
Graph Theory: CMSC 27530/37530 Lecture 17

Lecture by László Babai
Notes by Geoffrey West

Revised by instructor

May 28, 2019

HW+ and Bonus+ indicate homework and Bonus problems due a week from the date of
the class in which most problems of the given problem set were assigned; in this case, due
next Tuesday.

Do not forget: the following previously assigned problems are also due Thursday, May 30:
HW 16.12 and Bonus problems 16.13, 16.14, 16.61.

INDEPENDENT RANDOM VARIABLES, COVARIANCE, VARIANCE
CHEBYSHEV’S AND MARKOV’S INEQUALITIES

Let (Ω, P ) be a probability space. Random variables X1, . . . , Xk : Ω→ R are independent
if

(∀α1, . . . , αk ∈ R)

(
P

(
k∧
i=1

Xi = αi

)
=

n∏
i=1

P (Xi = αi)

)
. (1)

Random variables satisfying Eq. (1) are sometimes called fully independent or mutually
independent to emphasize the distinction of independence from pairwise independence.

The most important aggregate of a random variable X is the expected value, defined

E(X) =
∑
a∈Ω

X(a) · P (a) . (2)

DO 17.1. If X, Y are independent then E(X · Y ) = E(X) · E(Y ).

Definition 17.2. The covariance of random variables X, Y is defined

Cov(X, Y ) = E(X · Y )− E(X) · E(Y ) . (3)

DO 17.3. If X, Y are independent then Cov(X, Y ) = 0.

Definition 17.4. Random variables X, Y are uncorrelated if Cov(X, Y ) = 0.

So if X, Y are independent then they are uncorrelated. The converse is false.
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HW 17.5. (6 points) Find random variables X, Y which are uncorrelated but not inde-
pendent. Make |Ω| as small as possible. — First you have to state your sample space and
the probability distribution. Then you need to define your random variables X, Y , calculate
E(X), E(Y ), and E(XY ), show that X, Y are uncorrelated. Finally you need to prove they
are not independent.

DO 17.6. If X1, . . . , Xk are independent then E
(∏

iXi

)
=
∏

iE(Xi).

How much does the random variable X tend to deviate from its expected value? One
measure of this is the mean deviation: E(|X − E(X)|). For reasons of mathematical sim-
plicity, we find it much easier to work with a related quantity, the variance.

Definition 17.7. The variance of a random variable X is the quantity

Var(X) = E
(

(X − E(X))2
)
.

DO 17.8. Var(X) ≥ 0. Prove: The variance is zero if and only X is almost constant, i. e.,
there is a number r such that P (X = r) = 1.

DO 17.9. Var(X) = E(X2)− (E(X))2 .

DO 17.10. Notice that Var(X) = Cov(X,X).

Corollary 17.11 (Cauchy–Schwarz inequality). E(X2) ≥ (E(X))2.

DO 17.12. Show that the inequality in the preceding problem is equivalent to the following
form of the Cauchy–Schwarz inequality. For vectors x,y ∈ Rk,

|xTy| ≤ ‖x‖ · ‖y‖ . (4)

HW 17.13. (4 points) Var
(∑n

i=1Xi

)
=
∑

i

∑
j Cov(Xi, Xj).

Corollary 17.14. If X1, . . . , Xk are pairwise independent, then

Var

(∑
i

Xi

)
=
∑
i

Var(Xi) .

HW 17.15. (3+6 points) Let G = ([n], E) be a 3-regular graph. Let X1, . . . , Xn be
independent unbiased Bernoulli trials (probability of success = 1/2). For every edge e =
{i, j} ∈ E let Ye = XiXj. Let Z =

∑
e∈E Ye. Determine

(a) E(Z)

(b) Var(Z).

You answers should be simple expressions in terms of n.

Proposition 17.16 (Markov’s Inequality). Let X be a nonnegative random variable. Then
for all a > 0 we have

P (X ≥ a) ≤ E(X)

a
. (5)
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Proof.

E(X) =
∑
t∈R+

t · P (X = t) ≥
∑
t≥a

t · P (X = t)

≥ a ·
∑
t≥a

P (X = t) = a · P (X ≥ a).

The result now follows by substituting a · E(X) in place of a.

Definition 17.17. The standard deviation of X is σ(X) =
√

Var(X) .

