Asymptotic inequalities - addendum

Log-asymptotics of the product of factorials

Instructor: László Babai
Date: May 15, 2020

Claim. $\sum_{k=1}^{n} \ln(k!) \sim \frac{1}{2} n^2 \ln n$

The class had a lot of trouble giving a simple yet accurate proof of this statement. We avoid using Stirling’s formula. Instead we only use the simple inequality $k! > \left(\frac{k}{e}\right)^k$ which is valid for all k and follows in one line from the power-series expansion of e^x (and was an exercise in class). Taking the logarithm of the inequalities $(n/e)^n < n! \leq n^n$ we get

$$k(\ln k - 1) < \ln(k!) \leq k \ln k. \quad (1)$$

Since $k(\ln k - 1) \sim k \ln k$, it follows that $\ln(k!) \sim k \ln k$.

First proof. Let $S_n = \sum_{i=1}^{n} \ln(k!)$. The upper bound $S_n \lesssim (1/2)n^2 \ln n$ is trivial: from Eq. (1) we get

$$S_n \leq \ln n \cdot \sum_{k=1}^{n} k = (\ln n) \cdot n(n + 1)/2 \sim (1/2)n^2 \ln n. \quad (2)$$

For the lower bound, Eq. (1) tells us that

$$S_n = \sum_{k=1}^{n} \ln(k!) > \sum_{k=1}^{n} k(\ln k - 1) = \left(\sum_{k=1}^{n} k \ln k\right) - \frac{n(n + 1)}{2}. \quad (3)$$

We give a lower bound for the first term. We use the common trick of designating a threshold M, and viewing the numbers above this threshold as “large” and those below as “small.” The convenient threshold in this case will be $M := \lceil n/\ln n \rceil$. Note that $M = o(n)$. We have

$$\ln n > \ln M > \ln(n/\ln n) = \ln n - \ln(\ln n) \sim \ln n, \text{ so } \ln M \sim \ln n. \text{ Therefore,}$$

$$\sum_{k=1}^{n} k \ln k > \sum_{k=M}^{n} k \ln k > (\ln M) \cdot \sum_{k=M}^{n} k = (\ln M) \cdot \frac{(n + M)(n - M + 1)}{2} \sim \frac{n^2}{2} \ln n. \quad (4)$$

Finally, the last term on the right-hand side of Eq. (3), $n(n + 1)/2$, is $o(n^2 \ln n)$, therefore, combining Equations (3) and (4) we obtain that $S_n \gtrsim (1/2)n^2 \ln n$. Combining this with Eq. (2) we get the desired asymptotic equality. QED

1Using the inequality $k! > (k/e)^k$ has several advantages in our context over using Stirling’s formula. First of all, this inequality holds for all k, not just for sufficiently large k, as would follow from Stirling’s formula. Second, it is much simpler – you don’t need to pollute your paper with unnecessary minor terms. Third, this inequality is much easier to prove than Stirling’s formula; it follows in one line from the the power-series expansion of e^x. Fourth, it is a lower bound, which is what we need.
Second proof. Expanding $\ln(k!)$ and switching the order of summations we obtain
\[S_n = \sum_{k=1}^{n} \ln(k!) = \sum_{k=1}^{n} \sum_{j=1}^{n} \ln j = \sum_{j=1}^{n} \sum_{k=j}^{n} \ln j = \sum_{j=1}^{n} \sum_{k=1}^{n-k+1} \ln k. \]

Let $T_n = \sum_{k=1}^{n} k \ln k$. Then
\[S_n + T_n = (n+1) \sum_{k=1}^{n} \ln k = (n+1) \ln(n!) \sim (n+1)n \ln n \sim n^2 \ln n. \]

If we just knew that $S_n \sim T_n$, we would be done because then $2S_n \sim S_n + T_n$ (because both terms are positive), hence $2S_n \sim n^2 \ln n$ would follow. We prove a lemma from which $S_n \sim T_n$ indeed follows.

Lemma. Let a_n and b_n be sequences of positive numbers. Let $A_n = \sum_{k=1}^{n} a_k$ and $B_n = \sum_{k=1}^{n} b_k$. Assume $a_n \sim b_n$ and $A_n \to \infty$. Then $A_n \sim B_n$.

The asymptotic equality $S_n \sim T_n$ follows from the Lemma by setting $a_n = \ln(n!)$ and $b_n = n \ln n$. QED

Proof of the Lemma. Let us fix $\epsilon > 0$ and let n_ϵ denote a threshold such that for all $k > n_\epsilon$ we have
\[(1 - \epsilon) b_k \leq a_k \leq (1 + \epsilon) b_k. \] (5)

Let $A(\epsilon) = \sum_{k=1}^{n_\epsilon} a_k$ and $B(\epsilon) = \sum_{k=1}^{n_\epsilon} b_k$. By adding up Eq. (5) for $n_\epsilon < k \leq n$ we obtain
\[(1 - \epsilon)(B_n - B(\epsilon)) \leq A_n - A(\epsilon) \leq (1 + \epsilon)(B_n - B(\epsilon)). \]

First of all we note from the upper bound that $B_n \to \infty$. Because of this, $B_n - B(\epsilon) \sim B_n$ and of course $A_n - A(\epsilon) \sim A_n$. So we have
\[(1 - \epsilon)B_n \lesssim A_n \lesssim (1 + \epsilon)B_n. \]

Equivalently,
\[1 - \epsilon \lesssim \frac{A_n}{B_n} \lesssim 1 + \epsilon. \]

In other words,
\[1 - \epsilon \leq \liminf_{n \to \infty} \frac{A_n}{B_n} \leq \limsup_{n \to \infty} \frac{A_n}{B_n} \leq 1 + \epsilon. \]

Since this holds for every $\epsilon > 0$, we conclude that $\lim_{n \to \infty} A_n / B_n = 1$. QED

Remarks.

1. Many solutions started off with the claim that $\ln(n!) \sim n \ln n$ (true), and therefore $\sum_{k=1}^{n} \ln(k!) \sim \sum_{k=1}^{n} k \ln k$ (the $S_n \sim T_n$ statement above). This conclusion is correct but the inference needs to be reasoned, one cannot simply add up an unbounded number of asymptotic equalities. For instance, for every fixed k we have $n \sim n + 2^k$, but adding these up for $k = 1$ to n would result in the absurd relation $n^2 \sim n^2 + 2^{n+1} - 1$. QED
So we need to clarify, under what circumstances is such an inference valid. This is what the Lemma does. It says that $A_n \to \infty$ is sufficient for the type of conclusion we need. In fact it is also necessary: if A_n is bounded then making $b_n = a_n$ for all $n \geq 2$ and $b_1 \neq a_1$ already invalidates the $A_n \sim B_n$ statement.

2. Another common omission was the justification of subtracting asymptotic equalities. The following statement is **false**.

\begin{itemize}
 \item[(*)] (FALSE) Let a_n, b_n, c_n be sequences of positive numbers. Assume $a_n > c_n$ and $b_n > c_n$. Assume further that $a_n \sim b_n$. Then $a_n - c_n \sim b_n - c_n$.
\end{itemize}

DO 1 Give a counterexample to (*).

DO 2 (*), becomes true if instead of assuming $c_n < a_n$, we assume $c_n = o(a_n)$. Even the weaker assumption that $c_n \lesssim a_n(1-c)$ for some constant $0 < c < 1$ suffices.