Preface

TO BE WRITTEN.
Contents

Notation ix

I Matrix Theory 1

Introduction to Part I 2

1 Column Vectors 3

- 1.1 Column vector basics ... 3
- 1.1.1 The domain of scalars .. 4
- 1.2 Subspaces and span .. 8
- 1.3 Linear independence and the First Miracle of Linear Algebra 11
- 1.4 Dot product .. 16
- 1.5 Dot product over \mathbb{R} .. 18
- 1.6 Additional exercises ... 18

2 Matrices 20

- 2.1 Matrix basics .. 20
- 2.2 Matrix multiplication ... 24
- 2.3 Arithmetic of diagonal and triangular matrices 31
- 2.4 Permutation Matrices .. 33
- 2.5 Additional exercises ... 36

3 Matrix Rank 39

- 3.1 Column and row rank .. 39
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2</td>
<td>Elementary operations and Gaussian elimination</td>
<td>40</td>
</tr>
<tr>
<td>3.3</td>
<td>Invariance of column and row rank, the Second Miracle of Linear Algebra</td>
<td>40</td>
</tr>
<tr>
<td>3.4</td>
<td>Matrix rank and invertibility</td>
<td>42</td>
</tr>
<tr>
<td>3.5</td>
<td>Codimension (optional)</td>
<td>44</td>
</tr>
<tr>
<td>3.6</td>
<td>Additional exercises</td>
<td>45</td>
</tr>
<tr>
<td>4</td>
<td>Theory of Systems of Linear Equations I: Qualitative Theory</td>
<td>48</td>
</tr>
<tr>
<td>4.1</td>
<td>Homogeneous systems of linear equations</td>
<td>48</td>
</tr>
<tr>
<td>4.2</td>
<td>General systems of linear equations</td>
<td>51</td>
</tr>
<tr>
<td>5</td>
<td>Affine and Convex Combinations (optional)</td>
<td>53</td>
</tr>
<tr>
<td>5.1</td>
<td>Affine combinations</td>
<td>53</td>
</tr>
<tr>
<td>5.2</td>
<td>Hyperplanes</td>
<td>57</td>
</tr>
<tr>
<td>5.3</td>
<td>Convex combinations</td>
<td>57</td>
</tr>
<tr>
<td>5.4</td>
<td>Helly's Theorem</td>
<td>59</td>
</tr>
<tr>
<td>5.5</td>
<td>Additional exercises</td>
<td>60</td>
</tr>
<tr>
<td>6</td>
<td>The Determinant</td>
<td>61</td>
</tr>
<tr>
<td>6.1</td>
<td>Permutations</td>
<td>62</td>
</tr>
<tr>
<td>6.2</td>
<td>Defining the determinant</td>
<td>65</td>
</tr>
<tr>
<td>6.3</td>
<td>Cofactor expansion</td>
<td>69</td>
</tr>
<tr>
<td>6.4</td>
<td>Matrix inverses and the determinant</td>
<td>70</td>
</tr>
<tr>
<td>6.5</td>
<td>Additional exercises</td>
<td>72</td>
</tr>
<tr>
<td>7</td>
<td>Theory of Systems of Linear Equations II: Cramer’s Rule</td>
<td>73</td>
</tr>
<tr>
<td>7.1</td>
<td>Cramer’s Rule</td>
<td>73</td>
</tr>
<tr>
<td>8</td>
<td>Eigenvectors and Eigenvalues</td>
<td>75</td>
</tr>
<tr>
<td>8.1</td>
<td>Eigenvector and eigenvalue basics</td>
<td>75</td>
</tr>
<tr>
<td>8.2</td>
<td>Similar matrices and diagonalizability</td>
<td>77</td>
</tr>
<tr>
<td>8.3</td>
<td>Polynomial basics</td>
<td>78</td>
</tr>
<tr>
<td>8.4</td>
<td>The characteristic polynomial</td>
<td>80</td>
</tr>
<tr>
<td>8.5</td>
<td>The Cayley-Hamilton Theorem</td>
<td>82</td>
</tr>
<tr>
<td>8.6</td>
<td>Additional exercises</td>
<td>83</td>
</tr>
</tbody>
</table>
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9 Orthogonal Matrices</td>
<td>85</td>
</tr>
<tr>
<td>9.1 Orthogonal matrices</td>
<td>85</td>
</tr>
<tr>
<td>9.2 Orthogonal similarity</td>
<td>86</td>
</tr>
<tr>
<td>10 The Spectral Theorem</td>
<td>88</td>
</tr>
<tr>
<td>10.1 Statement of the Spectral Theorem</td>
<td>88</td>
</tr>
<tr>
<td>10.2 Applications of the Spectral Theorem</td>
<td>89</td>
</tr>
<tr>
<td>11 Bilinear and Quadratic Forms</td>
<td>91</td>
</tr>
<tr>
<td>11.1 Linear and bilinear forms</td>
<td>91</td>
</tr>
<tr>
<td>11.2 Multivariate polynomials</td>
<td>93</td>
</tr>
<tr>
<td>11.3 Quadratic forms</td>
<td>95</td>
</tr>
<tr>
<td>11.4 Geometric algebra (optional)</td>
<td>98</td>
</tr>
<tr>
<td>12 Complex Matrices</td>
<td>101</td>
</tr>
<tr>
<td>12.1 Complex numbers</td>
<td>101</td>
</tr>
<tr>
<td>12.2 Hermitian dot product in (\mathbb{C}^n)</td>
<td>102</td>
</tr>
<tr>
<td>12.3 Hermitian and unitary matrices</td>
<td>104</td>
</tr>
<tr>
<td>12.4 Normal matrices and unitary similarity</td>
<td>105</td>
</tr>
<tr>
<td>13 Matrix Norms</td>
<td>107</td>
</tr>
<tr>
<td>13.1 Operator norm</td>
<td>107</td>
</tr>
<tr>
<td>13.2 Frobenius norm</td>
<td>108</td>
</tr>
<tr>
<td>13.3 Complex Matrices</td>
<td>109</td>
</tr>
<tr>
<td>II Linear Algebra of Vector Spaces</td>
<td>110</td>
</tr>
<tr>
<td>Introduction to Part II</td>
<td>111</td>
</tr>
<tr>
<td>14 Preliminaries</td>
<td>112</td>
</tr>
<tr>
<td>14.1 Modular arithmetic</td>
<td>112</td>
</tr>
<tr>
<td>14.2 Abelian groups</td>
<td>115</td>
</tr>
<tr>
<td>14.3 Fields</td>
<td>118</td>
</tr>
<tr>
<td>14.4 Polynomials</td>
<td>118</td>
</tr>
</tbody>
</table>
CONTENTS

15 Vector Spaces: Basic Concepts 130
 15.1 Vector spaces .. 130
 15.2 Subspaces and span .. 133
 15.3 Linear independence and bases 134
 15.4 The First Miracle of Linear Algebra 139
 15.5 Direct sums ... 141

16 Linear Maps 142
 16.1 Linear map basics ... 142
 16.2 Isomorphisms .. 144
 16.3 The Rank-Nullity Theorem .. 145
 16.4 Linear transformations .. 146
 16.4.1 Invariant subspaces ... 149
 16.5 Coordinatization ... 153
 16.6 Change of basis .. 155

17 Block Matrices (optional) 157
 17.1 Block matrix basics .. 157
 17.2 Arithmetic of block-diagonal and block-triangular matrices .. 159

18 Minimal Polynomials of Matrices and Linear Transformations (optional) 161
 18.1 The minimal polynomial ... 161
 18.2 Minimal polynomials of linear transformations 163

19 Euclidean Spaces 166
 19.1 Inner products .. 166
 19.2 Gram-Schmidt orthogonalization 170
 19.3 Isometries and orthogonality .. 171
 19.4 First proof of the Spectral Theorem 174

20 Hermitian Spaces 177
 20.1 Hermitian spaces ... 177
 20.2 Hermitian transformations .. 182
 20.3 Unitary transformations ... 183
 20.4 Adjoint transformations in Hermitian spaces 184
 20.5 Normal transformations ... 184
CONTENTS

20.6 The Complex Spectral Theorem for normal transformations .. 185

21 The Singular Value Decomposition

21.1 The Singular Value Decomposition ... 186

21.2 Low-rank approximation .. 187

22 Finite Markov Chains

22.1 Stochastic matrices ... 190

22.2 Finite Markov Chains .. 191

22.3 Digraphs .. 193

22.4 Digraphs and Markov Chains .. 193

22.5 Finite Markov Chains and undirected graphs .. 193

22.6 Additional exercises ... 194

23 More Chapters

24 Hints

24.1 Column Vectors ... 196

24.2 Matrices ... 199

24.3 Matrix Rank .. 201

24.4 Theory of Systems of Linear Equations I: Qualitative Theory 202

24.5 Affine and Convex Combinations ... 202

24.6 The Determinant ... 202

24.7 Theory of Systems of Linear Equations II: Cramer’s Rule ... 203

24.8 Eigenvectors and Eigenvalues .. 203

24.9 Orthogonal Matrices ... 203

24.10 The Spectral Theorem ... 203

24.11 Bilinear and Quadratic Forms .. 203

24.12 Complex Matrices ... 204

24.13 Matrix Norms .. 205

24.14 Preliminaries ... 205

24.15 Vector Spaces ... 205

24.16 Linear Maps .. 206

24.17 Minimal Polynomials of Matrices and Linear Transformations 207

24.18 Euclidean Spaces ... 207
Notation

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mathbb{C})</td>
<td>The field of complex numbers</td>
</tr>
<tr>
<td>diag</td>
<td>Diagonal matrix</td>
</tr>
<tr>
<td>(\text{im}(\varphi))</td>
<td>Image of (\varphi)</td>
</tr>
<tr>
<td>(\mathbb{N})</td>
<td>The set ({0, 1, 2, \ldots }) of natural numbers</td>
</tr>
<tr>
<td>([n])</td>
<td>The set ({1, \ldots, n})</td>
</tr>
<tr>
<td>(\mathbb{Q})</td>
<td>The field of rational numbers</td>
</tr>
<tr>
<td>(\mathbb{R})</td>
<td>The field of real numbers</td>
</tr>
<tr>
<td>(\mathbb{R}^\times)</td>
<td>The set of real numbers excluding 0</td>
</tr>
<tr>
<td>(\mathbb{Z})</td>
<td>The set ({\ldots, -2, -1, 0, 1, 2, \ldots }) of integers</td>
</tr>
<tr>
<td>(\mathbb{Z}^+)</td>
<td>The set ({1, 2, 3, \ldots }) of positive integers</td>
</tr>
<tr>
<td>(\oplus)</td>
<td>Direct sum</td>
</tr>
<tr>
<td>(\leq)</td>
<td>Subspace</td>
</tr>
<tr>
<td>(\emptyset)</td>
<td>The empty set</td>
</tr>
<tr>
<td>(\perp)</td>
<td>Orthogonal</td>
</tr>
</tbody>
</table>
Part I
Matrix Theory
Introduction to Part I

TO BE WRITTEN.
Chapter 1

(\mathbb{F}, \mathbb{R}) Column Vectors

1.1 (\mathbb{F}) Column vector basics

We begin with a discussion of column vectors.

Definition 1.1.1 (Column vector). A *column vector* of height k is a list of k numbers arranged in a column, written as

\[
\begin{pmatrix}
\alpha_1 \\
\alpha_2 \\
\vdots \\
\alpha_k
\end{pmatrix}.
\]

The k numbers in the column are referred to as the *entries* of the column vector; we will normally use lower case Greek letters such as α, β, and ζ to denote these numbers. We denote column vectors by bold letters such as \mathbf{u}, \mathbf{v}, \mathbf{w}, \mathbf{x}, \mathbf{y}, \mathbf{b}, \mathbf{e}, \mathbf{f}, etc., so we may write

\[
\mathbf{v} = \begin{pmatrix}
\alpha_1 \\
\alpha_2 \\
\vdots \\
\alpha_k
\end{pmatrix}.
\]
1.1.1 The domain of scalars

In general, the entries of column vectors will be taken from a “field,” denoted by \mathbb{F}. We shall refer to the elements of the field \mathbb{F} as “scalars,” and we will normally denote scalars by lowercase Greek letters. We will discuss fields in detail in Section 14.3. Informally, a field is a set endowed with the operations of addition and multiplication which obey the rules familiar from the arithmetic of real numbers (commutativity, associativity, inverses, etc.). Examples of fields are \mathbb{Q}, \mathbb{R}, \mathbb{C}, and \mathbb{F}_p, where \mathbb{Q} is the set of rational numbers, \mathbb{R} is the set of real numbers, \mathbb{C} is the set of complex numbers, and \mathbb{F}_p is the “integers modulo p” for a prime p, so \mathbb{F}_p is a finite field of “order” p (order $= \text{number of elements}$).

The reader who is not comfortable with finite fields or with the abstract concept of fields may ignore the exercises related to them and always take \mathbb{F} to be \mathbb{Q}, \mathbb{R}, or \mathbb{C}. In fact, taking \mathbb{F} to be \mathbb{R} suffices for all sections except those specifically related to \mathbb{C}.