Proposition 17.18 (Chebychev’s Inequality). For any random variable X and any b > 0
we have

P
(
|X − E(X)| ≥ b

)
≤ Var(X)

b2
=

(
σ(X)

b

)2

. (6)

Proof. Let Y = (X − E(X))2, so Y ≥ 0. By Markov’s inequality,

P (Y ≥ b2) ≤ E(Y )

b2
=

Var(X)

b2
.

This is the simplest example of a concentration inequality: it says that that the value of
X tends to be close to its expected value as long as the standard deviation is small.

PROBABILLITY GENERATING FUNCTIONS AND REAL-ROOTED POLYNOMIALS

Today we shall see further far-reaching consequences of real-rootedness.

Definition 17.19. The generating function of a sequence a = (a0, a1, . . . ) is the function
fa(t) =

∑
k akt

k. If the sequence is finite then fa is a polynomial.

DO 17.20. Prove that the generating function of the Fibonacci numbers has the following
closed-form expression:

∞∑
k=0

Fkt
k =

t

1− t− t2
. (7)

Our main interest will be in the matching generating function

mG(t) =

ν(G)∑
k=1

mk(G) · tk , (8)

where mk(G) is the number of k-matchings of the graph G. By the Heilmann–Lieb theorem,
this polynomial is real-rooted. We shall indicate far-reaching implications of this fact on the
distribution of the numbers mk(G); under general conditions on the graph G, these will be
shown to be asymptotically normal.

Definition 17.21. Let X be a random variable. If range(X) ⊆ N = {0, 1, 2, . . . }, then we
shall say that X is a counting variable.
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Remark 17.22. “Counting variable” is not a standard term. Even though the concept it
describes is the most frequent type of discrete random variable, I could not find a commonly
used term for it. The caveat is that if you use this term outside this class, you need to define
it.

Definition 17.23. The probability generating function of a counting variable X is
defined by

fX(t) =
∞∑
k=0

P (X = k) · tk .

DO 17.24. If fX is a probability generating function then fX(1) = 1.

HW 17.25. (5 points) If X, Y are independent counting variables, then fX+Y = fX · fY .

DO 17.26. More generally, if X1, . . . , Xn are independent counting variables then

f∑Xi
=
∏

fXi
.

The simplest examples of counting variables are Bernoulli trials; they take value 0 and 1
only.

DO 17.27. If X is a Bernoulli trial with probability p of success then

fX = (1− p) + pt . (9)

Corollary 17.28. Let Xi be independent Bernoulli random variables with probability of
success pi, and let Y =

∑n
i=1Xi. Then the probability generating function of Y is

fY =
n∏
i=1

(
(1− pi) + pit

)
(10)

DO 17.29. This polynomial is real-rooted; the roots are the negative numbers −αi where

αi =
1− pi
pi

=
1

pi
− 1 . (11)

Let g(t) =
∏n

i=1(t+ αi). Then

fY (t) =
g(t)

g(1)
. (12)

We can read this observation backwards: instead of defining Y as a sum of independent
Bernoulli trials, we can decompose a given counting variable Y into the sum of independent
Bernoulli trials as long as fY is real-rooted.

Corollary 17.30. If Y is a counting variable and fY is real-rooted, of degree n, then Y is
a sum of n independent Bernoulli trials.
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More precisely, the distribution of Y is identical with the distribution of the sum of n
independent Bernoulli trials. Note that these Bernoulli trials will usually not be identically
distributed.

Proof. Since fY has non-negative coefficients, its roots muct be negative; let us denote them
−αi where αi > 0. Let g(t) =

∏n
i=1(t + αi). Then fY has the same roots (with the same

multiplicities) as g and therefore g and fY differ only in a scalar factor: fY (T ) = c · g(t).
Given that fY (1) = 1, it follows that c = 1/g(1). Therefore

fY (t) =
g(t)

g(1)
=

n∏
i=1

t+ αi
1 + αi

=
n∏
i=1

(1− pi + pit) (13)

where

pi =
1

1 + αi
. (14)

(DO: Verify the last equation!) Note that 0 < pi < 1 (since αi > 0), so we can view pi as
the probability of success of a Bernoulli trial. But according to Cor. 17.28, the right-hand
side of Eq. (13) is precisely the probability generating function of the sum of independent
Bernoulli trials Xi with probability pi of success.

Definition 17.31. For a graph G, let MG be the set of matchings. This will be our sample
space, with uniform distribution. Let XG : MG → R be the random variable that counts the
edges of the matching x ∈MG. We call XG the matching counting variable for G.

