
Graph Theory: CMSC 27530/37530 Lecture 18

Lecture by László Babai
Notes by Geoffrey West

Revised by instructor

May 30, 2019

Please remember that if you wish to receive a grade (either letter grade or P/F) then you are
expected to attend the last class, Thursday, June 6. Most problems in this problem
set are due Tuesday, June 4, but some of the problems are due on Thursday, June 6.

This problem set includes some not too difficult Challenge problems; you might try them
until Thursday if you wish them to count toward your grade.

HW+ and Bonus+ indicate homework and Bonus problems due Thursday, June 6.

DIRECTED GRAPHS

Definition 18.1. Let H be an orientation of the graph G. The out-degree deg+
H(v) of

vertex v in H is the number of edges of the form v → w (edges starting at v and directed
away from v). The in-degree deg−H(v) is defined analogously. (We drop the subscript H if
H is clear from the context.)

DO 18.2. Observe that deg+
H(v) + deg−H(v) = degG(v).

DO 18.3 (Directed Handshake Theorem). Prove: m =
∑

v∈V deg+(v) =
∑

v∈V deg−(v),
where m is the number of edges of G.

HW 18.4. (5+4 points) As before, let H be an orientation of the graph G = (V,E).
Assume (∀v ∈ V )(deg+

H(v) ≤ k).

(a) Prove: χ(G) ≤ 2k + 1. State the coloring algorithm you use to prove this result.
(Hint. Look further down in these notes.)

(b) Prove: the bound 2k+1 is tight for every k ≥ 1. (For every k you need to find a graph
G and an orientation H of G such that χ(G) = 2k + 1 while all outdegrees in H are
≤ k.)

Definition 18.5. As before, let H be an orientation of the graph G. A directed walk from
v to w in H is a walk in G that observes the orientation of the edges: v → u1 → · · · → w.
We say that w is accessible from v in H if there exists a v → · · · → w directed walk in H.
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Definition 18.6. As before, let H be an orientation of the graph G = (V,E). Let s 6= t ∈ V .
An (s, t) cut is a partitition V = A t B such that s ∈ A and t ∈ B and there is no edge
oriented from A to B, i. e., if {v, w} ∈ E and v ∈ A, w ∈ B then the orientation in H is
w → v.

The next exercise describes a “good characterization” of accessibility.

HW 18.7. (7 points) As before, let H be an orientation of the graph G = (V,E). Let
s 6= t ∈ V . Prove: t is accessible from s if and only if there is no (s, t) cut.

Definition 18.8. We say that H is strongly connected if (∀v, w ∈ V )(w is accessible
from v).

HW 18.9. (2 points) Find the smallest connected graph that has no strongly connected
orientation.

Definition 18.10. A bridge in a connected graph G is an edges e such that the graph
G − e is disconnected. Here G − e is the graph G minus the edge e but the endpoints of e
are retained, so V (G− e) = V (G).

DO 18.11. An edge e in a connected graph G is a bridge if and only if e does not belong
to any cycle in G.

CH 18.12. Prove: a connected graph G has a strongly connected orientation if and only if
G has no bridge.

Definition 18.13. A tournament is an orientation of the complete graph.

CH 18.14. Prove: every strongly connected tournament with n ≥ 3 vertices has a directed
Hamilton cycle.

BONUS 18.15. (8 points) Prove: almost all tournaments are strongly connected. —
Define the meaning of this statement.

Definition 18.16. As before, let H be an orientation of the graph G = (V,E). We say that
H is acyclic if there is no directed cycle in H. A topological sort of H is a numbering of
the vertices, v1, . . . , vn, such that if vi → vj is the orientation in H of the edge {i, j} ∈ E
then i < j (all edges are oriented forward).

DO 18.17. Prove: H is acyclic if and only if H has a topological sort.

Remark 18.18. The definition of directed graphs permits two-way orientation of some of
the edges, so oriented graphs are a proper subclass of directed graphs. However, most results
stated in this section extend to directed graphs.

FIBONACCI NUMBERS
(DO solve problem DO 18.21. You may skip the rest of this section for now and return to it
at your leisure.)
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Notation 18.19. Let a, b be integers. We say that a divides b if (∃x ∈ Z)(b = ax).
Notation: a | b. For instance, 6 | 18 and 8 - 18.

DO 18.20. True or false: 0 | 0 ?