We shall also consider integral vectors, i.e., vectors whose entries are integers. \mathbb{Z} denotes the set of integers and \mathbb{Z}^k the set of integral vectors of height k, so $\mathbb{Z}^k \subseteq \mathbb{Q}^k \subseteq \mathbb{R}^k \subseteq \mathbb{C}^k$. Note that \mathbb{Z} is not a field (division does not work within \mathbb{Z}). Our notation \mathbb{F} for the domain of scalars always refers to a field and therefore does not include \mathbb{Z}.

Notation 1.1.2. Let $\alpha_1, \ldots, \alpha_n \in \mathbb{F}$. The expression $\sum_{i=1}^{k} \alpha_i$ denotes the sum $\alpha_1 + \cdots + \alpha_k$. More generally, for an index set $I = \{i_1, i_2, \ldots, i_\ell\}$, the expression $\sum_{i \in I} \alpha_i$ denotes the sum $\alpha_{i_1} + \cdots + \alpha_{i_\ell}$.

Convention 1.1.3 (Empty sum). The empty sum, denoted $\sum_{i=1}^{0} \alpha_i$ or $\sum_{i \in \emptyset} \alpha_i$, evaluates to zero.

Definition 1.1.4 (The space \mathbb{F}^k). For a domain \mathbb{F} of scalars, we define the space \mathbb{F}^k of column vectors of height k over \mathbb{F} by

$$\mathbb{F}^k := \left\{ \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_k \end{pmatrix} \middle| \alpha_i \in \mathbb{F} \right\}$$

(1.1)
1.1. COLUMN VECTOR BASICS

Definition 1.1.5 (Zero vector). The zero vector in \mathbb{F}^k is the vector

$$0_k := \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$ \hspace{1cm} (1.2)

We often write 0 instead of 0_k when the height of the vector is clear from context.

Definition 1.1.6 (All-ones vector). The all-ones vector in \mathbb{F}^k is the vector

$$1_k := \begin{pmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{pmatrix}$$ \hspace{1cm} (1.3)

We sometimes write 1 instead of 1_k.

Definition 1.1.7 (Addition of column vectors). Addition of column vectors of the same height is defined elementwise, i.e.,

$$\begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_k \end{pmatrix} + \begin{pmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_k \end{pmatrix} = \begin{pmatrix} \alpha_1 + \beta_1 \\ \alpha_2 + \beta_2 \\ \vdots \\ \alpha_k + \beta_k \end{pmatrix}.$$ \hspace{1cm} (1.4)

Example 1.1.8. Let $v = \begin{pmatrix} 2 \\ 6 \\ -1 \end{pmatrix}$ and let $w = \begin{pmatrix} 0 \\ -3 \\ 2 \end{pmatrix}$. Then $v + w = \begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix}$.

Exercise 1.1.9. Verify that vector addition is commutative, i.e., for $v, w \in \mathbb{F}^k$, we have

$$v + w = w + v.$$ \hspace{1cm} (1.5)

Exercise 1.1.10. Verify that vector addition is associative, i.e., for $u, v, w \in \mathbb{F}^k$, we have

$$u + (v + w) = (u + v) + w.$$ \hspace{1cm} (1.6)
Column vectors also carry with them the notion of “scaling” by an element of \(\mathbb{F} \).

Definition 1.1.11 (Multiplication of a column vector by a scalar). Let \(\mathbf{v} \in \mathbb{F}^k \) and let \(\lambda \in \mathbb{F} \). Then the vector \(\lambda \mathbf{v} \) is the vector \(\mathbf{v} \) after each entry has been scaled (multiplied) by a factor of \(\lambda \), i.e.,

\[
\lambda \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_k \end{pmatrix} = \begin{pmatrix} \lambda \alpha_1 \\ \lambda \alpha_2 \\ \vdots \\ \lambda \alpha_k \end{pmatrix}.
\] (1.7)

Example 1.1.12. Let \(\mathbf{v} = \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix} \). Then \(3\mathbf{v} = \begin{pmatrix} 6 \\ -3 \\ 3 \end{pmatrix} \).

Definition 1.1.13 (Linear combination). Let \(\mathbf{v}_1, \ldots, \mathbf{v}_m \in \mathbb{F}^n \). Then a linear combination of the vectors \(\mathbf{v}_1, \ldots, \mathbf{v}_m \) is a sum of the form \(\sum_{i=1}^{m} \alpha_i \mathbf{v}_i \) where \(\alpha_1, \ldots, \alpha_m \in \mathbb{F} \).

Example 1.1.14. The following is a linear combination.

\[
\begin{pmatrix} 2 \\ -3 \\ 6 \\ 1 \end{pmatrix} + 4 \begin{pmatrix} -1 \\ 2 \\ 0 \\ -3 \end{pmatrix} - \frac{1}{2} \begin{pmatrix} 6 \\ 2 \\ 10 \\ -8 \end{pmatrix} = \begin{pmatrix} -5 \\ 4 \\ 1 \\ -7 \end{pmatrix}.
\]

Numerical exercise 1.1.15. The following linear combinations are of the form \(\alpha \mathbf{a} + \beta \mathbf{b} + \gamma \mathbf{c} \). Evaluate in two ways, as \((\alpha \mathbf{a} + \beta \mathbf{b}) + \gamma \mathbf{c} \) and as \(\alpha \mathbf{a} + (\beta \mathbf{b} + \gamma \mathbf{c}) \). *Self-check:* you must get the same answer.

(a) \(\begin{pmatrix} 2 \\ 4 \end{pmatrix} + 3 \begin{pmatrix} 3 \\ -1 \end{pmatrix} - 2 \begin{pmatrix} -7 \\ 2 \end{pmatrix} \)

(b) \(-2 \begin{pmatrix} 1 \\ 6 \end{pmatrix} + \frac{1}{2} \begin{pmatrix} -4 \\ 6 \end{pmatrix} + \begin{pmatrix} 1 \\ 4 \end{pmatrix} \)

(c) \(- \begin{pmatrix} 3 \\ 7 \\ -1 \end{pmatrix} - 4 \begin{pmatrix} -2 \\ 3 \\ 0 \end{pmatrix} + \begin{pmatrix} 7 \\ -4 \\ 3 \end{pmatrix} \)
1.1. COLUMN VECTOR BASICS

Exercise 1.1.16. Express the vector \(\begin{pmatrix} -5 \\ -1 \\ 11 \end{pmatrix} \) as a linear combination of the vectors \(\begin{pmatrix} -2 \\ 1 \\ 7 \end{pmatrix} \) and \(\begin{pmatrix} 2 \\ 6 \\ 6 \end{pmatrix} \).

Exercise 1.1.17.

(a) Express \(\begin{pmatrix} 3 \\ 1 \\ -2 \end{pmatrix} \) as a linear combination of the vectors \(\begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix} \), \(\begin{pmatrix} -3 \\ 3 \\ -8 \end{pmatrix} \), \(\begin{pmatrix} 1 \\ 0 \\ 3 \end{pmatrix} \).

First describe the nature of the problem you need to solve.

(b) Give an “aha” proof that \(\begin{pmatrix} 3 \\ 1 \\ -2 \end{pmatrix} \) cannot be expressed as a linear combination of \(\begin{pmatrix} -3 \\ 1 \\ 2 \end{pmatrix} \), \(\begin{pmatrix} 2 \\ -2 \\ 0 \end{pmatrix} \), \(\begin{pmatrix} 3 \\ -8 \\ 5 \end{pmatrix} \).

An “aha” proof may not be easy to find but it has to be immediately convincing. This problem will be generalized in Ex. 1.2.7.

Exercise 1.1.18. To what does a linear combination of the empty list of vectors evaluate? (Convention 1.1.3)

Let us now consider the system of linear equations

\[
\begin{align*}
\alpha_{11}x_1 + \alpha_{12}x_2 + \cdots + \alpha_{1n}x_n &= \beta_1 \\
\alpha_{21}x_1 + \alpha_{22}x_2 + \cdots + \alpha_{2n}x_n &= \beta_2 \\
&\vdots \\
\alpha_{k1}x_1 + \alpha_{k2}x_2 + \cdots + \alpha_{kn}x_n &= \beta_k
\end{align*}
\] (1.8)
Given the α_{ij} and the β_i, we need to find x_1, \ldots, x_n that satisfy these equations. This is arguably one of the most fundamental problems of applied mathematics. We can rephrase this problem in terms of the vectors $\mathbf{a}_1, \ldots, \mathbf{a}_n, \mathbf{b}$, where

$$
\mathbf{a}_j := \begin{pmatrix}
\alpha_{1j} \\
\alpha_{2j} \\
\vdots \\
\alpha_{kj}
\end{pmatrix}
$$

is the column of coefficients of x_j and the vector

$$
\mathbf{b} := \begin{pmatrix}
\beta_1 \\
\beta_2 \\
\vdots \\
\beta_k
\end{pmatrix}
$$

represents the right-hand side. With this notation, our system of linear equations takes the more concise form

$$
x_1 \mathbf{a}_1 + x_2 \mathbf{a}_2 + \cdots + x_n \mathbf{a}_n = \mathbf{b}.
$$

(1.9)

The problem of solving the system of equations (1.8) therefore is equivalent to expressing the vector \mathbf{b} as a linear combination of the \mathbf{a}_i.

1.2 \hfill (F) Subspaces and span

Definition 1.2.1 (Subspace). A set $W \subseteq \mathbb{F}^n$ is a subspace of \mathbb{F}^n (denoted $W \leq \mathbb{F}^n$) if it is closed under linear combinations.

Exercise 1.2.2. Let $W \leq \mathbb{F}^k$. Show that $0 \in W$. (Why is the empty set not a subspace?)

Proposition 1.2.3. $W \leq \mathbb{F}^n$ if and only if

(a) $0 \in W$

(b) If $\mathbf{u}, \mathbf{v} \in W$, then $\mathbf{u} + \mathbf{v} \in W$

(c) If $\mathbf{v} \in W$ and $\alpha \in \mathbb{F}$, then $\alpha \mathbf{v} \in W$.
Exercise 1.2.4. Show that, if W is a nonempty subset of \mathbb{F}^n, then (c) implies (a).

Exercise 1.2.5. Show

(a) $\{0\} \leq \mathbb{F}^k$;
(b) $\mathbb{F}^k \leq \mathbb{F}^k$.

We refer to these as the trivial subspaces of \mathbb{F}^k.

Exercise 1.2.6.

(a) The set \[\left\{ \begin{pmatrix} \alpha_1 \\ 0 \\ \alpha_3 \end{pmatrix} \mid \alpha_1 = 2\alpha_3 \right\} \]
is a subspace of \mathbb{R}^3.

(b) The set \[\left\{ \begin{pmatrix} \alpha_1 \\ \alpha_2 \end{pmatrix} \mid \alpha_2 = \alpha_1 + 7 \right\} \]
is not a subspace of \mathbb{R}^2.

Exercise 1.2.7. Let

\[
W_k = \left\{ \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_k \end{pmatrix} \in \mathbb{F}^k \mid \sum_{i=1}^{k} \alpha_i = 0 \right\}
\]

Show that $W_k \leq \mathbb{F}^k$. This is the 0-weight subspace of \mathbb{F}^k.

Exercise 1.2.8. Prove that, for $n \geq 2$, the space \mathbb{R}^n has infinitely many subspaces.

Proposition 1.2.9. Let $W_1, W_2 \leq \mathbb{F}^n$. Then

(a) $W_1 \cap W_2 \leq \mathbb{F}^n$

(b) The intersection of any (finite or infinite) collection of subspaces of \mathbb{F}^n is also a subspace of \mathbb{F}^n.

(c) $W_1 \cup W_2 \leq \mathbb{F}^n$ if and only if $W_1 \subseteq W_2$ or $W_2 \subseteq W_1$

Definition 1.2.10 (Span). Let $v_1, \ldots, v_m \in \mathbb{F}^k$. Then the span of $S = \{v_1, \ldots, v_m\}$, denoted $\text{span}(v_1, \ldots, v_m)$, is the smallest subspace of \mathbb{F}^k containing S, i.e.,
CHAPTER 1. COLUMN VECTORS

(a) span $S \supseteq S$;

(b) span S is a subspace of \mathbb{F}^k;

(c) for every subspace $W \leq \mathbb{F}^n$, if $S \subseteq W$ then span $S \subseteq W$.

Fact 1.2.11. span(\emptyset) = \{0\}.

Theorem 1.2.12. Let $S \subseteq \mathbb{F}^n$. Then

(a) span S exists and is unique;

(b) span(S) = $\bigcap_{W \leq \mathbb{F}^n} W$. This is the intersection of all subspaces containing S.

This theorem tells us that the span exists. The next theorem constructs all the elements of the span.

Theorem 1.2.13. For $S \subseteq \mathbb{F}^n$, span S is the set of all linear combinations of the finite subsets of S. (Note that this is true even when S is empty. Why?)