We now derive a powerful corollary of the Heilmann–Lieb theorem, the reality of the roots
of the matching generating function.

Corollary 17.32. The matching counting variable is a sum of independent Bernoulli trials.

Proof. Let mG(t) be the matching generating function defined by Eq.(8), and let XG be the
matching counting variable. Now |MG| =

∑
kmk(G) = mG(1), so the probability generating

function of XG is

fXG
(t) =

mG(t)

mG(1)
. (15)

(DO: Verify!) So this polynomial is real-rooted, and the result follows from Cor. 17.30.

CENTRAL LIMIT THEOREMS

Definition 17.33. Let Y be a random variable with σ(Y ) > 0 (so Y is not almost constant).
Then the centered version of Y is the variable U = Y −E(Y ) and the normalized version
of Y is the variable

Z =
Y − E(Y )

σ(Y )
. (16)

DO 17.34. (a) E(U) = 0 and σ(U) = σ(Y )

(b) E(Z) = 0 and σ(Z) = 1
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(c) Show that among all random variables of the form aY + b (a, b ∈ R), the normalized
version Z is the only one that satisfies (b).

HW+ 17.35. (6 points) Let X be a Bernoulli trial with success probability p (0 < p < 1)
and let U be the centered version of X. Prove: E(|U |3) < Var(X).

DO 17.36. Let X be a Bernoulli trial with success probability p (0 < p < 1) and let Z be
the normalized version of X. Determine Z.

Solution. We have E(X) = p and Var(X) = p(1− p), so

Z =
X − p√
p(1− p)

=


√

1−p
p

with probability p√
p

1−p with probability 1− p
(17)

Definition 17.37. The cumulative distribution function (CDF) of a random variable
X is the function

FX(t) = P (X ≤ t).

Definition 17.38. The standard normal distribution is the distribution defined by the
CDF

Φ(x) =
1√
2π

∫ x

−∞
e−t

2/2 dt . (18)

Remark 17.39. The “density” of this distribution is the function Φ′(t) =
1√
2π

e−t
2/2 dt, the

standard bell curve.

Definition 17.40. Let {Xn} be an infinite sequence of random variables, each defined on its
own separate probability space. Assume the Xn are not almost constant; let Zn denote the
normalized version of Xn. Let Fn denote the CDF of Zn. We say that the sequence {Xn} is
asymptoticaly normal if Fn approaches Φ uniformly, i. e., the distance supx |F (x)−Φ(x)|
approaches zero as n→∞.

Remark 17.41. The classical Central Limit Theorem (De Moivre–Laplace) says that for
the binomial distributions are asymptotically normal in the following sense. Fix 0 < p < 1
and let X1, X2, . . . , Xn be independent Bernoulli trials with success probability p. Let Yn =∑n

i=1 Xi. Then the infinite sequence {Yn} is asymptotically normal.

The following result is one of many generalizations of the classical Central Limit Theorem.

Theorem 17.42 (Andrew Berry, Carl-Gustav Esséen, 1941/42). Let (Xi)
n
i=1 be independent

random variables with respective standard deviation σ(Xi) = σi, and let ρi denote the third
moment of Ui = Xi − E(Xi), defined by ρi = E(|Ui|3). Let Y =

∑n
i=1Xi and let Z be the

normalized version of Y . Let σ := σ(Y ) =
√∑n

i=1 σ
2
i . Then

(∀x ∈ R)

(
|FZ(x)− Φ(x)| < σ−3 ·

∑
i

ρi

)
. (19)
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The Berry–Esséen Theorem strengthens the classical result in several directions.

(a) It does not require the Xi to be Bernoulli trials

(b) It does not require the Xi to be identically distributed

(c) It gives a specific rate of convergence.

For our purposes, (a) will be irrelevant (our variables will be Bernoulli trials), but (b) and
(c) are crucial.

Corollary 17.43. Let (Xi)
n
i=1 be independent Bernoulli trials with respective success prob-

ability pi. Let Y =
∑n

i=1 Xi and let Z be the normalized version of Y . Let σ := σ(Y ) =√∑n
i=1 pi(1− pi). Then

(∀x ∈ R) ( |FZ(x)− Φ(x)| < 1/σ ) . (20)

Proof. By exercise HW 17.35 we have ρi < σ2
i . So the right-hand side of Eq. (19) is∑

i ρi
σ3

<

∑
i σ

2
i

σ3
=

1

σ
.

The following is an immediate corollary. (DO: Why?)