DO 18.21. Let f(t) = a0 + a1t+ . . .+ ant
n, where ai ∈ Z and a0, an 6= 0. If f has a rational

root r/s where r, s ∈ Z, s 6= 0, and gcd(r, s) = 1, then r | a0 and s | an. In particular, if f is
monic, then every rational root of f is an integer dividing a0.

DO 18.22. ♥ Let A =

(
1 1
1 0

)
.

(a) Determine the eigenvalues of A.

(b) Determine the entries of the matrix An.

(c) Prove, in half a line and without any further calculation, that Fn+1 + Fn−1 = φn + φ
n

where φ is the golden ratio and φ is the algebraic conjugate of φ, i. e., φ and φ are the
two roots of the polynomial t2 − t− 1.

Here Fn is the n-th Fibonacci number. (Recall the numbering: F0 = 0, F1 = 1.)

DO 18.23. Prove: Fn+1Fn1−F 2
n = (−1)n. Prove this with no calculation; use the preceding

exercise, observing that det(A) = −1.

DO 18.24. Prove: if k | ` then Fk | F`, where Fk is the k-th Fibonacci number.

CH 18.25. (6 points) Prove: gcd(Fk, F`) = Fd where d = gcd(k, `). If you use any of the
the preceding exercises, prove them.

EXPONENTIAL FUNCTION OF A MATRIX
(This section is meant for your entertainment only. Feel free to skip it.)

Definition 18.26. Let A ∈Mn(C). Define eA by

eA =
∞∑
k=0

1

k!
Ak . (1)

DO 18.27. Prove that the sum (1) converges for every A. (Convergence is in any reasonable
metric.)

DO 18.28. Prove: if A ∼ B (similar matrices) then eA ∼ eB.

DO 18.29. Prove: if spec(A) = {{λ1, . . . , λn}} (λi ∈ C) then spec(eA) = {{eλ1 , . . . , eλn}}.

DO 18.30. Let A,B ∈ Mn(C). Consider the equation eA+B = eAeB. (a) Show that this
equation does not always hold. (b) Prove that the equation does hold if A,B commute,
i. e., AB = BA.
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DO 18.31. Let A ∈ Mn(R). Consider the function f(t) = etA where t ∈ R (so f : R →
Mn(R)). Prove:

d

dt
f(t) = A · f(t) . (2)

This equation underlies the solution of systems of homogeneous linear ODEs.

CH 18.32. Let A be a real symmetric matrix and B = eiA where i =
√
−1. Let Cn =

I +B +B2 + · · ·+Bn. Prove: the sequence {Cn} is bounded (in any reasonable metric).

DO 18.33. Let f(t) =
∑∞

k=0 akt
k be a power series (ai ∈ C) with convergence radius r. Let

A ∈Mn(C). Define f(A) analogously to Def. 18.26.
Assume |λ| < r for every λ ∈ spec(A). Prove: the series f(A) converges.

MULTIPLICITY OF EIGENVALUES: ALGEBRAIC VS. GEOMETRIC

Definition 18.34. Let A ∈ Mn(C). The algebraic multiplicity of an eigenvalue λ is its
multiplicity in the characteristic polynomial. We denote this number algA(λ).

Definition 18.35. The eigenspace for an eigenvalue λ is the set

Uλ(A) = {x ∈ Cn | Ax = λx} ≤ Cn . (3)

So the eigenspace Uλ(A) consists of the eigenvectors of A to eigenvalue λ plus the zero vector.

DO 18.36. Prove: Uλ(A) is a subspace of Cn.

DO 18.37. Uλ(A) = ker(λI − A).

Definition 18.38. The geometric multiplicity of λ is the maximum number of linearly
independent eigenvectors to λ in Cn. We denote this number geomA(λ).

DO 18.39. Prove:

(a) geomA(λ) = dim(Uλ(A))

(b) geomA(λ) = n− rk(λI − A). (Hint. Rank–Nullity)

DO 18.40. Let A,B ∈Mn(C) be similar matrices. Prove, for all λ ∈ C, that

(a) algA(λ) = algB(λ)

(b) geomA(λ) = geomB(λ)

DO 18.41. Show that the geometric and the algebraic multiplicities are not always equal.

Solution. Consider the matrix

A =

(
0 1
0 0

)
.

Then fA(t) = t2, so algA(0) = 2. However, rk(A) = 1, so by part (b) of Exercise DO 18.39,
geom(0) = 2− 1 = 1.
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DO 18.42. Consider the matrix A ∈Mn(R) defined as

A =


0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
0 0 0 . . . 0

 .