Proposition 1.2.14. Let $S \subseteq \mathbb{F}^n$. Then $S \subseteq \mathbb{F}^n$ if and only if $S = \text{span}(S)$.

Let $S \subseteq \mathbb{F}^n$.

Proposition 1.2.15. Prove that span(span(S)) = span(S). Prove this

(a) based on the definition;

(b) (linear combinations of linear combinations) based on Theorem 1.2.13

Proposition 1.2.16 (Transitivity of span). Suppose $R \subseteq \text{span}(T)$ and $T \subseteq \text{span}(S)$. Then $R \subseteq \text{span}(S)$.

Definition 1.2.17 (Sum of sets). Let $A, B \subseteq \mathbb{F}^n$. Then $A + B$ is the set

$A + B = \{a + b \mid a \in A, b \in B\}$.

Proposition 1.2.18. Let $U_1, U_2 \leq \mathbb{F}^n$. Then $U_1 + U_2 = \text{span}(U_1 \cup U_2)$.

1.3. LINEAR INDEPENDENCE AND THE FIRST MIRACLE OF LINEAR ALGEBRA

1.3 (F) Linear independence and the First Miracle of Linear Algebra

In this section, \(\mathbf{v}_1, \mathbf{v}_2, \ldots \) will denote column vectors of height \(k \), i.e., \(\mathbf{v}_i \in \mathbb{F}^k \).

Definition 1.3.1 (List). A list of objects \(a_i \) is a function whose domain is an “index set” \(I \); we write the list as \((a_i \mid i \in I) \). Most often our index set will be \(I = \{1, \ldots, n\} \). In this case, we write the list as \((a_1, \ldots, a_n) \). The size of the list is \(|I| \).

Notation 1.3.2 (Concatenation of lists). Let \(L = (\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_\ell) \) and \(M = (\mathbf{w}_1, \mathbf{w}_2, \ldots, \mathbf{w}_n) \) be lists. We denote by \((L, M) \) the list obtained by concatenation \(L \) and \(M \), i.e., the list \((\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_\ell, \mathbf{w}_1, \mathbf{w}_2, \ldots, \mathbf{w}_n) \). If the list \(M \) has only one element, we omit the parentheses the list, that is, we write \((L, \mathbf{w}) \) rather than \((L, (\mathbf{w})) \).

Definition 1.3.3 (Trivial linear combination). The trivial linear combination of the vectors \(\mathbf{v}_1, \ldots, \mathbf{v}_m \) is the linear combination (I Def. 1.1.13) \(0\mathbf{v}_1 + \cdots + 0\mathbf{v}_n \) (all coefficients are 0).

Fact 1.3.4. The trivial linear combination evaluates to zero.

Definition 1.3.5 (Linear independence). The list \((\mathbf{v}_1, \ldots, \mathbf{v}_n) \) is said to be linearly independent if the only linear combination that evaluates to zero is the trivial linear combination. The list \((\mathbf{v}_1, \ldots, \mathbf{v}_n) \) is linearly dependent if it is not linearly independent, i.e., if there exist scalars \(\alpha_1, \ldots, \alpha_n \), not all zero, such that \(\sum_{i=1}^{n} \alpha_i \mathbf{v}_i = 0 \).

Definition 1.3.6. If a list \((\mathbf{v}_1, \ldots, \mathbf{v}_n) \) of vectors is linearly independent (dependent), we say that the vectors \(\mathbf{v}_1, \ldots, \mathbf{v}_n \) are linearly independent (dependent).

Definition 1.3.7. We say that a set of vectors is linearly independent if a list formed by its elements (in any order and without repetitions) is linearly independent.

Example 1.3.8. Let

\[
\mathbf{v}_1 = \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}, \quad \mathbf{v}_2 = \begin{pmatrix} 3 \\ 1 \\ 0 \end{pmatrix}, \quad \mathbf{v}_3 = \begin{pmatrix} -4 \\ 1 \\ 2 \end{pmatrix}.
\]

Then \(\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3 \) are linearly independent vectors. It follows that the set \(\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_2\} \) is linearly independent while the list \((\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_2) \) is linearly dependent.

Note that the list \((\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_2) \) has four elements, but the set \(\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_2\} \) has three elements.
Exercise 1.3.9. Show that the vectors \[
\begin{pmatrix}
1 \\
-3 \\
2
\end{pmatrix},
\begin{pmatrix}
4 \\
2 \\
-8
\end{pmatrix},
\begin{pmatrix}
-2 \\
1 \\
3
\end{pmatrix}
\] are linearly dependent.

Definition 1.3.10. We say that the vector \(\mathbf{w} \) depends on the list \((\mathbf{v}_1, \ldots, \mathbf{v}_k) \) of vectors if \(\mathbf{w} \in \text{span}(\mathbf{v}_1, \ldots, \mathbf{v}_k) \), i.e., if \(\mathbf{w} \) can be expressed as a linear combination of the \(\mathbf{v}_i \).

Proposition 1.3.11. The vectors \(\mathbf{v}_1, \ldots, \mathbf{v}_k \) are linearly dependent if and only if there is some \(i \) such that \(\mathbf{v}_i \) depends on the other vectors in the list.

Exercise 1.3.12. Show that the list \((\mathbf{v}, \mathbf{w}, \mathbf{v} + \mathbf{w}) \) is linearly dependent.

Exercise 1.3.13. Is the empty list linearly independent?

Exercise 1.3.14. Show that if a list is linearly independent, then any permutation of it is linearly independent.

Proposition 1.3.15. The list \((\mathbf{v}, \mathbf{v}) \), consisting of the vector \(\mathbf{v} \in \mathbb{F}^n \) listed twice, is linearly dependent.

Exercise 1.3.16. Is there a vector \(\mathbf{v} \) such that the list \((\mathbf{v}) \), consisting of a single item, is linearly dependent?

Exercise 1.3.17. Which vectors depend on the empty list?

Definition 1.3.18 (Sublist). A sublist of a list \(L \) is a list \(M \) consisting of some of the elements of \(L \), in the same order in which they appear in \(L \).

Examples 1.3.19. Let \(L = (\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{b}, \mathbf{d}, \mathbf{e}) \).

(a) The empty list is a sublist of \(L \).

(b) \(L \) is a sublist of itself.

(c) The list \(L_1 = (\mathbf{a}, \mathbf{b}, \mathbf{d}) \) is a sublist of \(L \).

(d) The list \(L_2 = (\mathbf{b}, \mathbf{b}) \) is a sublist of \(L \).

(e) The list \(L_3 = (\mathbf{b}, \mathbf{b}, \mathbf{b}) \) is not a sublist of \(L \).

(f) The list \(L_4 = (\mathbf{a}, \mathbf{d}, \mathbf{c}, \mathbf{e}) \) is not a sublist of \(L \).
1.3. LINEAR INDEPENDENCE AND THE FIRST MIRACLE OF LINEAR ALGEBRA

Fact 1.3.20. Every sublist of a linearly independent list of vectors is linearly independent.

The following lemma is central to the proof of the First Miracle of Linear Algebra ([1.3.40](#)) as well as to our characterization of bases as maximal linearly independent sets ([1.3.37](#)).

Lemma 1.3.21. Suppose \((v_1, \ldots, v_k)\) is a linearly independent list of vectors and the list \((v_1, \ldots, v_{k+1})\) is linearly dependent. Then \(v_{k+1} \in \text{span}(v_1, \ldots, v_k)\).

Proposition 1.3.22. The vectors \(v_1, \ldots, v_k\) are linearly dependent if and only if there is some \(j\) such that

\[
v_j \in \text{span}(v_1, \ldots, v_{j-1}, v_{j+1}, \ldots, v_k).
\]

Exercise 1.3.23. Prove that no list of vectors containing \(0\) is linearly independent.

Exercise 1.3.24. Prove that a list of vectors with repeated elements (the same vector occurs more than once) is linearly dependent. (This follows from combining which two previous exercises?)

Definition 1.3.25 (Parallel vectors). Let \(u, v \in \mathbb{F}^n\). We say that \(u\) and \(v\) are parallel if there exists a scalar \(\alpha\) such that \(u = \alpha v\) or \(v = \alpha u\). Note that \(0\) is parallel to all vectors, and the relation of being parallel is an equivalence relation ([14.1.19](#)) on the set of nonzero vectors.

Exercise 1.3.26. Let \(u, v \in \mathbb{F}^n\). Show that the list \((u, v)\) is linearly dependent if and only if \(u\) and \(v\) are parallel.

Exercise 1.3.27. Find \(n+1\) vectors in \(\mathbb{F}^n\) such that every \(n\) are linearly independent. Over infinite fields, a much stronger statement holds ([15.3.15](#)).

Definition 1.3.28 (Rank). The rank of a set \(S \subseteq \mathbb{F}^n\), denoted \(\text{rk} S\), is the size of the largest linearly independent subset of \(S\). The rank of a list is the rank of the set formed by its elements.

Proposition 1.3.29. Let \(S\) and \(T\) be lists. Show that

\[
\text{rk}(S, T) \leq \text{rk} S + \text{rk} T
\]

where \(\text{rk}(S, T)\) is the rank of the list obtained by concatenating the lists \(S\) and \(T\).

Definition 1.3.30 (Dimension). Let \(W \subseteq \mathbb{F}^n\) be a subspace. The dimension of \(W\), denoted \(\text{dim} W\), is its rank, that is, \(\text{dim} W = \text{rk} W\).
CHAPTER 1. COLUMN VECTORS

Definition 1.3.31 (List of generators). Let $W \leq \mathbb{F}^n$. The list $L = (v_1, \ldots, v_k) \subseteq W$ is said to be a list of generators of W if $\text{span}(v_1, \ldots, v_k) = W$. In this case, we say that v_1, \ldots, v_k generate W.

Definition 1.3.32 (Basis). A list $b = (b_1, \ldots, b_n)$ is a basis of the subspace $W \leq \mathbb{F}^k$ if b is a linearly independent list generators of W.

Fact 1.3.33. If $W \leq \mathbb{F}^n$ and b is a list of vectors of W then b is a basis of W if and only if it is linearly independent and $\text{span}(b) = W$.

Definition 1.3.34 (Standard basis of \mathbb{F}^k). The standard basis of \mathbb{F}^k is the basis (e_1, \ldots, e_k), where e_i is the column vector which has its i-th component equal to 1 and all other components equal to 0. The vectors e_1, \ldots, e_k are sometimes called the standard unit vectors.

For example, the standard basis of \mathbb{F}^3 is

\[
\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \quad \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \quad \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}
\]

Exercise 1.3.35. The standard basis of \mathbb{F}^k is a basis.

Note that subspaces of \mathbb{F}^k do not have a “standard basis.”

Definition 1.3.36 (Maximal linearly independent list). Let $W \leq \mathbb{F}^n$. A list $L = (v_1, \ldots, v_k)$ of vectors in W is a maximal linearly independent list in W if L is linearly independent but for all $w \in W$, the list (L, w) is linearly dependent.

Proposition 1.3.37. Let $W \leq \mathbb{F}^k$ and let $b = (b_1, \ldots, b_k)$ be a list of vectors in W. Then b is a basis of W if and only if it is a maximal linearly independent list.

Exercise 1.3.38. Prove: every subspace $W \leq \mathbb{F}^k$ has a basis. You may assume the fact, to be proved shortly (Cor. 1.3.49), that every linearly independent list of vectors in \mathbb{F}^k has size at most k.

Proposition 1.3.39. Let L be a finite list of generators of $W \leq \mathbb{F}^k$. Then L contains a basis of W.

Next we state a central result to which the entire field of linear algebra arguably owes its character.
Theorem 1.3.40 (First Miracle of Linear Algebra). Let \(v_1, \ldots, v_k \) be linearly independent with \(v_i \in \text{span}(w_1, \ldots, w_m) \) for all \(i \). Then \(k \leq m \).

The proof of this theorem requires the following lemma.

Lemma 1.3.41 (Steinitz exchange lemma). Let \((v_1, \ldots, v_k) \) be a linearly independent list of vectors such that \(v_i \in \text{span}(w_1, \ldots, w_m) \) for all \(i \). Then there exists \(j \) (1 \(\leq j \leq m \)) such that the list \((w_j, v_2, \ldots, v_k) \) is linearly independent.

Exercise 1.3.42. Use the Steinitz exchange lemma to prove the First Miracle of Linear Algebra.

Corollary 1.3.43. Let \(W \leq \mathbb{F}^k \). Every basis of \(W \) has the same size (same number of vectors).

Exercise 1.3.44. Prove: Cor. 1.3.43 is equivalent to the First Miracle, i.e., infer the First Miracle from Cor. 1.3.43

Corollary 1.3.45. Every basis of \(\mathbb{F}^k \) has size \(k \).

The following result is essentially a restatement of the First Miracle of Linear Algebra.

Corollary 1.3.46. \(\text{rk}(v_1, \ldots, v_k) = \dim(\text{span}(v_1, \ldots, v_k)) \).