Corollary 17.44. For n = 1, 2, . . . let Yn be a sum of independent Bernoulli trials. If
limn→∞ σn =∞ then the sequence Y1, Y2, . . . is asymptotically normal.

Remark 17.45. Note that the Bernoulli trials of which Yn is the sum must be independent
but they do not need to be identically distributed.

Remark 17.46. A conceptual clarification. The probability space for Yn is the same as the
probability space for the Bernoulli trials of which Yn is the sum. However, the probability
spaces associated with Yn for distinct values of n are unrelated.

ASYMPTOTIC NORMALITY OF RANDOM MATCHINGS

Recall the matching generator function

mG(t) =

ν(G)∑
i=0

mkt
k, (21)

where mk is the number of k-matchings.
The result that µG is real-rooted implies that mG is also real-rooted. By Newton’s

inequalities, it follows that the sequence mk, k = 1, . . . , ν(G) is log-concave, and hence they
are unimodal. We shall see that much more cn be said about the behavior of this sequence.
Let us first consider a simple example.

Example 17.47. Let G be the graph consisting of n/2 disjoint edges: G = n
2
· K2. Then

mk =

(
n/2

k

)
.

7



So the sequence of these sequences is asymptotically normal by De Moivre–Laplace. A far-
reaching generalization of this fact was observed by Chris Godsil in 1981. For a graph G let
XG denote the matching counting variable defined in Def. 17.31, so XG is the size of a random
matching ofG. Let σ(G) := σ(XG). Let us refer to the sequence (m0(G),m1(G), . . . ,mν(G)(G))
as the matching sequence of G.

Theorem 17.48 (Godsil, 1981). Let Gn be an infinite sequence of graphs. If σ(Gn) → ∞
then the matching sequences of the Gn are asymptotically normal.

DO 17.49. Show that this result follows by combining Cor. 17.32 (a consequence of the
Heilmann–Lieb theorem) and Cor. 17.44 (a consequence of the Berry–Esséen theorem).

DO 17.50. Express σ(G) in terms of the mk(G).

Godsil also gave rather general sufficient conditions that guarantee σ(Gn) → ∞. One of
these is the following.

Theorem 17.51 (Godsil). Let Gn be an infinite sequence of graphs without isolated vertices
(i. e., degmin ≥ 1). If degmax(Gn)/|V (Gn)| → 0 then σ(Gn)→∞ and therefore the matching
sequences of the Gn are asymptotically normal.

Even though the conditions of this theorem do not hold for the complete graphs, Godsil
showed that the complete graphs also satisfy the conclusion; in particular, the coefficients of
the Hermite polynomials are asymptotically normal.
Recall that XG is the size of a random matching (picked uniformly from MG). Godsil
comments that a necessary condition for σ(Gn) → ∞ is E(XGn) → ∞. Another condition
that is obviously necessary is that ν(Gn) → ∞. He then comments that “interestingly
enough, the second of these conditions implies the first” and cites an observation by this
instructor that proves this.

Lemma 17.52 (Babai). The expected size of a random matching of G is at least ν(G)/3,
i. e., E(XG) ≥ ν(G)/3 .

CH 17.53. Find a simple proof of this statement.

BONUS+ 17.54. (6 points) Find an infinite sequence {Gn} of graphs such that ν(Gn)→
∞ but σ(Gn)→ 0.

Jeff Kahn (1998) significantly expanded Godsil’s study of the asymptotic behavior of the
matching sequence, including cases when σ(G) is bounded and the matching sequence is
asymptotically Poisson.

The presentation so far in this class was based on the following paper.

Chris D. Godsil, Matching behaviour is asymptotically normal. Combinatorica 1(4) (1981)
369–376.

RAMSEY THEORY

Recall the Erdős–Szekeres theorem:(
k + `

k

)
→ (k + 1, `+ 1) . (22)
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The diagnal case (k = `) gives

4k >

(
2k

k

)
→ (k + 1)2.

Substituting n = 4k, i. e., k = 1
2

log2 n, we obtain

n→
(

1 +
1

2
log2 n

)
2

. (23)

The question is, how far the (1/2) log2 n from the best possible bound. Paul Erdős showed
in 1949 that the order of magnitude is correct.

Theorem 17.55 (Erdős). n9 (1 + 2 log2 n)2 .

DO 17.56. Show that Theorem 17.55 is equivalent to the following statement.

