PROBLEM SESSION

2024-01-19

4.25 Sampling w/o replacement $x \in [P-1]$ pick k of the w/o replacement $P(\text{no nonresidue found}) = \frac{1}{2^k}$ w/o repl.

$$\frac{\binom{\frac{p-1}{2}}{\binom{p-1}{k}}}{\binom{\frac{p-1}{2}}{\binom{p-1}{2}}} = \frac{\# residues}{\binom{p-1}{2} \binom{p-1}{2} \binom{p-1}{2} \binom{p-1}{2} \binom{p-1}{k}} = \frac{\# residues}{\binom{p-1}{2} \binom{p-2}{2} \binom{p-1}{k}}$$

$$= \frac{p-1}{p-1} \cdot \frac{p-1}{(p-1)-1} \cdot \frac{p-1}{(p-1)-2} \cdot \cdots \cdot \frac{p-1}{p-1-k+1} < \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{2^{k}}$$

4.34(a) 14 coins require 3 masurements	
(1 fake < hearier) -> 28 outcom	
28 > 3 ³ #ou for to decision to	+ comes
de ci sion to de pla	ree 8 3
(b) 13 coins 26 outcomes	
Pf: aly needs to work for case: gennine coins weight take 1.	d.
Care 2: 184 neasurement TI Case 1: 1	1 ± 2
Case 2: 184 measurement of Case 1: 1/2 k < 4 k coing VS k coing life unequal 10 choices > 5 cardidates remain: 10 cases > 32	32

4.42/a) find nin X, ... xn / input for i=2 to n $w := min(w, x_i)$ endfor return w n-2 are not sufficient

another isomponent to beat purposted output

Leums Connected graph has > n-1
edges connected component: Start: # come ded components: k = nk: potential function at each step # comp's k = sk-1 i to make it connected (k=1) requires >k-1 edges

T(n)
$$\leq 7.7(\frac{n}{2}) + O(n^2)$$

T(n) $\leq 77(\frac{n}{2}) + Cn^2$
Strategy: guess $g(n) \geq 7g(\frac{n}{2}) + Cn^2$ and $g(1) \geq T(1)$
then by induction on $\frac{1}{2}$ $(\forall n = 2^1)(g(n) \geq T(n))$
 $g(n) := A_n^{\beta} - B_n^2$
Need to guarantee: $O(g(n) \geq 7g(\frac{n}{2}) + Cn^2$
 $A_n^{\beta} - B_n^2 \geq 7A(\frac{n}{2}) - 7B(\frac{n^2}{4}) + Cn^2$
 $A_n^{\beta} - B_n^2 \geq 7A(\frac{n}{2}) - 7B(\frac{n^2}{4}) + Cn^2$
 $A_n^{\beta} - B_n^2 \geq 7A(\frac{n}{2}) - 7B(\frac{n^2}{4}) + Cn^2$
 $A_n^{\beta} - B_n^2 \geq 7A(\frac{n}{2}) - 7B(\frac{n^2}{4}) + Cn^2$
 $A_n^{\beta} - B_n^2 \geq 7A(\frac{n}{2}) - 7B(\frac{n^2}{4}) + Cn^2$
 $A_n^{\beta} - B_n^2 \geq 7A(\frac{n}{2}) - 7B(\frac{n^2}{4}) + Cn^2$
 $A_n^{\beta} - B_n^2 \geq 7A(\frac{n}{2}) - 7B(\frac{n^2}{4}) + Cn^2$
 $A_n^{\beta} - B_n^2 \geq 7A(\frac{n}{2}) - 7B(\frac{n^2}{4}) + Cn^2$
 $A_n^{\beta} - B_n^2 \geq 7A(\frac{n}{2}) - 7B(\frac{n^2}{4}) + Cn^2$
 $A_n^{\beta} - B_n^2 \geq 7A(\frac{n}{2}) - 7B(\frac{n^2}{4}) + Cn^2$
 $A_n^{\beta} - B_n^2 \geq 7A(\frac{n}{2}) - 7B(\frac{n^2}{4}) + Cn^2$
 $A_n^{\beta} - B_n^2 \geq 7A(\frac{n}{2}) - 7B(\frac{n^2}{4}) + Cn^2$
 $A_n^{\beta} - B_n^2 \geq 7A(\frac{n}{2}) - 7B(\frac{n^2}{4}) + Cn^2$
 $A_n^{\beta} - B_n^2 \geq 7A(\frac{n}{2}) - 7B(\frac{n^2}{4}) + Cn^2$
 $A_n^{\beta} - B_n^2 \geq 7A(\frac{n}{2}) - 7B(\frac{n^2}{4}) + Cn^2$
 $A_n^{\beta} - B_n^2 \geq 7A(\frac{n}{2}) + Cn^2$

04.61 MERGE A[1..m] B[1..n] tinjut arrays C[1. m+n] = ontput merged - 11. auta-1 comparisons c := 1, j := 1, k := 1while i < m and j < n [[] 8 = [i] A | i then C[k]: = A[i] i:= i+1 C[k] := B[j]else 1++

* continued

then

while
$$j = h$$
 $C[k] := R[j]$
 $j++, k++$

endwhile

else

then

while $i \le m$
 $C[k] := R[i]$
 $i++, k++$

endif

return $C[i-k]$

Pn ~ n Inn IT (x): prime counting fata: # primes <> $T(x) \sim \frac{x}{h x}$ $\pi(p_n) = n$ $h = J(Pn) \sim \frac{Pn}{h Pn}$ $Pn \sim n \cdot \ln Pn$ $h = h Pn - \ln h Pn$ $h = h Pn - \ln h Pn$ $h = h Pn - \ln h Pn$ b/c ln h pn = o (ln pn)

CH P(x) = TIPZ PNT $ln P(x) \sim x$ Z lup P≤× $\leq \pi(x) \cdot h_{x} \sim \frac{x}{h_{x}} \cdot h_{x} = x$ meaning: for most p < x #terms Ji(x) lop a lux $y^*(n) = \max \{y(k) \mid k \leq n \}$ v(k) = # distinct prime divisors of k

LEMMA $y^*(n) = t \iff$ prime divisors of k $P(P_t) \le n < P(P_{t+1})$ $P_t \sim ln P(P_t) \le ln n < ln P(P_{t+1}) \sim P_t$

LEMMA $\frac{P_{t+1}}{P_{t}} \rightarrow 1$ Pf $p_{t} \sim t \ln t$ $\frac{P_{t+1}}{P_{t}} \sim \frac{\lfloor t+1 \rfloor}{t} \cdot \frac{\ln(t+1)}{\ln t}$ Lemma $\frac{P_{t+1}}{P_{t}} \sim \frac{\lfloor t+1 \rfloor}{t} \cdot \frac{\ln(t+1)}{\ln t}$

THM >*(n) ~ lun | we know |

In p ~ pt ~ t. lut

In p ~ pt ~ t. lut

In h ~ lun

In h ~ lu

4.45 Find max and min of $x_1 \cdot - x_n$ in $\leq \frac{2n}{2}$ comparisons

max

 $\lfloor \frac{n}{2} \rfloor + 2 \left(\frac{n}{2} \right) - 1 \leq \frac{3n}{2}$

OPTIMAL, see Cormen-Leisercon-Rivest-Stein text

another great text on algorithms: Kleinberg - Tardos

by < n colors

requires $\geq n^{1-\epsilon}$ colors

JOHAN HASTAD

partly solvable in polytime

hondelerministic py time