Exercise 1.3.47. Prove Cor. 1.3.46 is equivalent to the First Miracle, i.e., infer the First Miracle from Cor. 1.3.46

Corollary 1.3.48. \(\dim \mathbb{F}^k = k \).

Corollary 1.3.49. Every linearly independent list of vectors in \(\mathbb{F}^k \) has size at most \(k \).

Corollary 1.3.50. Let \(W \leq \mathbb{F}^k \) and let \(L \) be a linearly independent list of vectors in \(W \). Then \(L \) can be extended to a basis of \(W \).

Exercise 1.3.51. Let \(U_1, U_2 \leq \mathbb{F}^n \) with \(U_1 \cap U_2 = \{0\} \). Let \(v_1, \ldots, v_k \in U_1 \) and \(w_1, \ldots, w_\ell \in U_2 \). If the lists \((v_1, \ldots, v_k) \) and \((w_1, \ldots, w_\ell) \) are linearly independent, then so is the concatenated list \((v_1, \ldots, v_k, w_1, \ldots, w_\ell) \).

Proposition 1.3.52. Let \(U_1, U_2 \leq \mathbb{F}^n \) with \(U_1 \cap U_2 = \{0\} \). Then
\[
\dim U_1 + \dim U_2 \leq n .
\] (1.12)

Proposition 1.3.53 (Modular equation). Let \(U_1, U_2 \leq \mathbb{F}^k \). Then
\[
\dim(U_1 + U_2) + \dim(U_1 \cap U_2) = \dim U_1 + \dim U_2 .
\] (1.13)
1.4 (F) Dot product

We now define the dot product, an operation which takes two vectors as input and outputs a scalar.

Definition 1.4.1 (Dot product). Let \(x, y \in \mathbb{F}^n \) with \(x = (\alpha_1, \alpha_2, \ldots, \alpha_n)^T \) and \(y = (\beta_1, \beta_2, \ldots, \beta_n)^T \). (Note that these are column vectors). Then the dot product of \(x \) and \(y \), denoted \(x \cdot y \), is

\[
x \cdot y := \sum_{i=1}^{n} \alpha_i \beta_i \in \mathbb{F}.
\]

Proposition 1.4.2. The dot product is symmetric, that is,

\[
x \cdot y = y \cdot x.
\]

Exercise 1.4.3. Show that the dot product is distributive, that is,

\[
x \cdot (y + z) = x \cdot y + x \cdot z.
\]

Exercise 1.4.4. Show that the dot product is bilinear (Def. 6.2.11), i.e., for \(x, y, z \in \mathbb{F}^n \) and \(\alpha \in \mathbb{F} \), we have

\[
(x + z) \cdot y = x \cdot y + z \cdot y \tag{1.15}
\]
\[
(\alpha x) \cdot y = \alpha (x \cdot y) \tag{1.16}
\]
\[
x \cdot (y + z) = x \cdot y + x \cdot z \tag{1.17}
\]
\[
x \cdot (\alpha y) = \alpha (x \cdot y) \tag{1.18}
\]

Exercise 1.4.5. Show that the dot product preserves linear combinations, i.e., for \(x_1, \ldots, x_k, y \in \mathbb{F}^n \) and \(\alpha_1, \ldots, \alpha_k \in \mathbb{F} \), we have

\[
\left(\sum_{i=1}^{k} \alpha_i x_i \right) \cdot y = \sum_{i=1}^{k} \alpha_i (x_i \cdot y) \tag{1.19}
\]
and for \(x, y_1, \ldots, y_\ell \in \mathbb{F}^n \) and \(\beta_1, \ldots, \beta_\ell \in \mathbb{F} \),

\[
x \cdot \left(\sum_{i=1}^{\ell} \beta_i y_i \right) = \sum_{i=1}^{\ell} \beta_i (x \cdot y_i) \tag{1.20}
\]
Numerical exercise 1.4.6. Let

\[x = \begin{pmatrix} 3 \\ 4 \\ -2 \end{pmatrix}, \quad y = \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix}, \quad z = \begin{pmatrix} 3 \\ 2 \\ -4 \end{pmatrix} \]

Compute \(x \cdot y \), \(x \cdot z \), and \(x \cdot (y + z) \). Self-check: verify that \(x \cdot (y + z) = (x \cdot y) + (x \cdot z) \).

Exercise 1.4.7. Compute the following dot products.

(a) \(1_k \cdot 1_k \) for \(k \geq 1 \).

(b) \(x \cdot x \) where \(x = \begin{pmatrix} \alpha_0 \\ \alpha_1 \\ \vdots \\ \alpha_k \end{pmatrix} \in \mathbb{F}^k \)

Definition 1.4.8 (Orthogonality). Let \(x, y \in \mathbb{F}^k \). Then \(x \) and \(y \) are orthogonal (notation: \(x \perp y \)) if \(x \cdot y = 0 \).

Exercise 1.4.9. What vectors are orthogonal to every vector?

Exercise 1.4.10. Which vectors are orthogonal to \(1_k \)?

Definition 1.4.11 (Isotropic vector). The vector \(v \in \mathbb{F}^n \) is isotropic if \(v \neq 0 \) and \(v \cdot v = 0 \).

Exercise 1.4.12.

(a) Show that there are no isotropic vectors in \(\mathbb{R}^n \).

(b) Find an isotropic vector in \(\mathbb{C}^2 \).

(c) Find an isotropic vector in \(\mathbb{F}_2^2 \).

Theorem 1.4.13. If \(v_1, \ldots, v_k \) are pairwise orthogonal and non-isotropic non-zero vectors, then they are linearly independent.
1.5 \((\mathbb{R}) \) Dot product over \(\mathbb{R} \)

We now specialize our discussion of the dot product to the space \(\mathbb{R}^n \).

Exercise 1.5.1. Let \(x \in \mathbb{R}^n \). Show \(x \cdot x \geq 0 \), with equality holding if and only if \(x = 0 \).

This “positive definiteness” of the dot product allows us to define the “norm” of a vector, a generalization of length.

Definition 1.5.2 (Norm). The *norm* of a vector \(x \in \mathbb{R}^n \), denoted \(\|x\| \), is defined as

\[
\|x\| := \sqrt{x \cdot x}.
\]

(1.21)

This norm is also referred to as the *Euclidean norm* or the \(\ell^2 \) norm.

Definition 1.5.3 (Orthogonal system). An *orthogonal system* in \(\mathbb{R}^n \) is a list of (pairwise) orthogonal nonzero vectors in \(\mathbb{R}^n \).

Exercise 1.5.4. Let \(S \subseteq \mathbb{R}^k \) be an orthogonal system in \(\mathbb{R}^k \). Prove that \(S \) is linearly independent.

Definition 1.5.5 (Orthonormal system). An *orthonormal system* in \(\mathbb{R}^n \) is a list of (pairwise) orthogonal vectors in \(\mathbb{V} \), all of which have unit norm.

Definition 1.5.6 (Orthonormal basis). An *orthonormal basis* of \(W \leq \mathbb{R}^n \) is an orthonormal system that is a basis of \(W \).

Exercise 1.5.7.

(a) Find an orthonormal basis of \(\mathbb{R}^n \).

(b) Find *all* orthonormal bases of \(\mathbb{R}^2 \).

Orthogonality is studied in more detail in Chapter [19].

1.6 \((\mathbb{F}) \) Additional exercises

Exercise 1.6.1. Let \(v_1, \ldots, v_n \) be vectors such that \(\|v_i\| > 1 \) for all \(i \), and \(v_i \cdot v_j = 1 \) whenever \(i \neq j \). Show that \(v_1, \ldots, v_n \) are linearly independent.

Definition 1.6.2 (Incidence vector). Let \(A \subseteq \{1, \ldots, n\} \). Then the *incidence vector* \(v_A \in \mathbb{R}^n \) is the vector whose \(i \)-th coordinate is 1 if \(i \in A \) and 0 otherwise.
Exercise 1.6.3. Let $A, B \subseteq \{1, \ldots, n\}$. Express the dot product $\mathbf{v}_A \cdot \mathbf{v}_B$ in terms of the sets A and B.

\[\heartsuit \text{Exercise 1.6.4 (Generalized Fisher Inequality).} \] Let $\lambda \geq 1$ and let $A_1, \ldots, A_m \subseteq \{1, \ldots, n\}$ be distinct sets such that for all $i \neq j$ we have $|A_i \cap A_j| = \lambda$. Then $m \leq n$.
Chapter 2
Matrices

2.1 Matrix basics

Definition 2.1.1 (Matrix). A $k \times n$ matrix is a table of numbers arranged in k rows and n columns, written as

$$
\begin{pmatrix}
\alpha_{11} & \alpha_{12} & \cdots & \alpha_{1n} \\
\vdots & \vdots & \ddots & \vdots \\
\alpha_{k1} & \alpha_{k2} & \cdots & \alpha_{kn}
\end{pmatrix}
$$

We may write $M = (\alpha_{i,j})_{k \times n}$ to indicate a matrix whose entry in position (i,j) (i-th row, k-th column) is $\alpha_{i,j}$. For typographical convenience we usually omit the comma separating the row index and the column index and simply write α_{ij} instead of $\alpha_{i,j}$; we use the comma if its omission would lead to ambiguity. So we write $M = (\alpha_{ij})_{k \times n}$, or simply $M = (\alpha_{ij})$ if the values k and n are clear from context. We also write $(M)_{ij}$ to indicate the (i,j) entry of the matrix M, i.e., $\alpha_{ij} = (M)_{ij}$.

Example 2.1.2. This is a 3×5 matrix.

$$
\begin{pmatrix}
1 & 3 & -2 & 0 & -1 \\
6 & 5 & 4 & -3 & -6 \\
2 & 7 & 1 & 1 & 5
\end{pmatrix}
$$

In this example, we have $\alpha_{22} = 5$ and $\alpha_{15} = -1$.
2.1. MATRIX BASICS

Definition 2.1.3 (The space $F^{k \times n}$). The set of $k \times n$ matrices with entries from the domain F of scalars is denoted by $F^{k \times n}$. Recall that F always denotes a field. Square matrices ($k = n$) have special significance, so we write $M_n(F) := F^{n \times n}$. We identify $M_1(F)$ with F and omit the matrix notation, i.e., we write α rather than (α). An integral matrix is a matrix with integer entries. Naturally, $\mathbb{Z}^{k \times n}$ will denote the set of $k \times n$ integral matrices, and $M_n(\mathbb{Z}) = \mathbb{Z}^{n \times n}$. Recall that \mathbb{Z} is not a field.

Example 2.1.4. For example, \[
\begin{pmatrix}
0 & -1 & 4 & 7 \\
-3 & 5 & 6 & 8
\end{pmatrix} \in \mathbb{R}^{2 \times 4}
\] is a 2×4 matrix and \[
\begin{pmatrix}
2 & 6 & 9 \\
3 & -4 & -2 \\
-5 & 1 & 4
\end{pmatrix} \in M_3(\mathbb{R})
\] is a 3×3 matrix.

Observe that the column vectors of height k introduced in Chapter 1 are $k \times 1$ matrices, so $F^k = F^{k \times 1}$. Moreover, every statement about column vectors in Chapter 1 applies analogously to $1 \times n$ matrices (“row vectors”).

Notation 2.1.5. When writing row vectors, we use commas to avoid ambiguity, so we write, for example, $(3, 5, -1)$ instead of $(3 \ 5 \ -1)$.

Notation 2.1.6 (Zero matrix). The $k \times n$ matrix with all of its entries equal to 0 is called the zero matrix and is denoted by $0_{k \times n}$, or simply by 0 if k and n are clear from context.

Notation 2.1.7 (All-ones matrix). The $k \times n$ matrix with all of its entries equal to 1 is denoted by $J_{k \times n}$ or J. We write J_n for $J_{n \times n}$.

Definition 2.1.8 (Diagonal matrix). A matrix $A = (\alpha_{ij}) \in M_n(F)$ is diagonal if $\alpha_{ij} = 0$ whenever $i \neq j$. The $n \times n$ diagonal matrix with entries $\lambda_1, \ldots, \lambda_n$ is denoted by diag$(\lambda_1, \ldots, \lambda_n)$.

Example 2.1.9.

\[
\text{diag}(5, 3, 0, -1, 5) = \begin{pmatrix}
5 & 0 & 0 & 0 & 0 \\
0 & 3 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 & 0 \\
0 & 0 & 0 & 0 & 5
\end{pmatrix}
\]

Notation 2.1.10. To avoid filling most of a matrix with the number “0”, we often write matrices like the one above as

\[
\text{diag}(5, 3, 0, -1, 5) = \begin{pmatrix}
5 & 0 \\
0 & 0 \\
0 & -1 \\
0 & 0
\end{pmatrix}
\]
where the big 0 symbol means that every entry in the triangles above or below the diagonal is 0.

Definition 2.1.11 (Upper and lower triangular matrices). A matrix $A = (\alpha_{ij}) \in M_n(\mathbb{F})$ is upper triangular if $\alpha_{ij} = 0$ whenever $i > j$. A is said to be strictly upper triangular if $\alpha_{ij} = 0$ whenever $i \geq j$. Lower triangular and strictly lower triangular matrices are defined analogously.