Show the following.

(a) alg(0) = n.

(b) geom(0) = 1.

DO 18.43.
geomA(λ) ≤ algA(λ).

Hint. Let u1, . . . ,uk be a basis of Uλ(A). Extend this list to a basis of Cn. Switch to this
basis; the action of A on Cn will now be described by a matrix of the form

B =

[
λI ∗
0 ∗

]
where I is the k × k identity matrix. Change of basis results in a similar matrix, so A ∼ B
and therefore fA = fB.

DO 18.44. A matrix A ∈Mn(C) is diagonalizable (over C) if and only if

(∀λ)(geomA(λ) = algA(λ)) . (4)

DO 18.45. A matrix A ∈ Mn(R) is diagonalizable over R if and only if fA is real-rooted
and Eq. (4) holds for all λ ∈ R.

DO 18.46. If A is a symmetric real matrix then Eq. (4) holds for all λ ∈ R.

SPECTRUM VS. MAX DEGREE

DO 18.47. Let G be a graph with vertex set [n] and let AG be its adjacency matrix. Let
x = (x1, . . . , xn)T ∈ Rn. Let AGx = y = (y1, . . . , yn) ∈ Rn. Recall that

yi =
∑
j:j∼i

xj . (5)

Consider the “star” graph G = K1,n−1. It has the adjacency matrix

AG =


0 1 1 . . . 1
1 0 0 . . . 0
1 0 0 . . . 0
...

...
...

. . .
...

1 0 0 . . . 0


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What is λ1(G)? SinceG is connected, λ1(G) admits an all-positive eigenvector x = (x1, . . . , xn)T .
Then, by Eq. (5),

λx1 =
n∑
i=2

xi .

For i ≥ 2, Eq. (5) gives λxi = x1. We thus have

λ2x1 =
n∑
i=2

λxi =
n∑
i=2

x1 = (n− 1)x1

so λ =
√
n− 1.

DO 18.48. The spectrum of K1,n−1 is {{
√
n− 1, 0n−2,−

√
n− 1}}. (This notation means

that the multiplicity of 0 is n− 2.)

Solution. Note that rk(AG) = 2. (Why?) Therefore, by part (b) of Exercise DO 18.39, the
multiplicity of 0 is n − 2. (Why?) The remaining eigenvalue can only be −λ1 because the
trace is zero. (Another reason: λn = −λ1 because G is bipartite.)

DO 18.49. (∀G)(λ1(G) ≥
√

∆(G)), where ∆(G) = degmax(G).

Proof. G ⊇ K1,∆ and therefore λ1(G) ≥ λ1(K1,∆).

HW 18.50. (6 points) Find spec(Kr,s). Find an eigenvector to λ1(Kr,s).

BONUS 18.51. (5 points) If G is d-regular and diam(G) ≥ 4, then λ2 ≥
√
d.

CH 18.52. (6 points) If G is d-regular (d ≥ 2) and n > kd3, then λk ≥
√
d.

Theorem 18.53 (Godsil). If T is a tree, then λ1(T ) ≤ 2
√

∆− 1.

For the proof, we need the following lemma.

DO 18.54. Let A = (aij) ∈ Mm(R) be a non-negative matrix ((∀i, j)(aij ≥ 0)). Let
bi =

∑
j aij be the i-th row sum. Then

(∀λ ∈ spec(A))(|λ| ≤ bmax) . (6)

The proof of this lemma is analogous to the proof that λ1(G) ≤ ∆(G).

Proof of Theorem 18.53. Let A = AT be the adjacency matrix. Choose a vertex to be the
“root.” For any v ∈ V , let h(v) be the length of the unique path between v and the root
(the “height” of v). Let D be the diagonal matrix

D = diag
(√

∆− 1
h(v)
)

Consider the matrix B = DAD−1. Since B ∼ A, they have the same spectrum. By the
Lemma (DO 18.54) we can bound λ1(T ) by the maximum row-sum of B. Let v ∈ V , other
than the root. Let w be the neighbor of v along the unique path from v to the root. The
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row corresponding to v in B has value 1√
∆−1

in each column corresponding to a neighbor of

v, except for w. In the column corresponding to w, the matrix has entry
√

∆− 1. So the
row sum is √

∆− 1 + (deg(v)− 1) · 1√
∆− 1

≤ 2
√

∆− 1 .

