

2

|A| = |B| = u# Dijections $A \rightarrow B$ N = factorical

N-10

in A set A of size n her n! permetations

DEF POWERSET of A 1A(=n

$$P(A) = \{B \mid B \subseteq A\}$$
Set of all subjects

19(A)/=

a a b a b b a a b b b Sijection facus -> 3 (A) Strings of lapple y $|\{a,b\}^{\mathsf{N}}| = |\mathcal{P}(A)|$ $P(A) = 2^{|A|}$ ₹ n

PARTITION of a set 52: TT= {A, ..., A} SZ = A, UA, U. W AR 4: + \$ Ain A: = & disjoint

PRUSSIA RUSSIA
AUSTRIA

B(n) = # paintitions of an n-set nte Bell number

$$B(2) = 2$$
 (a)
 $B(1) = 1$ (b)
 $B(0) = 1$

$$\mathbb{E}(n) \leq n!$$

Number theory 1 Divisibility alb if $(\exists x)(ax=b)$ "a is a divisor of 5" 37 999 100001: x = 57 9/2 37.27 = 999 00 bourt: x = 50

Additivity of divibility £X $a \times \Lambda a = a \times +y$ ASSUMPTIONS: (3s,t)(x=as x y=at)DESTRED CONCCUSION, $(3r)(x+y=a\cdot r)$ Proof (Let r = S+tpick S, t S.t. x = aS y = at x+y = as+at = a(s+t) v

RANSITIVITY OF DIVISIBILITY Vabc $(a|b \wedge b|c) \Rightarrow (a|c)$ 5 (15 $Div(a) = \{b: b | a\} b \in \mathbb{Z}$ $Div(6) = \{\pm 1, \pm 2, \pm 3, \pm 6\}$ $Div(1) = \{1, -1\} = \{\pm 1\}$ $Div(o) = \mathbb{Z}$ (4x)(a/x)(a=±1) $[bo] (\forall x) (x | a) \iff a = 0$ $a \equiv b \pmod{m}$ if $m \mid a - b$ DEF a is congruent to b modulo m 30 is Tuesday => 24th is Trucky b/c 3 = 24 mod 7 "CALFUDAR AR (TRMETIC"

Fix m conquence modulo m is $a \equiv a \pmod{n} \quad \text{reflexive} \quad b \notin \quad m \mid O$ $a \equiv b \pmod{a} \implies b \equiv a \pmod{a} b/c m/s$ $\leq y m metric$ ffw[a=b (mod m) } => a=c (mod m)
b=c (mod m)
transitive the If x is odd then x = 1 (mod 8) Hw It p is a prime number and $p \ge 5$ then $p = \pm 1 \pmod{6}$

P is a prine nuber DEF if P = 1 and | Dio (p) = 4 THEOREM Dcv (5)={±1,±5} reprime property! Dru (1) = {±1} If & is a prime and plab Div+(a)={b>0|b|a} then pla V plb [DO] 6 does not have the priace projety

[12

DEF x has the prime property

if (Yab) (x | ab => x | a V x | b)

XC Find all numbers that have 0010100
the proine in 21 0011001
property

 $\frac{XC}{=}$ If p is prime and $x^2 \equiv 1$ nead p then $x \equiv \pm 1$ nead p