Examples 2.1.12.

(a) \[
\begin{pmatrix}
5 & 2 & 0 & 7 & 2 \\
3 & 0 & -4 & 0 & \\
0 & 6 & 0 & \\
0 & -1 & -3 & \\
5
\end{pmatrix}
\] is upper triangular.

(b) \[
\begin{pmatrix}
0 & 2 & 0 & 7 & 2 \\
0 & 0 & -4 & 0 \\
0 & 6 & 0 \\
0 & 0 & -3 \\
0
\end{pmatrix}
\] is strictly upper triangular.

(c) \[
\begin{pmatrix}
5 & 0 \\
2 & 3 \\
0 & 0 \\
7 & -4 & 6 & -1 \\
2 & 0 & 0 & -3 & 5
\end{pmatrix}
\] is lower triangular.

(d) \[
\begin{pmatrix}
0 & 0 \\
2 & 0 \\
0 & 0 \\
7 & -4 & 6 \\
2 & 0 & 0 & -3 & 0
\end{pmatrix}
\] is strictly lower triangular.

Fact 2.1.13. The diagonal matrices are the matrices which are simultaneously upper and lower triangular.

Definition 2.1.14 (Matrix transpose). The transpose of a $k \times \ell$ matrix $M = (\alpha_{ij})$ is the $\ell \times k$ matrix (β_{ij}) defined by

\[
\beta_{ij} = \alpha_{ji}
\] (2.1)
and is denoted M^T. (We flip it across its main diagonal, so the rows of A become the columns of A^T and vice versa.)

Examples 2.1.15.

(a) $\begin{pmatrix} 3 & 1 & 4 \\ 1 & 5 & 9 \end{pmatrix}^T = \begin{pmatrix} 3 & 1 \\ 1 & 5 \\ 4 & 9 \end{pmatrix}$

(b) $1_k = (1, 1, \ldots, 1)^T$, k times

(c) In Examples 2.1.12 the matrix (c) is the transpose of (a) and (d) is the transpose of (b).

Fact 2.1.16. Let A be a matrix. Then $(A^T)^T = A$.

Definition 2.1.17 (Symmetric matrix). A matrix M is symmetric if $M = M^T$.

Note that if a matrix $M \in \mathbb{F}^{k \times \ell}$ is symmetric then $k = \ell$ (M is square).

Example 2.1.18. The matrix $\begin{pmatrix} 1 & 3 & 0 \\ 3 & 5 & -2 \\ 0 & -2 & 4 \end{pmatrix}$ is symmetric.

Definition 2.1.19 (Matrix addition). Let $A = (\alpha_{ij})$ and $B = (\beta_{ij})$ be $k \times n$ matrices. Then the sum $A + B$ is the $k \times n$ matrix with entries

$$(A + B)_{ij} = \alpha_{ij} + \beta_{ij}$$

(2.2)

That is, addition is defined elementwise.

Example 2.1.20.

$\begin{pmatrix} 2 & 1 \\ 4 & -2 \\ 0 & 5 \end{pmatrix} + \begin{pmatrix} 1 & -6 \\ 2 & 3 \\ 1 & 4 \end{pmatrix} = \begin{pmatrix} 3 & -5 \\ 6 & 1 \\ 1 & 9 \end{pmatrix}$

Fact 2.1.21 (Adding zero). For any matrix $A \in \mathbb{F}^{k \times n}$, $A + 0 = 0 + A = A$.

Proposition 2.1.22 (Commutativity). Matrix addition obeys the commutative law: if $A, B \in \mathbb{F}^{k \times n}$, then $A + B = B + A$.
Proposition 2.1.23 (Associativity). Matrix addition obeys the associative law: if \(A, B, C \in \mathbb{F}^{k \times n} \), then \((A + B) + C = A + (B + C)\).

Definition 2.1.24 (The negative of a matrix). Let \(A \in \mathbb{F}^{k \times n} \) be a matrix. Then \(-A\) is the \(k \times n \) matrix defined by \((-A)_{ij} = -(A)_{ij}\).

Proposition 2.1.25. Let \(A \in \mathbb{F}^{k \times n} \). Then \(A + (-A) = 0 \).

Definition 2.1.26 (Multiplication of a matrix by a scalar). Let \(A = (\alpha_{ij}) \in \mathbb{F}^{k \times n} \), and let \(\zeta \in \mathbb{F} \). Then \(\zeta A \) is the \(k \times n \) matrix whose \((i, j)\) entry is \(\zeta \cdot \alpha_{ij} \).

Example 2.1.27.

\[
3 \begin{pmatrix}
1 & 2 \\
-3 & 4 \\
0 & 6
\end{pmatrix}
= \begin{pmatrix}
3 & 6 \\
-9 & 12 \\
0 & 18
\end{pmatrix}
\]

Fact 2.1.28. \(-A = (-1)A\).

2.2 Matrix multiplication

Definition 2.2.1 (Matrix multiplication). Let \(A = (\alpha_{ij}) \) be an \(r \times s \) matrix and \(B = (\beta_{jk}) \) be an \(s \times t \) matrix. Then the matrix product \(C = AB \) is the \(r \times t \) matrix \(C = (\gamma_{ik}) \) defined by

\[
\gamma_{ik} = \sum_{j=1}^{s} \alpha_{ij} \beta_{jk}
\]
(2.3)

Exercise 2.2.2. Let \(A \in \mathbb{F}^{k \times n} \) and let \(B \in \mathbb{F}^{n \times m} \). Show that

\[
(AB)^T = B^T A^T.
\]
(2.4)

Proposition 2.2.3 (Distributivity). Matrix multiplication obeys the right distributive law: if \(A \in \mathbb{F}^{k \times n} \) and \(B, C \in \mathbb{F}^{n \times \ell} \), then \(A(B + C) = AB + AC \). Analogously, it obeys the left distributive law: if \(A, B \in \mathbb{F}^{k \times n} \) and \(C \in \mathbb{F}^{n \times \ell} \), then \((A + B)C = AC + BC\).

Proposition 2.2.4 (Associativity). Matrix multiplication obeys the associative law: if \(A, B, \) and \(C \) are matrices with compatible dimensions, then \((AB)C = A(BC)\).
2.2. MATRIX MULTIPLICATION

Proposition 2.2.5 (Matrix multiplication vs. scaling). Let $A \in \mathbb{F}^{k \times n}$, $B \in \mathbb{F}^{n \times \ell}$, and $\alpha \in \mathbb{F}$. Then

$$A(\alpha B) = \alpha(AB) = (\alpha A)B. \tag{2.5}$$

Numerical exercise 2.2.6. For each of the following triples of matrices, compute the products AB, AC, and $A(B + C)$. Self-check: verify that $A(B + C) = AB + AC$.

(a) $A = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$,
$B = \begin{pmatrix} 3 & 1 & 0 \\ -4 & 2 & 5 \end{pmatrix}$,
$C = \begin{pmatrix} 1 & -7 & -4 \\ 5 & 3 & -6 \end{pmatrix}$

(b) $A = \begin{pmatrix} 2 & 5 \\ 1 & 1 \\ 3 & -3 \end{pmatrix}$,
$B = \begin{pmatrix} 4 & 6 & 3 & 1 \\ 3 & 3 & -5 & 4 \end{pmatrix}$,
$C = \begin{pmatrix} 1 & -4 & -1 & 5 \\ 2 & 4 & 10 & -7 \end{pmatrix}$

(c) $A = \begin{pmatrix} 3 & 1 & 2 \\ 4 & -2 & 4 \\ 1 & -3 & -2 \end{pmatrix}$,
$B = \begin{pmatrix} -1 & 4 \\ 3 & 2 \\ -5 & -2 \end{pmatrix}$,
$C = \begin{pmatrix} 2 & -3 \\ -6 & -2 \\ 0 & 1 \end{pmatrix}$

Exercise 2.2.7. Let $A \in \mathbb{F}^{k \times n}$, and let $E_{ij}^{(\ell \times m)}$ be the $\ell \times m$ matrix with a 1 in the (i, j) position and 0 everywhere else.

(a) What is $E_{ij}^{(k \times k)} A$?
(b) What is $AE_{ij}^{(n \times n)}$?

Definition 2.2.8 (Rotation matrix). The rotation matrix R_θ is the matrix defined by

$$R_\theta = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}.$$ \hspace{1cm} (2.6)

As we shall see, this matrix is intimately related to the rotation of the Euclidean plane by θ (Example 16.5.2).

Exercise 2.2.9. Prove $R_{\alpha + \beta} = R_\alpha R_\beta$. Your proof may use the addition theorems for the trigonometric functions. Later when we learn about the connection between matrices and linear transformations, we shall give a direct proof of this fact which will imply the addition theorems (Example 16.5.11).

Definition 2.2.10 (Identity matrix). The $n \times n$ identity matrix, denoted I_n or I, is the diagonal matrix whose diagonal entries are all 1, i.e.,

$$I = \text{diag}(1, 1, \ldots, 1) = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix}.$$ \hspace{1cm} (2.7)

This is also written as $I = (\delta_{ij})$, where the Kronecker delta symbol δ_{ij} is defined by

$$\delta_{ij} = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}.$$ \hspace{1cm} (2.8)

Fact 2.2.11. The columns of I are the standard unit vectors (Definition 1.3.34).

Proposition 2.2.12. For all $A \in \mathbb{F}^{k \times n}$,

$$I_k A = A I_n = A.$$ \hspace{1cm} (2.9)

Definition 2.2.13 (Scalar matrix). The matrix $A \in M_n(\mathbb{F})$ is a scalar matrix if $A = \alpha I$ for some $\alpha \in \mathbb{F}$.

Exercise 2.2.14. Let $A \in \mathbb{F}^{k \times n}$ and let $B \in \mathbb{F}^{\ell \times k}$. Let $D = \text{diag}(\lambda_1, \ldots, \lambda_k)$. Show

(a) DA is the matrix obtained by scaling the i-th row of A by λ_i for each i;

(b) BD is the matrix obtained by scaling the j-th column of B by λ_j for each j.

Definition 2.2.15 (ℓ-th power of a matrix). Let $A \in M_n(\mathbb{F})$ and $\ell \geq 0$. We define A^ℓ, the ℓ-th power of A, inductively:

(i) $A^0 = I$;

(ii) $A^{\ell+1} = A \cdot A^\ell$.

So

$$A^\ell = A \cdots A \quad (2.10)$$

Exercise 2.2.16. Let $A \in M_n(\mathbb{F})$. Show that for all $\ell, m \geq 0$, we have

(a) $A^{\ell+m} = A^\ell A^m$;

(b) $\left(A^\ell\right)^m = A^{\ell m}$.

Exercise 2.2.17. For $k \geq 0$, compute

(a) A^k for $A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$;

(b) B^k for $B = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$;

(c) C^k for $C = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$;

(d) Interpret and verify the following statements:

(d1) A^k grows linearly

(d2) B^k grows exponentially

(d3) C^k stays of constant “size.” (Define “size” in this statement.)
CHAPTER 2. MATRICES

Definition 2.2.18 (Nilpotent matrix). The matrix \(N \in M_n(\mathbb{F}) \) is nilpotent if there exists an integer \(k \) such that \(N^k = 0 \).

Exercise 2.2.19. Show that if \(A \in M_n(\mathbb{F}) \) is strictly upper triangular, then \(A^n = 0 \).

So every strictly upper triangular matrix is nilpotent. Later we shall see that a matrix is nilpotent if and only if it is “similar” \(\text{[I]} \) Def. 8.2.1) to a strictly upper triangular matrix \(\text{[I]} \) Ex. 8.2.4). Notation 2.2.20. We denote by \(N_n \) the \(n \times n \) matrix defined by

\[
N_n =
\begin{pmatrix}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
0 & \cdots & \cdots & \cdots & \cdots \\
0 & 0 & \cdots & 0 & 1 \\
0 & 0 & \cdots & 0 & 0
\end{pmatrix}.
\] (2.11)

That is, \(N_n = (\alpha_{ij}) \) where

\[
\alpha_{ij} = \begin{cases}
1 & \text{if } j = i + 1 \\
0 & \text{otherwise}
\end{cases}.
\]

Exercise 2.2.21. Find \(N_n^k \) for \(k \geq 0 \).

Fact 2.2.22. In Section 1.4, we defined the dot product of two vectors \(\text{[I]} \) Def. 1.4.1). The dot product may also be defined in terms of matrix multiplication. Let \(x, y \in \mathbb{F}^k \). Then

\[
x \cdot y = x^T y.
\] (2.12)

Exercise 2.2.23. If \(v \perp 1 \) then \(Jv = 0 \).

Notation 2.2.24. For a matrix \(A \in \mathbb{F}^{k \times n} \), we sometimes write

\[
A = [a_1 | \cdots | a_n]
\]

where \(a_i \) is the \(i \)-th column of \(A \).