Notation 18.55 (Rooted tree). Let T be a tree and r a vertex designated as the “root.”
The parent of a vertex p 6= r is the neighbor of p along the unique p− · · · − r path. Let p′

denote the parent of p. Vertex q is a child of p if p = q′. An iterated parent is an ancestor.
The parent function determines the rooted tree; vertices p and q are adjacent exactly if p = q′

or q = p′.

DO 18.56. A function f : V \ {r} → V can be used as the parent function to define a
rooted tree, rooted at r, if and only if no vertex is its own ancestor.

Definition 18.57 (Tree of paths). Let G be a connected graph with a root vertex r. For a
path P ⊆ G of length ≥ 1 from the root, let P ′ denote the path P − p, where p 6= r is the
other endpoint of P . We define the rooted tree TG, called the “tree of paths” for (G, r), as
follows. The vertices of TG are the paths in G from r, including the path {r} of length zero
which will be the root of TG. We declare P ′ to be the parent of P (if P is not the root of
TG).

DO 18.58. Prove that TG is a tree.

DO 18.59. Prove that ∆(TG) = ∆(G).

Heilmann and Lieb gave three proofs of their theorem that the roots of the matchings
polynomial are real. Godsil gave a fourth proof.

Theorem 18.60 (Godsil). If G is a connected graph then µG | fT (G) (where µG is the
matchings polynomial).

It follows that all roots of µG are eigenvalues of TG and therefore they are real. Moreover,
we also get a bound on the roots.

Corollary 18.61. Let G be a graph and λ a root of its matchings polynomial. Then |λ| ≤
2
√

∆(G)− 1.

This result holds regardless of whether G is connected. The extention from connected to
disconnected graphs follow from the following observation.

DO 18.62. Let G = K t L (disjoint union of the graphs K and L). Then µG = µk · µL.

WILF’S EIGENVALUE BOUND ON THE CHROMATIC NUMBER

A previous HW asked to show χ(G) ≤ 1 + λ1(G) (Herbert Wilf, 1961). The proof is via the
“smart-greedy” algorithm. The algorithm does not mention eigenvalues; the bound comes
from the analysis of the algorithm.
The algorithm recursively constructs a coloring c : V → N.
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Procedure SMART-GREEDY(G):
if (n = 1):

return c(v) = 1
else:

Pick a vertex v of minimum degree
c← SMART-GREEDY(G− v)
c(v)← first available color
return c

Claim 18.63. The algorithm uses at most 1 + λ1(G) colors.

Proof. The inductive hypothesis is that smart-color(G−v) uses at most 1+λ1(G−v) colors.
Since λ1(G− v) ≤ λ1(G), it follows that smart-color(G− v) uses at most 1 + λ1(G) colors.
Now deg(v) ≤ average degree ≤ λ1(G), so among the b1 + λ1(G)c colors, there is at least
one “free color” for v to use, and thus G requires at most 1 + λ1(G) colors. This completes
the inductive step. The base case is G = K1, λ1(K1) = 0, and the algorithm uses 1 color to
color K1.

The same algorithm can be analyzed in other ways to obtain other bounds on the chromatic
number.

Fact 18.64. Every planar graph has a vertex of degree ≤ 5.

DO 18.65. Use Fact 18.64 to prove that every planar graph is 6-colorable.

TRIANGLE-FREE GRAPHS WITH LARGE CHROMATIC NUMBER

If G ⊇ K5 then χ(G) ≥ 5. The mistake made in the first attempted proof of the Four-
color conjecture was the assumption that the converse also holds: by proving that K5 is not
planar, the person believed to have proved that planar graphs are 4-colorable. This inference
is wrong; in fact, triangle-free graphs can have arbitrarily large chromatic number. It was an
exercise in this class to show that there exists a triangle-free graph that is not 3-colorable.
The hint said such a graph with 11 vertices and a rotational symmetry of order 5 can be
constructed; the resulting graph is called Grötzsch’s Graph, after Herbert Grötzsch who
published this graph in 1959. In fact, years earlier Jan Mycielski proved a stronger result
(1955): he constructed a sequence of triangle free graphs with increasing chromatic number.
We describe his inductive construction.

