Solutions by Ayawa Xing awx856(at)u.e.

This document contains my solutions to the Gradescope assignment named on the top of this page. Specifically, my solutions to the following problems are included:

- 4.12 (a)(c) (page 2)
- 4.13 (a)(b)(c) (pages 3–5)
- 4.17 (a)(b) (page 6)

I did not forget

- to REFRESH my browser for the latest information about each problem
- to link problems to pages.

 This page is linked to the problems I did not solve.
- to update the items marked *** in the template (my name, email, the Gradescope title of the assignment, the list of problems solved, the \lhead statements (left page headers: list of (sub)problems solved on each page)
- to make sure no subproblem solution spills over to the next page (except when this is unavoidable, i.e., when the solution to a subproblem does not fit on a page)
- if a problem takes more than one page, I linked each of those pages to the problem
- I took care not to defeat the mechanisms provided by this template.

With each problem, I stated my sources and collaborations.

By submitting this solution I certify that

my statement of sources and collaborations is accurate and complete. I understand that without this certification, my solutions will not be accepted.

1

4.12(a) Question.

Prove the identity

(1)
$$\sum_{k=0}^{n} \binom{n}{k}^2 = \binom{2n}{n}$$

 $Sources\ and\ collaborations.$

Marny Dillon suggested to look up "Vandermonde's Identity." in Wikipedia

Answer.

(your proof here)

4.12 (c) Question.

Prove that in a tree, all longest paths share a vertex.

Sources and collaborations. I found this at

http://hpca23.cse.wamu.edu/weevil/~jhl/discretebook/chap4.pdf/

Answer.

(your proof here)

4.13 (a) Question.

Let $a \in \mathbb{Z}$. Let x = 3a - 5 and y = 7a - 8. Prove: gcd(x, y) is either 1 or 11

Sources and collaborations. Discussed with Marny Dillon. We figured this out together.

Answer.

Let $d = \gcd(x, y)$. Then $d \mid 3y - 7x = 11$. Since 11 is a prime, its only positive divisors are 1 and 11.

4.13(b) Question.

Find a value of a such that gcd(x, y) = 11.

Sources and collaborations. Discussed with Marny Dillon. Marny simplified my more complicated idea. Marny suggested the idea of the general solution; I worked out the details by myself.

Answer.

Take
$$a = 9$$
. Then $x = 22$ and $y = 55$, so $gcd(x, y) = 11$.

Comment. The general solution is

$$gcd(x, y) = 11 \iff a \equiv -2 \pmod{11}$$
.

Proof. Since 3x - 7y = 11, we have that $11 \mid x \iff 11 \mid y$. So $\gcd(x,y) = 11 \iff 11 \mid x \iff 11 \mid 3a - 5 \iff 3a \equiv 5 \pmod{11}$. Multiplying both sides by 4 which is relatively prime to 11 we see that $3a \equiv 5 \pmod{11} \iff 12a \equiv 20 \pmod{11}$. But $12a \equiv a \pmod{11}$ and $20 \equiv -2 \pmod{11}$.

Problem 4.13 (c) Ayawa Xing

4.13(c) Question.

For what values a and b is it the case that

$$gcd(a+b, a-b) = gcd(a, b)$$
 ?

Sources and collaborations. None.

Answer.

For an integer x, let $\ell(x)$ denote the largest k such that $2^k \mid x$. If no largest k exists, we write $\ell(x) = \infty$. For instance, $\ell(12) = 2$ and $\ell(9) = 0$ and $\ell(0) = \infty$.

Claim. gcd(a+b, a-b) = gcd(a, b) if and only if either a = b = 0 or $\ell(a) \neq \ell(b)$.

Proof. If gcd(a, b) = 0 then a = b = 0 and therefore both sides of the "if and only if" statement are true: gcd(a+b, a-b) = gcd(0, 0) = gcd(a, b), and a = b = 0.

Assume now that a=0 and $b\neq 0$. In this case again both sides of the "if and only if" statement are true: $\gcd(a,b)=|b|=\gcd(a+b,a-b)$, and $\ell(a)\neq \ell(b)$ because $\ell(a)=\infty$ and $\ell(b)$ is finite.

This also settles the case when $a \neq 0$ and b = 0 (by switching the roles of a and b).

Henceforth we assume that $a \neq 0$ and $b \neq 0$.

In particular, $gcd(a, b) \neq 0$.

First we prove the "only if" direction. In this part, we have:

Assumption: gcd(a+b, a-b) = gcd(a, b).

Desired conclusion: $\ell(a) \neq \ell(b)$.

Proof by contradiction. Assume for a contradiction that $\ell(a) = \ell(b) =$: k. Let $a' = a/2^k$ and $b' = b/2^k$. Then $\gcd(a,b) = \gcd(2^k a', 2^k b') = 2^k \gcd(a',b')$ and similarly $\gcd(a+b,a-b) = 2^k \gcd(a'+b',a'-b')$. So our assumption is equivalent to saying that $\gcd(a'+b',a'-b') = \gcd(a',b')$.