Exercise 2.2.25 (Extracting columns and elements of a matrix via multiplication). Let \(e_i \) be the \(i \)-th column of \(I \) (i.e., the \(i \)-th standard unit vector), and let \(A = (\alpha_{ij}) = [a_1 | \cdots | a_n] \). Then
2.2. MATRIX MULTIPLICATION

(a) \(A e_j = a_j \);

(b) \(e_i^T A e_j = \alpha_{ij} \).

Exercise 2.2.26 (Linear combination as a matrix product). Let \(A = [a_1 | \cdots | a_n] \in F^{k \times n} \) and let \(x = (\alpha_1, \ldots, \alpha_n)^T \in F^n \). Show that

\[
Ax = \alpha_1 a_1 + \cdots + \alpha_n a_n.
\]

Exercise 2.2.27 (Left multiplication acts column by column). Let \(A \in F^{k \times n} \) and let \(B = [b_1 | \cdots | b_\ell] \in F^{n \times \ell} \). (The \(b_i \) are the columns of \(B \).) Then

\[
AB = [Ab_1 | \cdots | Ab_\ell].
\]

Proposition 2.2.28 (No cancellation). Let \(k \geq 2 \). Then for all \(n \) and for all \(x \in F^n \), there exist \(k \times n \) matrices \(A \) and \(B (A \neq B) \) such that \(Ax = Bx \) but \(A \neq B \).

Proposition 2.2.29. Let \(A \in F^{k \times n} \). If \(Ax = 0 \) for all \(x \in F^n \), then \(A = 0 \).

Corollary 2.2.30 (Cancellation). If \(A, B \in F^{k \times n} \) are matrices such that \(Ax = Bx \) for all \(x \in F^n \), then \(A = B \). Note: compare with Prop. 2.2.28.

Proposition 2.2.31 (No double cancellation). Let \(k \geq 2 \). Then for all \(n \) and for all \(x \in F^k \) and \(y \in F^n \), there exist \(k \times n \) matrices \(A \) and \(B \) such that \(x^T Ay = x^T By \) but \(A \neq B \).

Proposition 2.2.32. Let \(A \in F^{k \times n} \). If \(x^T Ay = 0 \) for all \(x \in F^k \) and \(y \in F^n \), then \(A = 0 \).

Corollary 2.2.33 (Double cancellation). If \(A, B \in F^{k \times n} \) are matrices such that \(x^T Ay = x^T By \) for all \(x \in F^k \) and \(y \in F^n \), then \(A = B \).

Definition 2.2.34 (Trace). The trace of a square matrix \(A = (\alpha_{ij}) \in M_n(F) \) is the sum of its diagonal entries, that is,

\[
\text{Tr}(A) = \sum_{i=1}^{n} \alpha_{ii}.
\]

Examples 2.2.35.

(a) \(\text{Tr}(I_n) = n \)
(b) $\text{Tr}\begin{pmatrix}3 & 1 & 2 \\ 4 & -2 & 4 \\ 1 & -3 & -2\end{pmatrix} = -1$

Fact 2.2.36 (Linearity of the trace).

(a) $\text{Tr}(A + B) = \text{Tr}(A) + \text{Tr}(B)$;

(b) for $\lambda \in \mathbb{F}$, $\text{Tr}(\lambda A) = \lambda \text{Tr}(A)$;

(c) for $\alpha_i \in \mathbb{F}$, $\text{Tr}(\sum \alpha_i A_i) = \sum \alpha_i \text{Tr}A_i$.

Exercise 2.2.37. Let $v, w \in \mathbb{F}^n$. Then

$$\text{Tr}(vw^T) = v^T w .$$

Note that $vw^T \in M_n(\mathbb{F})$ and $v^T w \in \mathbb{F}$.

Proposition 2.2.38. Let $A \in \mathbb{F}^{k \times n}$ and let $B \in \mathbb{F}^{n \times k}$. Then

$$\text{Tr}(AB) = \text{Tr}(BA) .$$

Exercise 2.2.39. Show that the trace of a product is invariant under a cyclic permutation of the terms, i.e., if A_1, \ldots, A_k are matrices such that the product $A_1 \cdots A_k$ is defined and is a square matrix, then

$$\text{Tr}(A_1 \cdots A_k) = \text{Tr}(A_k A_1 \cdots A_{k-1}) .$$

Exercise 2.2.40. Show that the trace of a product is not invariant under all permutations of the terms. In particular, find 2×2 matrices A, B, and C such that

$$\text{Tr}(ABC) \neq \text{Tr}(BAC) .$$

Exercise 2.2.41 (Trace cancellation). Let $B, C \in M_n(\mathbb{F})$. Show that if $\text{Tr}(AB) = \text{Tr}(AC)$ for all $A \in M_n(\mathbb{F})$, then $B = C$.
2.3 Arithmetic of diagonal and triangular matrices

In this section we turn our attention to special properties of diagonal and triangular matrices.

Proposition 2.3.1. Let $A = \text{diag}(\alpha_1, \ldots, \alpha_n)$ and $B = \text{diag}(\beta_1, \ldots, \beta_n)$ be $n \times n$ diagonal matrices and let $\lambda \in \mathbb{F}$. Then

\[
A + B = \text{diag}(\alpha_1 + \beta_1, \ldots, \alpha_n + \beta_n) \tag{2.19}
\]
\[
\lambda A = \text{diag}(\lambda \alpha_1, \ldots, \lambda \alpha_n) \tag{2.20}
\]
\[
AB = \text{diag}(\alpha_1 \beta_1, \ldots, \alpha_n \beta_n) . \tag{2.21}
\]

Proposition 2.3.2. Let $A = \text{diag}(\alpha_1, \ldots, \alpha_n)$ be a diagonal matrix. Then $A^k = \text{diag}(\alpha_1^k, \ldots, \alpha_n^k)$ for all k.

Definition 2.3.3 (Substitution of a matrix into a polynomial). Let $f \in \mathbb{F}[t]$ be the polynomial (\textit{\&} Def. 8.3.1) defined by

\[
f = \alpha_0 + \alpha_1 t + \cdots + \alpha_d t^d.
\]

Just as we may substitute $\zeta \in \mathbb{F}$ for the variable t in f to obtain a value $f(\zeta) \in \mathbb{F}$, we may also “plug in” the matrix $A \in M_n(\mathbb{F})$ to obtain $f(A) \in M_n(\mathbb{F})$. The only thing we have to be careful about is what we do with the scalar term α_0; we replace it with α_0 times the identity matrix, so

\[
f(A) := \alpha_0 I + \alpha_1 A + \cdots + \alpha_d A^d . \tag{2.22}
\]

Proposition 2.3.4. Let $f \in \mathbb{F}[t]$ be a polynomial and let $A = \text{diag}(\alpha_1, \ldots, \alpha_n)$ be a diagonal matrix. Then

\[
f(A) = \text{diag}(f(\alpha_1), \ldots, f(\alpha_n)) . \tag{2.23}
\]

In our discussion of the arithmetic of triangular matrices, we focus on the diagonal entries.

Notation 2.3.5. For the remainder of this section, the symbol \ast in a matrix will represent an arbitrary value with which we will not concern ourselves. We write

\[
\begin{pmatrix}
\alpha_1 & & \\
& \alpha_2 & \ast \\
& & \ddots \\
& & & \alpha_n
\end{pmatrix}
\]
for
\[
\begin{pmatrix}
\alpha_1 & * & \cdots & * \\
\alpha_2 & \cdots & * \\
0 & \ddots & \ddots \\
\alpha_n \\
\end{pmatrix}.
\]

Proposition 2.3.6. Let
\[
A = \begin{pmatrix}
\alpha_1 \\
\alpha_2 \\
0 \\
\vdots \\
\alpha_n
\end{pmatrix}
\]
and
\[
B = \begin{pmatrix}
\beta_1 \\
\beta_2 \\
0 \\
\vdots \\
\beta_n
\end{pmatrix}
\]
be upper triangular matrices and let \(\lambda \in \mathbb{F} \). Then

\[
A + B = \begin{pmatrix}
\alpha_1 + \beta_1 & * \\
\alpha_2 + \beta_2 & \cdots \\
0 & \ddots \\
\alpha_n + \beta_n
\end{pmatrix}
\]
(2.24)

\[
\lambda A = \begin{pmatrix}
\lambda \alpha_1 \\
\lambda \alpha_2 \\
0 \\
\vdots \\
\lambda \alpha_n
\end{pmatrix}
\]
(2.25)

\[
AB = \begin{pmatrix}
\alpha_1 \beta_1 & * \\
\alpha_2 \beta_2 & \cdots \\
0 & \ddots \\
\alpha_n \beta_n
\end{pmatrix}
\]
(2.26)
Proposition 2.3.7. Let A be as in Prop. 2.3.6. Then

$$A^k = \begin{pmatrix} \alpha_1^k & \ast \\ \alpha_2^k & \ddots \\ 0 & \ddots & \ddots \\ \ast & \ddots & \ddots & \alpha_n^k \end{pmatrix} \quad (2.27)$$

for all k.

Proposition 2.3.8. Let $f \in \mathbb{F}[t]$ be a polynomial and let A be as in Prop. 2.3.6. Then

$$f(A) = \begin{pmatrix} f(\alpha_1) & \ast \\ f(\alpha_2) & \ddots \\ 0 & \ddots & \ddots \\ \ast & \ddots & \ddots & f(\alpha_n) \end{pmatrix} \quad (2.28)$$

2.4 Permutation Matrices

Definition 2.4.1 (Rook arrangement). A rook arrangement is an arrangement of n rooks on an $n \times n$ chessboard such that no pair of rooks attack each other. In other words, there is exactly one rook in each row and column.

FIGURE HERE

Fact 2.4.2. The number of rook arrangements on an $n \times n$ chessboard is $n!$.

Definition 2.4.3 (Permutation matrix). A permutation matrix is a square matrix with the following properties.

(a) Every nonzero entry is equal to 1.

(b) Each row and column has exactly one nonzero entry.

Observe that rook arrangements correspond to permutation matrices where each rook is placed on a 1. Permutation matrices will be revisited in Chapter 6 where we discuss the determinant.

Recall that we denote by $[n]$ the set of integers $\{1, \ldots, n\}$.
Definition 2.4.4 (Permutation). A *permutation* is a bijection $\sigma : [n] \rightarrow [n]$. We write $\sigma : i \mapsto i^\sigma$.

Example 2.4.5. A permutation can be represented by a $2 \times n$ table like this.

<table>
<thead>
<tr>
<th>i</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>i^σ</td>
<td>3</td>
<td>6</td>
<td>4</td>
<td>1</td>
<td>5</td>
<td>2</td>
</tr>
</tbody>
</table>

This permutation takes 1 to 3, 2 to 6, 3 to 4, etc.

Note that any table obtained by rearranging columns represents the same permutation. For example, we may also represent the permutation σ by the table below.

<table>
<thead>
<tr>
<th>i</th>
<th>4</th>
<th>6</th>
<th>1</th>
<th>5</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>i^σ</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>4</td>
</tr>
</tbody>
</table>

Moreover, the permutation can be represented by a diagram, where the arrow $i \mapsto i^\sigma$ means that i maps to i^σ.

FIGURE HERE

Definition 2.4.6 (Composition of permutations). Let $\sigma, \tau : [n] \rightarrow [n]$ be permutations. The composition of τ with σ, denoted $\sigma \tau$, is the permutation which maps i to $i^{(\sigma \tau)}$ defined by

$$i^{(\sigma \tau)} := (i^{\sigma})^\tau.$$ \hspace{1cm} (2.29)

This may be represented as

$$i \mapsto i^\sigma \mapsto i^{(\sigma \tau)}.$$

Example 2.4.7. Let σ be the permutation of Example 2.4.5 and let τ be the permutation given in the table

<table>
<thead>
<tr>
<th>i</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>i^τ</td>
<td>4</td>
<td>1</td>
<td>6</td>
<td>5</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

Then we can find the table representing the permutation $\sigma \tau$ by rearranging the table for τ so that its first row is in the same order as the second row of the table for σ, i.e.,

<table>
<thead>
<tr>
<th>i</th>
<th>3</th>
<th>6</th>
<th>4</th>
<th>1</th>
<th>5</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>i^τ</td>
<td>6</td>
<td>3</td>
<td>5</td>
<td>4</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>
and then combining the two tables:

\[
\begin{array}{c|cccccc}
 i & 1 & 2 & 3 & 4 & 5 & 6 \\
 \sigma & 3 & 6 & 4 & 1 & 5 & 2 \\
 \sigma \tau & 6 & 3 & 5 & 4 & 2 & 1 \\
\end{array}
\]

That is, the table corresponding to the permutation \(\sigma \tau \) is

\[
\begin{array}{c|cccccc}
 i & 1 & 2 & 3 & 4 & 5 & 6 \\
 \sigma \tau & 6 & 3 & 5 & 4 & 2 & 1 \\
\end{array}
\]

\textbf{Definition 2.4.8 (Identity permutation).} The \textit{identity permutation} \(\text{id} : [n] \to [n] \) is the permutation defined by \(i^{\text{id}} = i \) for all \(i \in [n] \).