The sequence starts with M2 := K2. For any k, we define Mk+1 by the “doubling plus one”
method. Let v1, . . . , vr be the vertices of Mk. The vertex set of Mk+1 is

V (Mk+1) = {v0, . . . , vr} ∪ {u0, . . . , ur} ∪ {w}.

So |V (Mk+1)| = 2 · |V (Mk)|+ 1. The edge set of Mk+1 is defined by the following relations.

1. The edges and non-edges of Mk are retained, so Mk is an induced subgraph of Mk+1:

vi ∼Mk+1
vj ⇐⇒ vi ∼Mk

vj
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2. Each ui inheirits the neighborhood of vi:

ui ∼Mk+1
vj ⇐⇒ vi ∼Mk

vj

3. There are no edges among the ui .

4. Vertex w is adjacent to each ui and none of the vi .

Figure 1 show this process applied to C5 (which is M3) to obtain M4. So M2 = K2, M3 = C5,

Figure 1: The “doubling plus one” method on C5.

M4 is Grötzsch’s graph.

DO 18.66. χ(Mk) = k and Mk 6⊃ K3.

Corollary 18.67 (Mycielski). There exist triangle-free graphs of arbitrarily large chormatic
number.

The following lemma will be helpful for the proof of exercise DO 18.66.

HW 18.68. (5 points) Let G = (V,E) and assume χ(G) = k. Let f : V → [k] be a
k-coloring of G. Then for each color i ∈ [k] there exists a vertex v ∈ V such that f(v) = i
and every color other than i occurs among the colors of the neighbors of v.

How large are Mycielski’s graphs?

DO 18.69. Prove: Mk has order 3 · 2k−1 − 1 .

So these graphs grow at an exponential rte as a function of their chromatic number. Erdős
showed (1959) that in fact mauch smaller triangle-free graphs exist with a given chromatic
number; they only need to grow at a polynomial rate (n = k3+ε).

Theorem 18.70 (Erdős, 1959). For any ε > 0, for all sufficiently large k there exists a
triangle-free graph of chromatic number k with at most k3+ε vertices.

The proof is based on random choice of graphs according to a distribution called the Erdős-
Rényi random graph model G(n, p) after a pair of articles by Paul Erdős and Alfréd Rényi
(1960/61) in which they gave a detailed analysis of the evolution of their random graphs as
a function of the edge probability parameter p.
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Definition 18.71. Let Ωn denote the set of all graphs on vertex set [n]; so |Ωn| = 2(n
2).

The Erdős-Rényi random graph model G(n, p) is a distribution on Ωn. We perform
(
n
2

)
indepedent Bernoulli trials with probability p of success, one trial Be for each edge e of the
complete graph Kn. In case Be succeeds, the edge e is included in our random graph G,
otherwise not. So the probability that a given graph G on vertex set [n] with m edges is the
outcome of our experiment is

P (G = G) = pm(1− p)(
n
2)−m . (7)

DO 18.72. Let v be a vertex of a G(n, p) random graph. Then E(deg(v) = (n− 1)p.

DO 18.73. The expected number of triangles in a G(n, p) random graph is
(
n
3

)
p3 ∼ (np)3/6 .

In fact, the degre of a given vertex is binomially distributed as a sum of n− 1 independent
Bernoulli trials with probability p of success.
The following estimate is useful.

DO 18.74. For all x ∈ R, 1 + x ≤ ex .

Proof of Theorem 18.70. Let us fix some small positive number θ, its value to be determined
later. Let p := nθ−1, and let G be random graph from the distribution G(n, p). So the
expected degree of a vertex is (n−1) ·nθ−1 ∼ nθ. Our lower bound on the chromatic number
will be achived by giving an upper bound on the independence number, using the inequality

χ(G) ≥ n

α(G)
.

Ideally we would want to set the value of θ so that the following two events both have high
probability:

(a) G has no triangles;

(b) n/α(G)/n ≥ k.

Unfortunately this is impossible. According to Exercise DO 18.73, the expected number of
triangles in G is close to (np)3/6 = n3θ/6, so to have a good chance of having no trinagles,
we would need θ ≤ 0, but that would make the chromatic number at most three with high
probability. So we need to compromise on item 1. Here is the modified plan. We need to
find a (not too large) graph G such that

(A) G has at most n/2 triangles;

(B) n/α(G) ≥ 2k.

First let us prove that if we found a graph that has both properties then we can construct
another graph G′ that is triangle-free and has chromatic number ≥ k.