But now both a' and b' are odd, therefore $\gcd(a'b')$ is odd and $\gcd(a'+b',a'-b')$ is even (because both a'+b' and a'-b' are even), a contradiction with the assumption that $\gcd(a'+b',a'-b')=\gcd(a',b')$. This contradiction completes the proof of the "only if" direction.

Now we prove the "if" direction. In this part, we have:

Assumption: $\ell(a) \neq \ell(b)$.

Desired conclusion: gcd(a + b, a - b) = gcd(a, b).

We proceed by first proving a pair of Lemma and a Corollary.

Problem 4.13 (c) Ayawa Xing

Lemma 1. For all a and b we have $gcd(a, b) \mid gcd(a + b, a - b)$. (Note: "for all a and b" includes the cases when a or b is zero.) *Proof.* Let $d \mid a$ and $d \mid b$. Then (by the additivity of divisibility) we have $d \mid a+b$ and $d \mid a-b$, and therefore, $d \mid \gcd(a+b,a-b)$. **Lemma 2.** For all a and b we have $gcd(a+b,a-b) \mid 2 \cdot gcd(a,b)$. *Proof.* Let $D \mid a+b$ and $D \mid a-b$. Then (again by the additivity of divisibility) we have $D \mid (a+b)+(a-b)=2a$ and $d \mid (a+b)-(a-b)=2b$, and therefore, $D \mid \gcd(2a, 2b) = 2\gcd(a, b)$, proving Lemma 2. Corollary. For all a and b, the value of gcd(a+b,a-b) is either equal to gcd(a, b) or to $2 \cdot gcd(a, b)$. First consider the case gcd(a,b) = 0. In this case a = b = 0 and therefore gcd(a+b, a-b) = gcd(0,0) = 0. Assume now that $gcd(a, b) \neq 0$. By Lemma 1, there exists an integer x such that $gcd(a+b, a-b) = x \cdot gcd(a, b)$. So by Lemma 2, $x \cdot gcd(a, b)$ $2 \cdot \gcd(a,b)$. Since $\gcd(a,b) \neq 0$, we conclude that $x \mid 2$ and therefore $x = \pm 1$ or $x = \pm 2$. Since $x \ge 0$ (because every gcd is by definition ≥ 0), we conclude that x=1 or 2, completing the proof of the Corollary. \square Now back to the **proof of the "if" direction.** We continue to assume that $a \neq 0$ and $b \neq 0$. WLOG (without loss of generality) we may assume that $\ell(a) < \ell(b)$. Let $k = \ell(a)$ and let $a' = a/2^k$ and $b' = b/2^k$. Now a' is odd and b' is As before, we have $gcd(a,b) = 2^k gcd(a'b')$ and gcd(a+b,a-b) =Proof by contradiction. Assume $\gcd(a'+b', a'-b') \neq \gcd(a', b')$. Then,

 $2^k \gcd(a'+b',a'-b')$. So to prove our desired conclusion, it suffices to prove that gcd(a' + b', a' - b') = gcd(a', b').

by the Corollary, $gcd(a' + b', a' - b') = 2 \cdot gcd(a', b')$. This means gcd(a'+b',a'-b') is even. But this is impossible because now both a' + b' and a' - b' are odd. This contradiction completes the proof of the Claim.

4.17 (a) Question.

Assume $589 \nmid a$. Does it follow that $a^{588} \equiv 1 \pmod{589}$?

Sources and collaborations. None.

Answer.

No. Counterexample: a=19. Proof by contradiction. First we observe that $589 \nmid 19$. Now suppose for a contradiction that $19^{588} \equiv 1 \pmod{589}$. Then $19^{588} \equiv 1 \pmod{19}$ because $19 \mid 589$. On the other hand, $19^{588} \equiv 0 \pmod{19}$ and therefore $1 \equiv 0 \pmod{19}$, a contradiction.

4.17 (b) Question.

Assume gcd(a, 589) = 1. Prove: $a^{90} \equiv 1 \pmod{589}$.

Sources and collaborations. I found a similar problem in Abramov's "Elementary exercises in number theory," Problem 2.17,

http://kvabramov.org/numbook/chap2.pdf

Answer.

 $589 = 19 \cdot 31$ and both 19 and 31 are primes. In particular, they are relatively prime; therefore it suffices to prove that

- (i) $a^{90} \equiv 1 \pmod{19}$ and
- (ii) $a^{90} \equiv 1 \pmod{31}$.

We know that gcd(a, 19) = 1 and gcd(a, 31) = 1. Therefore, by Fermat's little theorem, we have

$$a^{18} \equiv 1 \pmod{19}$$

and

$$a^{30} \equiv 1 \pmod{31}$$

Raising both sides of Eq. (2) to the fifth power we get item (i), and similarly, raising both sides of Eq. (3) to the third power we obtain item (ii). \Box