\textbf{Definition 2.4.9 (Inverse of a permutation).} let \(\sigma : [n] \to [n] \) be a permutation. Then the \textit{inverse} of \(\sigma \) is the permutation \(\sigma^{-1} \) such that \(\sigma \sigma^{-1} = \text{id} \). So \(\sigma^{-1} \) takes \(i^{\sigma} \) to \(i \).

\textbf{Example 2.4.10.} To find the table corresponding to the inverse of a permutation \(\sigma \), we first switch the rows of the table corresponding to \(\sigma \) and then rearrange the columns so that they are in natural order. For example, when we switch the rows of the table in Example \(\text{2.4.5} \) we have

\[
\begin{array}{c|cccccc}
 i & 3 & 6 & 4 & 1 & 5 & 2 \\
 \sigma^{-1} & 1 & 2 & 3 & 4 & 5 & 6 \\
\end{array}
\]

Rearranging the columns so that they are in natural order gives us the table

\[
\begin{array}{c|cccccc}
 i & 1 & 2 & 3 & 4 & 5 & 6 \\
 \sigma^{-1} & 4 & 6 & 1 & 3 & 5 & 2 \\
\end{array}
\]

\textbf{Definition 2.4.11.} Let \(\sigma : [n] \to [n] \) be a permutation. The permutation matrix corresponding to \(\sigma \), denoted \(P_\sigma \), is the \(n \times n \) matrix whose \((i,j) \) entry is 1 if \(\sigma(i) = j \) and 0 otherwise.

\textbf{Exercise 2.4.12.} Let \(\sigma, \tau : [n] \to [n] \) be permutations, let \(A \in \mathbb{F}^{k \times n} \), and let \(B \in \mathbb{F}^{n \times \ell} \).

(a) What is \(AP_\sigma \)?

(b) What is \(P_\sigma B \)?

(c) What is \(P_{\sigma^{-1}} \)?

(d) Show that \(P_\sigma P_\tau = P_{\tau \sigma} \) (note the conflict in conventions for composition of permutations and matrix multiplication).
2.5 Additional exercises

Exercise 2.5.1. Let \(A \in \mathbb{F}^{k \times n} \) be a matrix. Show, without calculation, that \(A^T A \) is symmetric.

Definition 2.5.2 (Commutator). Let \(A, B \in M_n(\mathbb{F}) \). The commutator of \(A \) and \(B \) is the matrix \([A, B] := AB - BA \).

Definition 2.5.3. Two matrices \(A, B \in M_n(\mathbb{F}) \) commute if \(AB = BA \), i.e., if \([A, B] = 0 \).

Exercise 2.5.4. (a) Find an example of two \(2 \times 2 \) matrices that do not commute.

(b) (Project) Interpret and prove the following statement:

Almost all pairs of \(2 \times 2 \) integral matrices (matrices in \(M_2(\mathbb{Z}) \)) do not commute.

Exercise 2.5.5. Let \(D \in M_n(\mathbb{F}) \) be a diagonal matrix such that all diagonal entries are distinct. Show that if \(A \in M_n(\mathbb{F}) \) commutes with \(D \) then \(A \) is a diagonal matrix.

Exercise 2.5.6. Show that only the scalar matrices (Def. 2.2.13) commute with all matrices in \(M_n(\mathbb{F}) \). (A scalar matrix is a matrix of the form \(\lambda I \).)

Exercise 2.5.7.

(a) Show that the commutator of two matrices over \(\mathbb{C} \) is never the identity matrix.

(b) Find \(A, B \in M_p(\mathbb{F}_p) \) such that their commutator is the identity.

Exercise 2.5.8 (Submatrix sum). Let \(I_1 \subseteq [k] \) and \(I_2 \subseteq [n] \), and let \(B \) be the submatrix (Def. 3.3.11) of \(A \in \mathbb{F}^{k \times n} \) with entries \(a_{ij} \) for \(i \in I_1, j \in I_2 \). Find vectors \(a \) and \(b \) such that \(a^T A b \) equals the sum of the entries of \(B \).

Definition 2.5.9 (Vandermonde matrix). The Vandermonde matrix generated by \(\alpha_1, \ldots, \alpha_n \) is the \(n \times n \) matrix

\[
V(\alpha_1, \ldots, \alpha_n) = \begin{pmatrix}
1 & 1 & \cdots & 1 \\
\alpha_1 & \alpha_2 & \cdots & \alpha_n \\
\alpha_1^2 & \alpha_2^2 & \cdots & \alpha_n^2 \\
\vdots & \vdots & \ddots & \vdots \\
\alpha_1^{n-1} & \alpha_2^{n-1} & \cdots & \alpha_n^{n-1}
\end{pmatrix}.
\] (2.30)
Exercise 2.5.10. Let A be a Vandermonde matrix generated by distinct α_i. Show that the rows of A are linearly independent. Do not use determinants.

Exercise 2.5.11. Prove that polynomials of a matrix commute: let A be a square matrix and let $f, g \in \mathbb{F}[t]$. Then $f(A)$ and $g(A)$ commute. In particular, A commutes with $f(A)$.

Definition 2.5.12 (Circulant matrix). The circulant matrix generated by the sequence $(\alpha_0, \alpha_1, \ldots, \alpha_{n-1})$ of scalars is the $n \times n$ matrix

$$C(\alpha_0, \alpha_1, \ldots, \alpha_{n-1}) = \begin{pmatrix} \alpha_0 & \alpha_1 & \cdots & \alpha_{n-1} \\ \alpha_{n-1} & \alpha_0 & \cdots & \alpha_{n-2} \\ \vdots & \vdots & \ddots & \vdots \\ \alpha_1 & \alpha_2 & \cdots & \alpha_0 \end{pmatrix} \quad (2.31)$$

Exercise 2.5.13. Prove that all circulant matrices commute. Prove this

(a) directly,

(b) in a more elegant way, by showing that all circulant matrices are polynomials of a particular circulant matrix.

Definition 2.5.14 (Jordan block). For $\lambda \in \mathbb{C}$ and $n \geq 1$, the Jordan block $J(n, \lambda)$ is the matrix

$$J(n, \lambda) := \lambda I + N_n \quad (2.32)$$

where N_n is the matrix defined in Notation 2.2.20.

Exercise 2.5.15. Let $f \in \mathbb{F}[t]$. Prove that $f(J(n, \lambda))$ is the matrix

$$\begin{pmatrix} f(\lambda) & f'(\lambda) & \frac{1}{2!} f^{(2)}(\lambda) & \cdots & \frac{1}{(n-1)!} f^{(n-1)}(\lambda) \\ f(\lambda) & f'(\lambda) & \cdots & \frac{1}{(n-2)!} f^{(n-2)}(\lambda) \\ \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ \emptyset & f(\lambda) & f'(\lambda) & f(\lambda) \end{pmatrix} \quad (2.33)$$

Exercise 2.5.16. The converse of the second statement in Ex. 2.5.11 would be:
The only matrices that commute with A are the polynomials of A.

(a) Find a matrix A for which (*) is false.

(b) For which diagonal matrices is (*) true?

(c) Prove: (*) is true for Jordan blocks.

(d) Characterize the matrices over \mathbb{C} for which (*) is true, in terms of their Jordan blocks (??).

Project 2.5.17. For $A \in M_n(\mathbb{R})$, let $f(A, k)$ denote the largest absolute value of all entries of A^k, and define

$$M_n^{(\lambda)}(\mathbb{R}) := \{A \in M_n(\mathbb{R}) \mid f(A, 1) \leq \lambda\} \quad (2.34)$$

(the matrices where all entries have absolute value $\leq \lambda$). Define

$$f_1(n, k) = \max_{A \in M_n^{(1)}(\mathbb{R})} f(A, k),$$

$$f_2(n, k) = \max_{A \in M_n^{(1)}(\mathbb{R})} f(A, k),$$

$$f_3(n, k) = \max_{A \in M_n^{(1)}(\mathbb{R})} f(A, k).$$

Find the rate of growth of these functions in terms of k and n.

Chapter 3

(\mathbb{F}) Matrix Rank

3.1 Column and row rank

In Section 1.3 we defined the rank of a list of column or row vectors. We now view this concept in terms of the columns and rows of a matrix.

Definition 3.1.1 (Column- and row-rank). The column-rank of a matrix is the rank of the list of its column vectors. The row-rank of a matrix is the rank of the list of its row vectors. A matrix \(A \in \mathbb{F}^{k \times n} \) is of full row-rank if its row-rank is equal to \(k \), and of full column-rank if its column-rank is equal to \(n \). We denote the column-rank of \(A \) by \(\text{rk}_{\text{col}} A \) and the row-rank of \(A \) by \(\text{rk}_{\text{row}} A \).

Definition 3.1.2 (Column and row space). The column space of a matrix \(A \), denoted \(\text{col} A \), is the span of its columns. The row space of a matrix \(A \), denoted \(\text{row} A \), is the span of its rows.

In particular, for a \(k \times n \) matrix \(A \), we have \(\text{col} A \leq \mathbb{F}^k \) and \(\text{row} A \leq \mathbb{F}^n \).

Proposition 3.1.3. The column-rank of a matrix is equal to the dimension of its column space, and the row-rank of a matrix is equal to the dimension of its row space.

Definition 3.1.4 (Full column- and row-rank). A \(k \times n \) matrix \(A \) is of full column-rank if its column-rank is \(k \). \(A \) is of full row-rank if its row-rank is \(n \).

Exercise 3.1.5. Let \(A \) and \(B \) be \(k \times n \) matrices. Then

\[
| \text{rk}_{\text{col}} A - \text{rk}_{\text{col}} B | \leq \text{rk}_{\text{col}}(A + B) \leq \text{rk}_{\text{col}} A + \text{rk}_{\text{col}} B .
\] (3.1)

Exercise 3.1.6. Let \(A \) be a \(k \times n \) matrix and let \(B \) be an \(n \times \ell \) matrix. Then \(\text{col}(AB) \leq \text{col} A \).

Exercise 3.1.7. Let \(A \) be a \(k \times n \) matrix and let \(B \) be an \(n \times \ell \) matrix. Then \(\text{rk}_{\text{col}}(AB) \leq \text{rk}_{\text{col}} A \).
3.2 Elementary operations and Gaussian elimination

Definition 3.2.1 (Elementary column and row operations). Let \(A = [a_1 \mid \cdots \mid a_n] \) be a matrix. The elementary column operation denoted by \((i, j, \lambda)\) is the operation which replaces \(a_i \) by \(a_i - \lambda a_j \) \((i \neq j)\). Elementary row operations are defined analogously.

Definition 3.2.2 (Elementary matrix). We denote by \(E_{ij} \) the \(n \times n \) matrix which has 1 in the \((i, j)\) position and 0 in every other position. An elementary matrix \(B \) is an \(n \times n \) matrix of the form \(B = I - \lambda E_{ij} \) for \(\lambda \in \mathbb{F} \).

Proposition 3.2.3. Let \(A \in \mathbb{F}^{k \times n} \), let \(\lambda \in \mathbb{F} \), and let \(B \) be the \(n \times n \) elementary matrix \(B = I - \lambda E_{ij} \). Show that \(AB \) is the matrix obtained by performing the elementary column operation \((j, i, \lambda)\) on \(A \). Infer (do not repeat the same argument) that elementary row operations correspond to multiplication by elementary matrices on the left.

Proposition 3.2.4. Let \(A \) be a matrix with linearly independent rows. Then by performing a series of row operations and by permuting rows and columns, we can bring the matrix into the form \([D \mid B]\) where \(D \) is a diagonal matrix whose diagonal entries are all nonzero.

Proposition 3.2.5. By a series of elementary column operations, any matrix can be transformed into a block matrix with four blocks where the top-left block is a diagonal matrix and both bottom blocks are 0.

Exercise 3.2.6. Any matrix can be transformed into an upper triangular matrix by performing a series of elementary row operations and permuting the columns.

The process of transforming a matrix into an upper triangular matrix by performing elementary row operations is called Gaussian elimination.

3.3 Invariance of column and row rank, the Second Miracle of Linear Algebra

The main result of this section is the following theorem.

Theorem 3.3.1 (Second Miracle of Linear Algebra). The row-rank of a matrix is equal to its column-rank.

In order to prove this theorem, we will first need to prove the following two lemmas.

Lemma 3.3.2. Elementary column operations do not change the column-rank of a matrix. ♦

The proof of the next lemma is somewhat more involved; we will break its proof into exercises.

Lemma 3.3.3. Elementary row operations do not change the column-rank of a matrix. ☐

Exercise 3.3.4. Use these two lemmas to prove Theorem 3.3.1.

In order to complete our proof of the Second Miracle, we now only need to prove Lemma 3.3.3.

The following exercise demonstrates why the proof of Lemma 3.3.3 is not as straightforward as the proof of Lemma 3.3.2.

Exercise 3.3.5. An elementary row operation can change the column space of a matrix.