Pick a vertex from each triangle of G and remove it. This will leave a graph G′ with at
least n/2 vertices, no triangles, and α(G′) ≤ α(G) (because G′ is an induced subgraph of
G). Therefore

χ(G′) ≥ n/2

α(G′)
≥ 1

2

n

α(G)
≥ k . (8)
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So we need to find a (not too large) G that satisfies (A) and (B). We shall calibrate θ so
that our random graph G will satisfy both (A) and (B) with probability greater than 1/2
and therefore both of them simultaneously with positive probability, proving the existence
of a graph G that satisfies both conditions.

Let t(G) denote the number of triangles of the graph G. Our first goal is that E(t(G)) ≤ n/6.
If we achieved this, by Markov’s inequality we shall have

P (t(G) ≥ n/2) ≤ 1/3 . (9)

Since E(t(G)) < n3θ/6, this goal will be reached assuming n3θ ≤ n, i. e.,

θ ≤ 1/3 . (10)

Next we estimate α(G). Let us fix a set A ⊆ [n] of size |A| = a.

P (A is independent ) = (1− p)(
a
2) < e−p(

a
2) .

(We used Exercise DO 18.74.) Trying every subset of size a, by the union bound we obtain

P (α(G) ≥ a) <

(
n

a

)
e−p(

a
2) <

1

a!

(
ne−p(a−1)/2

)a ≤ 1

a!
(11)

assuming n ≤ ep(a−1)/2, which means, taking logarithms, that lnn ≤ p(a − 1)/2, i. e., p ≥
(2 lnn)/(a− 1).

Our goal is that a−1 ≤ n/(2k). To achive this, we need p ≥ (2 lnn)(2k/n), i. e., nθ ≥ 4k lnn,
i. e.,

θ ≥ ln(4k) + ln lnn

lnn
. (12)

So, combining the two constraints on θ, inequalities (10) and (12), we need θ to satisfy

ln(4k) + ln lnn

lnn
≤ θ ≤ 1

3
. (13)

For such θ to exist, it is necessary and sufficient that

ln(4k) + ln lnn

lnn
≤ 1

3
. (14)

Since the left-hand side approaches zero as n→∞ for fixed k, this inequality indeed holds
for all sufficiently large n.

Our last question is, how large is sufficiently large as a function of k.

Claim 18.75. For any constant ε > 0, inequality (14) holds for all sufficiently large k, assum-
ing n ≥ k3+ε. (The threshold for k depends on ε.)

Indeed, ln lnn/ lnn→ 0 as k →∞ (and with it, n→∞), and (ln 4 + ln k)/((3 + ε) ln k)→
1/(3 + ε), so for sufficiently large k these two quantities add up to less than 1/3. This proves
the Claim and with it, completes the proof of Theorem 18.70.
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But Erdős’s result is about much more than triangle-free graphs. Spectacularly, he was able
to eliminate all short cycles and still claim large chromatic number.

Theorem 18.76 (Erdős). There exist graphs of arbitrarily large girth and chromatic number.

If you like formal expressions, here is the theorem.

(∀g)(∀k)(∃G)(χ(G) ≥ k ∧ girth(G) ≥ g).

The proof is, mutatis mutandis, the same as the the proof above; instead of k3+ε, the bound
on n will be kg+ε.

What does large girth mean?

DO 18.77. Assume G has girth ≥ g. Let v be a vertex and B(v) be the set of vertices
at distance ≤ (g − 1)/2 of v (the “ball of radius (g − 1)/2 about v”). Then the subgraph
induced by B(v) is a tree.

So the graph is locally a tree, yet it has large chromatic number. Why is the chromatic
number large? Theorem 18.76 is the first in a long series of results by Erdős that indicate that
there is no local explanation for high chromatic number. Erdős, more than anyone else among
his contemporaries, recognized that the chromatic number is a deep structural parameter
of the graph. Theorem 18.76 had tremendous influence on combinatorics as well as on the
theory of computing where the complexity of computing or approximating the chromatic
number became a central subject. Here is the most remarkable complexity theoretic result
about the chromatic number.

Theorem 18.78 (Johan H̊astad, 2000). The following holds for any 0 < ε < 1/2. I give
you two graphs. I promise that one of them is colorable by nε colors, the other requires at
least n1−ε colors. If you can tell, in polynomial time, which is which, then P = NP . (In
particular, in that case, the exact chromatic number can be computed in polynomial time.)

