(2) Find
$$a_n, b_n$$
 s.t. $a_n \sim b_n$ but $a_n^n \neq O(b_n^n) \left(\frac{n}{e} \right) \sqrt{\frac{n}{e}} \sqrt{2\pi n}$
(3) $\sqrt{n^2 + 1} - n \sim a_n b$ $a_n b = ?$

$$(4)$$
 $(4n)$ $(n! > (\frac{n}{e})^n)$ \leftarrow Can we use Stirling's formula?

(5a)
$$p$$
 forine, $x^2 \equiv 1 \pmod{p} \implies x \equiv \pm 1 \pmod{p}$

(5b)
$$\forall p \neq q \text{ primes} \Rightarrow (x^2 \equiv 1 \mod(pq) \neq x \equiv \pm 1 \mod(pq))$$

6
$$a_n^2 \sim b_n^2$$
 $\Rightarrow a_n \sim b_n$ (8) $sin(\frac{1}{h}) \sim \frac{1}{h}$ $ln(1+\frac{1}{h}) \sim \frac{1}{h}$ brove