• For all n there exists a graph Gn with n vertices such that

max(α(Gn), α(Gn) < 1 + 2 log2 n . (24)

Erdős’s proof was an early triumph of his “probabilistic method.” Rather than constructing
such graphs, he showed that almost all graphs have the required property. What this means
is that the probability that a random graph on n vertices satisfies Eq. (24) approaches 1 as
n→∞.

Theorem 17.57 (Erdős). Let Gn be a graph on n vertices chosen uniformly at random.
Then

P
(

max(α(Gn), α(Gn)) ≥ 1 + 2 log2 n
)
→ 0 as n→∞.

Proof. Fix a set V of n vertices. Our sample space Ω will be the set of all graphs with V as

their set of vertices; the number of such graphs is |Ω| = 2(n
2). Our probability distribution

will be uniform over Ω. In other words, we pick our graph G “uniformly at random” from
Ω.

Let A ⊆ V be a set of size |A| = k. Then

P (A is independent) =
1

2(k
2)
.

Using the union bound,

P (α(G) ≥ k) ≤
∑

A⊆V :|A|=k

P (A is independent) =

(
n

k

)
1

2(k
2)
.

Combining this result with DO 17.59, we have

P (α(G) ≥ k) ≤ 1

k!
· nk

2k(k−1)/2
=

1

k!

( n

2(k−1)/2

)k
.
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If k ≥ 1 + 2 log2 n, then 2(k−1)/2 ≥ n, so we have

P (α(G) ≥ k) ≤ 1

k!
.

The same statements apply to G. Making another appeal to the union bound, we obtain
that if k ≥ 1 + 2 log2 n then

P (α(G) ≥ k or α(G) ≥ k) ≤ 2

k!
→ 0 as n→∞.

Thus, for almost all graphs (P → 1), max(α(G), α(G)) < 1 + 2 log2 n.

DO 17.58. Let us choose the graph G uniformly at random among the 2(n
2) graphs on a

given set of n vertices. For each pair {i, j} of vertices (i < j) let X(i, j) denote the Bernoulli
trial that is successful if {i, j} ∈ E(G). Prove that the probability of success is 1/2 and that
these

(
n
2

)
Bernoulli trials are independent.

DO 17.59.

(
n

k

)
≤ nk

k!
.

BONUS+ 17.60. (6 points) Prove: almost all graphs have diameter 2. Define what this
statement means.

BONUS+ 17.61. (7 points) Prove: if G does not contain K5 then χ(G) = O(n3/4).
Hint. Erdős–Szekeres.

BONUS+ 17.62 (Explicit Ramsey graph by Zsigmond Nagy, 1973). (7 points) Give a

constructive proof of the relation

(
k

3

)
9 (k + 1)2 using the following graph. Let V =

(
[k]
3

)
(the set of 3-subsets of [k]) be the set of vertices. Make A,B ∈ V adjacent if |A ∩B| = 1.

Remark 17.63. Note that this shows n9 (cn1/3)2 for some constant c. Compare this with the
construction by Abbott, previously assigned as a Challenge problem, that showed n 9 cnα

where α = log5 2 = 0.43 . . . . — Nagy’s construction was later generalized by Peter Frankl
and Richard M. Wilson (1980) to a constructive proof that n9 nε for any constant ε > 0.

BONUS+ 17.64. (8 points) A (0, 1)-matrix is a matrix whose entries are aij ∈ {0, 1}. A
k×` submatrix is obtained by selecting an arbitrary set of k rows and ` columns and looking
at the k` cells at their intersection. A submatrix is homogeneous if all of its entries are the
same.
Prove: every n×n (0, 1)-matrix has a k×k homogeneous submatrix where k ∼ (1/2) log2 n .
(In an earlier version of this posting, I erroneously claimed k = b(1/2) log2 nc. In fact, k will
be slightly smaller but still asymptotically equal to (1/2) log2 n .

HW+ 17.65. (8 points) Prove that for all sufficiently large n there exists an n× n (0, 1)-
matrix that has no homogeneous k × k submatrix for k = d2 log2 ne. Hint. Use Erdős’s
probabilistic method. State the size of the sample space you use. (The previous posting
of this problem erroneously omitted the factor 2 before log2 n. The due date for this
problem is extended to Thursday, June 6, before class.)

CH 17.66. (15 points) For infinitely many values of n, give a constructive proof that there
exists an n× n (0, 1)-matrix that has no homogeneous k × k submatrix for k >

√
n.
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