$$\begin{array}{c} 2022/11/17 & p \\ \hline a_n \sim a_n & \Longrightarrow a_n & \Longrightarrow a_n \\ \hline a_n \sim a_n & \Longrightarrow a_n \\ \hline evertually \\ 40n-zero \end{array}$$ $$\sqrt{n^2+1}-n=\frac{n^2+1-n^2}{\sqrt{n^2+1}+n}=\frac{1}{\sqrt{n^2+1}+n}=\frac{$$ $$\frac{a-b^2}{a+b} = a-b$$ $$\frac{a}{a+b} = a-b$$ $$\frac{a}{a+b} = a-b$$ $$\frac{a}{a+c} = a-b$$ DEF an is polynomially bounded if $(\exists n_0, C)(\forall n \ge n_0)(|a_n| \le n^C)$ Example $a_n = n^5 + 1000n^2 + 10^6$ $\forall c > 5$ DEF by grows at least exponentially if $(\exists n_0, c>0)(\forall n \geq n_0)(|b_n| \geq e^{n^c})$ exi C=1 $C=\frac{1}{100}$ DEF c, decays (at least) exponentially if $|\bar{z}_n|$ growth at least exp. Then "expontial de cay beats" polynomial growth" THM $(\forall C_1, C_2) (n^{C_1}, \exp(n^{-C_2}) \rightarrow 0)$ Examle $n^{(00)} \exp(n^{-\frac{1}{1000}}) \rightarrow 0$ LEMMA $\lim_{x\to\infty} \frac{h_x}{x} = 0$ $l_{\mathbf{k}} \times = \sigma(\mathbf{x})$ as $\mathbf{x} \to \mathbf{x}$ L'Hospital's rule: if $f(x) \rightarrow \infty$ $g(x) \rightarrow \infty$ as $x \to L \in \mathbb{R}$ and f.g differentiable and $$\exists \lim \frac{f'(x)}{g'(x)} = K$$ ther $\frac{1}{3}\lim_{x\to \infty}\frac{f(x)}{g(x)}=K$ $(hx)^{\frac{1}{x}}$ $$x' = 1$$ $\lim_{x\to\infty} \frac{1}{x} = \lim_{x\to\infty} \frac{1}{x} = 0$ $$\frac{\partial \text{ROLLARY}}{e^{\times}} \rightarrow 0 \qquad \text{as } \times \rightarrow \infty$$ y = ex Charge of variable) $$\frac{x}{e^{x}} = \frac{hy}{y} \rightarrow 0 \quad \text{as} \quad y \rightarrow \infty$$ $$\frac{x^{c}}{e^{x}} \rightarrow 0$$ $z = \frac{x}{c}$: x = cz $$\frac{\chi^{c}}{e^{\chi/c}} = \left(\frac{\chi}{e^{\chi/c}}\right)$$ $$\frac{\chi^{c}}{e^{\chi}} = \left(\frac{\chi}{e^{\chi/c}}\right) = \left(\frac{\sqrt{2}}{e^{\chi}}\right) = \left(\frac{\sqrt{2}}{e^{\chi/c}}\right) \left(\frac{\sqrt{2$$ $$\frac{e^{\delta}}{2} \rightarrow \bigcirc$$ as $$z \rightarrow \infty$$ $(\pm x \rightarrow \infty)$ $\frac{Cz}{e^z} \rightarrow 0$ If the like much tricks to prove: $AC, C_2 > 0$ poor $C, C_2 > 0$ C $C_1 > 0$ $C_2 > 0$ $C_1 > 0$ $C_2 C_2 ## GRAPH THEORY G= (V,E) x,yEV vertices y is accessible from x if I x -- y rath Observation Accessibility is an equivalence relation on V Subgraphs induced by the blocks of partition: Connected components G is connacted if there is just I component. [HW] (HG) (G or G is connected) G: complement DEF G is self-complementary if $G \cong G$ [$\neq 8$ N=4 HW. If $G\cong \overline{G}$ then n=0 or 1 wind 4 JEF independent set in G is a subset "K \(\sime \) \(\) ench that \(\) \(\ IEF independence number $\alpha(G) = \max \times \{|w| \mid w \text{ indep. set}\}$ $$\alpha(C_n) = \lfloor \frac{n}{2} \rfloor$$ DEF legal coloning of G is a fauction f: V -> C St. if f(u)=f(v) then u & v DEF Chromatic number X (G) = nein # colors for a legal coloning $|HW| \propto (6) \cdot \chi(G) \geq n$ $\sum_{n\geq 3} \chi(C_n) = \begin{cases} 3 & \text{if } n \text{ is odd} \\ 2 & \text{if } n \text{ is even} \end{cases}$ THE G is 2-colorable (X \le 2) E has no odd cycle DEF 2-coborable: bipartite graph $$\mathcal{X}(G) \leq 1 + deg_{nex}$$ $$= nex \{ deg(u) | u \in V \}$$ BONUS If G is triangle-free then $\mathcal{K}(G) = \mathcal{O}(I_n)$ X(K₁₀₁) > 101 $\chi(K_n) = n$ $$G = (V_i \notin)$$ $$W \subseteq V$$ $$G[W] = (W, \notin \cap \binom{W}{2})$$ G[W] TUDUCED SUBGRAPH (Ly.W) Graph with n vertices has 2" induced subgraphs