2024-01-26

f(a) Simplexy but not $O(C^*)$ 6.21

 $f(n) = \begin{cases} 2^n & \text{if } n \text{ even} \\ 3^n & \text{if } n \text{ odd} \end{cases}$ Prec. ex:

6.27 $(\forall A>1, C>0)(\forall B)(y^B=o(A^4))$

 $x = y^{c}$

 $\times \mathcal{B}_{c} = \sigma(A^{\times})$

b(m) =6.54 abc computing Fib log (m+1) (a) $b(F_n)$ $\overline{T}_{n} \sim \frac{9^{n}}{\sqrt{5}} \qquad \emptyset = \frac{1+\sqrt{5}}{2}$ = [+[boyan] 7 111 = 67.8 8 1000 = 67.16 log2 Fn ~ n log \$\phi\$ (b) For carret be computed in poly time - can't even be written down $b(F_n) \sim cn$ $c = log_2 d$ $b(n) \sim log_2 n$ In > ph exp. beats (en) for any fixed to $c\cdot 2 = cn$ beats $b(h)^k \sim (\log_2 n)^k$ $cn = c\cdot 2^w \rightarrow beats \rightarrow k$

(c) If n is ting

input length:

$$T_0 = 0$$
, $F_1 = 1$

for $i = 2$ to n
 $F_i = F_{i-1} + F_{i-2}$

trickier method $A = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \quad A^{k} = \begin{bmatrix} F_{k+1} & F_{k} \\ F_{k} & F_{k-1} \end{bmatrix}$ repeated squaring

hult of k-disitait up to $D^k = O(n) \subset$

addition of k-bit ambers O(k)

 $C \geq k = C \frac{h(h+1)}{2}$ C = 0 C = 0 C = 0

I cost of $A \longrightarrow A^2$ 1 - ligit numbers

0(n2) (4

I cost of

Inckier method
$$A = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \quad A^{k} = \begin{bmatrix} F_{k+1} & F_{k} \\ F_{k} & F_{k-1} \end{bmatrix}$$

repeated squaring

cost: loot step herebt. of k-disitait up to $D^k = O(n)$

A -> A2 2 - digit numbers

Schoolbook method $O(k^2) = O(n^2)$

improved by Karatsuba 0 (n 1923)

BON Everly splitting fake coins 22 coins, some fake (lighter) k fake coins 1 8 Sol'n

poly time in bit model 6.57 (Fe mod m) input a log k + log n $\overline{X} := (x \text{ wod m})$ $A = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \qquad A^{k} = \begin{bmatrix} \overline{F}_{k+1} & \overline{F}_{k} \\ \overline{F}_{k} & \overline{F}_{k-1} \end{bmatrix}$ A : entry wice $\overline{x+y} = \overline{x}+\overline{y}$ use repeated squaring X.4 = x.4 to get Ak A -> A2 Cost of each round: meltiple af log m. bit number AMX.A total by, k- (leg, m)2-0(1) # torands by, k

mtk-1 couparilons 4.64 MERGE in A[1...m] B[1.k] sorted arrays -> C[1...m+k] m = k | NTD: find two inputs that
give same arriver to all questions (a) optimal if BAD CASE: A[1] < B[1] < A[2] < B[2] < ... Claim We ment compare all pairs of reighbors while output must be sliff. If only 2n-2 questions asked -> I pour of consecutive entries, not compared swep these two to get another iaput that gives the same ausser to all questions

4.67 if $m = o(\frac{h}{\log n})$ then MERGE far from optimel: m - log, (k+1) Hara we can herge in A Townson search

R h A[i] A[i+i] BG7... B[j'] for i=1 to m INSERT B[i] into A by binary search

6.79 KNAPSACK dynam. prog. alg. NOT poly time all inputs: integers

need to find a set of b-ad inputs

W=>t $V_i = 1$, $\omega_i = 1$ N = 2n + t

make n < t

N = O(t) time S2(2t)

Common serse: W = \(\sum_{\text{w}} \)

take vi=1, wi=1 except wn = 2t $U = \Theta(t)$ time $S2(2^t)$ 6.85 ENAPSACK variet:

min weight for taged value Vvalues $\in IN$ incl V O(nV)dynamic porogramming $m[c_{ij}] = \min_{I \subseteq I \cap I} \{ \sum_{k \in I} w_k \mid \sum_{k \in I} x_k \ge j \}$

Osisn OsisV

idems