2022-10-27 | p1

GRAPH THEORY

graph: nodes and links

SZ = {LA, STV, Chi, BOS. NY, DC } links = {{LA, SFi}, {LA, Chi}, ...} Strong Pos LA ODC

airline routes

ivreflexive symmetric not transitive (when there are no links)

GRAPH
$$G = (V, E)$$
 singular:
 $V - \text{ret of vertices}$ (aties) vertex
 $E - \text{set of edges}$ (links)

$$V = [6]$$

 $E = \{\{1,2\}, \{1,3\}, \{2,3\}, ...\}$ 20
edge: unordered pair
 $E = \{12, 13, 23, 34, 35, 45, 56\}$

If {ij} EE the we say i and j'are ADJACENT ADJACENCY relation ~ on V ing j I irreflexive I symmetric

If f: G->H is an isomorphism then f": H-> --Wheat kind of relation on graphs is " isomorphism" ("Being isomorphie")? D2 = { all graphs } $G \cong G$ identity: (4x)(x)=x) relation if G=H then H=G if: 3f s.t. ... then for will work

DO

if G=H } then G=K

if i~j we say ij are heighbors degree (v) = # neighbors = deg (v) deg 1 2 1 f:G >H is an isomorphism then $(\forall v \in V(G))(\deg_G(v) = \deg_H(f(v)))$ (l'isomorphisms preserve the degrees r) Dod Converse fælse: ∃6, H, bijection f:V(6) → V(H) that preserves degrees but is not an isomorphism

degree sequence: deg(1), deg(2),..., deg(n)
if V = [n]

NOTATION: n= |V|, m= |E|

 $\sum_{v \in V} deg(v) = 2m$

HANDSHAKE THEOREM

EX \$ G w 17 vertices

and all degrees = 3

b/c that would mean $m = \frac{1}{2} \cdot 17.3 \notin \mathbb{Z}$

COROLLARY # vertices of odd degree is even

bijections A >> A where A =n
DOA. dører-præserring bijection is not necessarily an isomorphism
Counterexemple: $n=4$ $(1,1,1)$ 1003 2004
EF G is regular of degree of if (YUEV) (deg(v)=d) EXAMPLES. Complete graph Kn deg(v)=n-1

Concatenation of two paths is not necessarily a path

VET

the relation "I u-..- V path"

vis an equivalence relation on V

(DO) Why?