn+1(λi) = (t+ βn)fn(λi)− γnfn−1(λi) = −γnfn−1(λi) .

Since γn > 0, it follows that

sgn(fn+1(λi)) = − sgn(fn−1(λi)) = (−1)i . (13)

In particular, fn+1(λ1) < 0. Therefore, since Eq. (12) holds for i = n+1, the polynomial fn+1

must have a root that is greater than λ1. Moreover, it must have a root strictly between λi and
λi−1 because it has opposite signs at the two endpoints of this interval. Finally, it must have
a root that is less than λn because sgn(fn+1(λn)) = (−1)n but limt→−∞ fn+1(t) = (−1)n+1∞.
So we found n + 1 distinct roots strictly interlaced with the roots of fn; therefore this is
the complete set of roots of fn+1, completing the inductive step. (We used the IVT in every
step.)
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DO 16.54. Review the proof.

MATCHINGS POLYNOMIALS: REAL-ROOTED, INTERLACING

Remarkably, all matchings polynomials share the properties of orthogonal polynomials de-
scribed in Theorem 16.51.

Theorem 16.55 (Heilmann and Lieb, 1972). Let µG denote the matchings polynomial of
the graph G.

(1) µG is real-rooted.

(2) For any vertex v, the roots of µG and µG−v interlace.

Let us recall the definition of the matchings polynomial µG. Let mk(G) = # of k-matchings.

µG(t) =

ν(G)∑
k=0

(−1)kmk(G)tn−2k . (14)

For the proof of Theorem 16.55, we take the intuition from orthogonal polynomials. We
start with an analogue of the 3-term recurrence.

Lemma 16.56 (3-term recurrence for the matchings polynomials). For any v ∈ V ,

µG(t) = t · µG−v(t)−
∑
w:w∼v

µG−v−w(t) .

HW 16.57. (9 points) Prove Lemma 16.56. Start with writing a recurrence for the numbers
mk: count the matchings that do not cover v, and those that do. The latter contain exactly
one edge of the form {v, w}. Now do an accurate accounting for which matching numbers
are multiplied by what powers of t and what sign they get.

DO 16.58. Derive Theorem 16.55 from Lemma 16.56.

HW 16.59. (7 points) If T is a tree, then fT = µT . (Here fT is the characteristic polyno-
mial of the adjacency matrix of T .)
Hint. Pick a vertex v of degree 1. Use Lemma 16.56 to obtain a recurrence for the matchings
polynomial. Prove the same recurrence for the characteristic polynomial.

HW 16.60. (5 points) Prove that µKn = Hen.
Hint. Verify that the recurrence for the Hermite polynomials, Eq. (11), holds for µKn .

BONUS+ 16.61. (9 points) Prove: µCn(t) = 2 · Tn(t/2) .

DO 16.62. Based on the preceding exercise, show that the roots of µCn are

cos

(
(2k + 1)π

2n

)
for k = 0, 1, . . . , n− 1 .
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INDEPENDENCE OF EVENTS VS. THE SIZE OF THE SAMPLE SPACE

For challenge problems, don’t look them up. If you did, please acknowledge and you
get partial credit. — Each of the problems below has an elegant solution – short, clean,
convincing. Elegance counts.

Definition 16.63. Let (Ω, P ) be a finite probability space. An event A ⊆ Ω is trivial if
P (A) = 0 or 1.

DO 16.64. If A1, . . . , Ak are independent events and Ak+1 is a trivial event then A1, . . . , Ak+1

are independent.

DO 16.65. If there exist k nontrivial independent events in (Ω, P ) then |Ω| ≥ 2k.

CH 16.66. (6+7 points)

(a) For every k ≥ 3, construct a probability space of size |Ω| = k + 1 that contains k
pairwise independent nontrivial events.

(b) For every k, construct a probability space of size |Ω| = O(k) that contains k pairwise
independent events of probability 1/2 each.

CH 16.67. (10 points) Prove: If there exist k pairwise independent nontrivial events in
(Ω, P ) then |Ω| ≥ k + 1.

CH 16.68. (8 points) For every k, construct a probability space of size |Ω| = O(k) that
contains k triplewise independent nontrivial events.

Triplewise independence means every 3 of them are independent. k-wise independence is
defined analogously.

CH 16.69. (13 points) Prove: If in (Ω, P ) there exist k nontrivial events that are four-wise
independent then |Ω| ≥

(
k+1
2

)
.
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