The proof is built on the theory of “interactive proofs” and makes extensive use of Fourier
analysis on the Bolean cube.

H̊astad also proved that the exact same result holds for the independence number
(and therefore for the clique number).

EXPLICIT CONSTRUCTION: KNESER’S GRAPHS

Erdős proves the existence of graphs of large girth and chromatic number but does not
show how to construct them. This non-constructive nature is characteristic for proofs of
existence via the probabilistic method. Much effort has been devoted to explicit cnstructions.
Somewhat surprisingly, avoiding 4-cycles seems far more difficult than avoiding odd cycles.
Here is a class of graphs of large chromatic number, without short odd cyles.

Definition 18.79 (Kneser’s graphs). Let s ≥ 1 and r ≥ 2s+ 1. The Kneser graph Kn(r, s)
has

(
r
s

)
vertices, labeled by the s-subsets of [r]. Two vertices vA and vB are adjacent if A

and B are disjoint (A,B ∈
(

[r]
s

)
).
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DO 18.80. Kn(5, 2) is isomorphic to the Petersen graph.

HW+ 18.81. (8 points) Prove: χ(Kn(r, s)) ≤ r − 2s+ 2.

Martin Kneser was the first to study these graphs and he conjectured that their chromatic
number is exactly r − 2s + 2. This problem remained open for more than two decades,
until Lovász confirmed it in 1978 using a rather surprising topological method. Lovász
introduced the neighborhood complex of a graph – a simplicial complex where the sets NG(v)
are the maximal simplices, and proved, using the Borsuk–Ulam Theorem, that if this complex
has high topological connectivity then G has high chromatic number. Almost immediately
(1978), Imre Bárány gave a more elementary proof, using convex geometry to reduce Kneser’s
conjecture to the Borsuk–Ulam theorem.

Theorem 18.82 (Lovász, 1978). χ(Kn(r, s)) = r − 2s+ 2.

So if r − 2s is large then the Kneser graph has high chromatic number. Let us now study
the short cycles of the Kneser graph.

HW+ 18.83. (5 points) Prove: If r ≥ 2s+ 2 then Kn(r, s) contains a 4-cycle.

In fact, when r−2s is large (the case of interest to us), then Kn(r, s) contains tons of 4-cycles.

HW+ 18.84. (5 points) Kn(r, s) contains the complete bipartite graph KL,M where L =(dr/2e
s

)
and M =

(br/2c
s

)
.

However, if 2s/r is close to 1 then the Kneser’s graph has no short odd cycles.

HW+ 18.85. (6 points) Prove: Kn(r, s) has no odd cycles shorter than r/(r − 2s) .

Corollary 18.86. Let r = k2 and s = k(k−1)/2. Then K(r, s) has chromatic number k+2
and no odd cycle shorter than k.

Explicit constructions of graphs of large girth and large chromatic number only came with
the advent of Ramanujan graphs (Margulis, Lubotzky–Phillips–Sarnak, 1988).

INFINITE GRAPHS
(For your entertainment only; feel free to ignore this section.)

Legal coloring has the same meaning for inifinite graphs as for finite graphs, but the “number”
of colors may be an infinite cardinal such as ℵω+2. Any non-empty set of cardinals has a
minimum, so the notion of chromatic number makes sense.

Infinite graphs sometimes have finite chromatic number. A fundamental result by Erdős and
De Bruijn asserts that this depends on their finite subgraphs only.

CH 18.87 (Erdős–De Btuijn, 1949). Let k be a positive integer. An inifinite graph G is
k-colorable if and only if all finite subgraphs of G are k-colorable.

Give three proofs of this theorem: (a) using Gödel’s compactness theorem in first-order logic,
(b) using Tykhonoff’s compactness theorem in topogy, and (c) a direct proof using Zorn’s
lemma.

Some constructions of high-chromatic graphs without short odd cycles generalize to infinite
chromatic numbers.
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CH 18.88. For any positive integer k and any infinite cardinal m there exists a graph G
such that G has chromatic number ≥ m and G has no odd cycles of length less than k.

On the other hand, 4-cycles cannot be avoided. Erdős and András Hajnal have shown that
a graph with uncountable chromatic number necessarily contains 4-cycles.

CH 18.89 (Erdős–Hajnal). If a graph G has uncountable chromatic number then G contains
a 4-cycle. In fact, G contains a complete bipartite graph Km,ℵ1 for every positive integer m.
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