Proposition 3.3.6. Let $A = [a_1 \mid \cdots \mid a_n] \in \mathbb{F}^{k \times n}$ be a matrix, and suppose there is a linear relation among the columns, say

$$\sum_{i=1}^{n} \alpha_i a_i = 0.$$

Let $A' = [a'_1 \mid \cdots \mid a'_n]$ be the result of applying an elementary row operation to A. Then the columns of A' obey the same linear relation, that is,

$$\sum_{i=1}^{n} \alpha_i a'_i = 0.$$

Corollary 3.3.7. If the columns $v_{i_1}, \ldots, v_{i_\ell}$ are linearly independent, then this remains true after an elementary row operation.

Exercise 3.3.8. Complete the proof of Lemma 3.3.3.

* * * *

Because the Second Miracle of Linear Algebra establishes that the row-rank and column-rank of a matrix A are equal, it is no longer necessary to differentiate between them; this quantity is simply referred to as the rank of A, denoted $\text{rk} A$.

Definition 3.3.9 (Full rank). Let $A \in M_n(\mathbb{F})$ be a square matrix. Then A is of full rank if $\text{rk} A = n.$
Observe that full rank is the same as full column- or row-rank (Def. 3.1.4) only in the case of square matrices.

Definition 3.3.10 (Nonsingular matrix). An $n \times n$ matrix is **nonsingular** if it is of full rank, i.e., $\text{rk} A = n$.

Definition 3.3.11 (Submatrix). Let $A \in \mathbb{F}^{k \times n}$ be a matrix. Then the matrix B is a **submatrix** of A if it can be obtained by deleting rows and columns from A.

In other words, a submatrix of a matrix A is a matrix obtained by taking the intersection of a set of the rows of A with a set of the columns of A.

Theorem 3.3.12 (Rank vs. nonsingular submatrices). Let $A \in \mathbb{F}^{k \times n}$ be a matrix. Then $\text{rk} A$ is the largest value of r such that A has a nonsingular $r \times r$ submatrix. \diamond

Exercise 3.3.13. Show that for all k, the intersection of k linearly independent rows with k linearly independent columns can be singular. In fact, it can be the zero matrix.

Exercise 3.3.14. Let A be a matrix of rank r. Show that the intersection of any r linearly independent rows with any r linearly independent columns is a nonsingular $r \times r$ submatrix of A. (Note: this exercise is more difficult than Theorem 3.3.12 and is not needed for the proof of Theorem 3.3.12).

Exercise 3.3.15. Let A be a matrix. Show that if the intersection of k linearly independent columns with ℓ linearly independent rows of A has rank s, then $\text{rk}(A) \geq k + \ell - s$.

3.4 Matrix rank and invertibility

Definition 3.4.1 (Left and right inverse). Let $A \in \mathbb{F}^{k \times n}$. The matrix $B \in \mathbb{F}^{n \times k}$ is a **left inverse** of A if $BA = I_n$. Likewise, the matrix $C \in \mathbb{F}^{n \times k}$ is a **right inverse** of A if $AC = I_k$.

Proposition 3.4.2. Let $A \in \mathbb{F}^{k \times n}$.

(a) Show that A has a right inverse if and only if A has full row-rank, i.e., $\text{rk} A = k$.

(b) Show that A has a left inverse if and only if A has full column-rank, i.e., $\text{rk} A = n$.

Note in particular that if A has a right inverse, then $k \leq n$, and if A has a left inverse, then $k \geq n$.
Corollary 3.4.3. Let A be a nonsingular square matrix. Then A has both a right and a left inverse.

Exercise 3.4.4. For all $k < n$, find a $k \times n$ matrix that has infinitely many right inverses.

Definition 3.4.5 (Two-sided inverse). Let $A \in M_n(\mathbb{F})$. Then the matrix $B \in M_n(\mathbb{F})$ is a (two-sided) inverse of A if $AB = BA = I_n$. The inverse of A is denoted A^{-1}. If A has an inverse, then A is said to be invertible.

Proposition 3.4.6. Let A be a matrix. If A has a left inverse as well as a right inverse, then A has a unique two-sided inverse and it has no left or right inverse other than the two-sided inverse.

The proof of this lengthy statement is just one line, based solely on the associativeness of matrix multiplication. The essence of the proof is in the next lemma.

Lemma 3.4.7. Let $A \in \mathbb{F}^{k \times n}$ be a matrix with a right inverse B and a left inverse C. Then $B = C$ is a two-sided inverse of A and $k = n$. ◊

Corollary 3.4.8. Under the conditions of Lemma 3.4.7, $k = n$ and $B = C$ is a two-sided inverse. Moreover, if C_1 is also a left inverse, then $C_1 = C$; analogously, if B_1 is also a right inverse, then $B_1 = B$.

Corollary 3.4.9. Let A be a matrix with a left inverse. Then A has at most one right inverse.

Corollary 3.4.10. A matrix A has an inverse if and only if A is a nonsingular square matrix.

Corollary 3.4.11. If A has both a right and a left inverse then $k = n$.

Theorem 3.4.12. For $A \in M_n(\mathbb{F})$, the following are equivalent.

(a) $\text{rk} A = n$

(b) A has a right inverse

(c) A has a left inverse

(d) A has an inverse

◊

Exercise 3.4.13. Assume \mathbb{F} is infinite and let $A \in \mathbb{F}^{k \times n}$ where $n > k$. If A has a right inverse, then A has infinitely many right inverses.
3.5 Codimension (optional)

The reader comfortable with abstract vector spaces can skip to Chapter ?? for a more general discussion of this material.

Definition 3.5.1 (Codimension). Let \(W \leq \mathbb{F}^n \). The codimension of \(W \) is the minimum number of vectors that together with \(W \) generate \(\mathbb{F}^n \) and is denoted by \(\text{codim} W \) or \(\text{codim}_W \). (Note that this is the dimension of the quotient space \(\mathbb{F}^n/W \); see Def. ??)

Proposition 3.5.2. If \(W \leq \mathbb{F}^n \) then \(\text{codim} W = n - \dim W \).

Proposition 3.5.3 (Dual modular equation). Let \(U, W \leq \mathbb{F}^n \). Then

\[
\text{codim}(U + W) + \text{codim}(U \cap W) = \text{codim} U + \text{codim} W .
\]

(3.2)

Corollary 3.5.4. Let \(U, W \leq \mathbb{F}^n \). Then

\[
\text{codim}(U \cap W) \leq \text{codim} U + \text{codim} W .
\]

(3.3)

Corollary 3.5.5. Let \(U, W \leq \mathbb{F}^n \) with \(\dim U = r \) and \(\text{codim} W = t \). Then

\[
\dim(U \cap W) \geq \max\{r - t, 0\} .
\]

(3.4)

In Section ??, we defined the rank of a set of column vectors (Def. 1.3.28) and then showed this to be equal to be the dimension of their span (Cor. 1.3.46). We now define the corank of a set of vectors.

Definition 3.5.6 (Corank). The corank of a set \(S \subseteq \mathbb{F}^n \), denoted \(\text{corank} S \), is defined by

\[
\text{corank} S := \text{codim}(\text{span} S) .
\]

(3.5)

Definition 3.5.7 (Null space). The null space or kernel of a matrix \(A \in \mathbb{F}^{k \times n} \), denoted \(\text{null}(A) \), is the set

\[
\text{null}(A) = \{ v \in \mathbb{F}^n \mid A v = 0 \} .
\]

(3.6)

Exercise 3.5.8. Let \(A \in \mathbb{F}^{k \times n} \). Show that

\[
\text{rk} A = \text{codim}(\text{null}(A)) .
\]

(3.7)
Proposition 3.5.9. Let $U \leq \mathbb{F}^n$ and let $W \leq \mathbb{F}^k$ such that $\dim W = \text{codim } U = \ell$. Then there is a matrix $A \in \mathbb{F}^{k \times n}$ such that $\text{null}(A) = U$ and $\text{col } A = W$.

Definition 3.5.10 (Corank of a matrix). Let $A \in \mathbb{F}^{k \times n}$. We define the corank of A as the corank of its column space, i.e.,

$$\text{corank } A := k - \text{rk } A .$$

Exercise 3.5.11. When is $\text{corank } A = \text{corank } A^T$?

Exercise 3.5.12. Let $A \in \mathbb{F}^{k \times n}$ and let $B \in \mathbb{F}^{n \times \ell}$. Show that

$$\text{corank}(AB) \leq \text{corank } A + \text{corank } B .$$

3.6 Additional exercises

Exercise 3.6.1. Let $A = [v_1 | \cdots | v_n]$ be a matrix. True or false: if the columns v_1, \ldots, v_ℓ are linearly independent this remains true after performing elementary column operations on A.

Proposition 3.6.2. Let A be a matrix with at most one nonzero entry in each row and column. Then $\text{rk } A$ is the number of nonzero entries in A.

Numerical exercise 3.6.3. Perform a series of elementary row operations to determine the rank of the matrix

$$
\begin{pmatrix}
1 & 3 & 2 \\
-5 & -2 & 3 \\
-3 & 4 & 7
\end{pmatrix} .
$$

Self-check: use a different sequence of elementary operations and verify that you obtain the same answer.

Exercise 3.6.4. Determine the ranks of the $n \times n$ matrices

(a) $A = (\alpha_{ij})$ where $\alpha_{ij} = i + j$

(b) $B = (\beta_{ij})$ where $\beta_{ij} = ij$

(c) $C = (\gamma_{ij})$ where $\gamma_{ij} = i^2 + j^2$
Proposition 3.6.5. Let $A \in \mathbb{F}^{k \times \ell}$ and $B \in \mathbb{F}^{\ell \times m}$. Then

$$\text{rk}(AB) \leq \min\{\text{rk}(A), \text{rk}(B)\}.$$

Proposition 3.6.6. Let $A, B \in \mathbb{F}^{k \times \ell}$. Then $\text{rk}(A + B) \leq \text{rk}(A) + \text{rk}(B)$.

Exercise 3.6.7. Find an $n \times n$ matrix A of rank $n - 1$ such that $A^n = 0$.

Exercise 3.6.8. Let $A \in \mathbb{F}^{k \times n}$. Then $\text{rk} A$ is the smallest r such that there exist matrices $B \in \mathbb{F}^{k \times r}$ and $C \in \mathbb{F}^{r \times n}$ with $A = BC$.

Exercise 3.6.9. Show that the matrix A is of rank r if and only if A can be expressed as the sum of r matrices of rank 1.

Exercise 3.6.10 (Characterization of matrices of rank 1). Let $A \in \mathbb{F}^{k \times n}$. Show that $\text{rk} A = 1$ if and only if there exist column vectors $a \in \mathbb{F}^k$ and $b \in \mathbb{F}^n$ such that $A = ab^T$.

Let $A \in \mathbb{F}^{k \times n}$ and let \mathbb{F} be a subfield of the field \mathbb{G}. Then we can also view A as a matrix over \mathbb{G}. However, this changes the notion of linear combinations and therefore in principle it could affect the rank. We shall see that this is not the case, but in order to be able to reason about this question, we temporarily use the notation $\text{rk}_F(A)$ and $\text{rk}_G(A)$ to denote the rank of A with respect to the corresponding fields. We will also write rk_p to mean rk_F.

Lemma 3.6.11. Being nonsingular is insensitive to field extensions. ☐

Corollary 3.6.12. Let \mathbb{F} be a subfield of \mathbb{G}, and let $A \in \mathbb{F}^{k \times n}$. Then

$$\text{rk}_\mathbb{F}(A) = \text{rk}_\mathbb{G}(A).$$

Exercise 3.6.13. Let $A \in \mathbb{R}^{k \times n}$ be a matrix with integer coefficients. Then the entries of A can also be considered residue classes of \mathbb{Z}, that is, we can instead consider A as an element of $\mathbb{F}_p^{k \times n}$. Observe that \mathbb{F}_p is not a subfield of \mathbb{R}, because the operations of addition and multiplication are not the same.

(a) Show that $\text{rk}_p(A) \leq \text{rk}(A)$.

(b) For every p, find a $(0, 1)$ matrix A (that is, a matrix whose entries are only 0 and 1) where this inequality is strict, i.e., $\text{rk}_p(A) < \text{rk}(A)$.

(a) Let A be a matrix with real entries. Then $\text{rk}(A^T A) = \text{rk}(A)$.

(b) This is false over \mathbb{C} and over \mathbb{F}_p.

Exercise 3.6.15.

(a) Show that $\text{rk}(J_n - I_n) = n$.

(b) Show that

$$\text{rk}_2(J_n - I_n) = \begin{cases} n & \text{n even} \\ n - 1 & \text{n odd} \end{cases}.$$

\heartsuit Exercise 3.6.16. Let $A = (a_{ij})$ be a matrix of rank r, and let A' be the matrix obtained by squaring every element of A.

(a) Let $A' = (a_{ij}^2)$ be the matrix obtained by squaring every element of A. Show that $\text{rk}(A') \leq \binom{r+1}{2}$.

(b) Now let $A' = (a_{ij}^d)$. Show that $\text{rk}(A') \leq \binom{r+d-1}{d}$.

(c) Let f be a polynomial of degree d, and let $A_f = (f(a_{ij}))$. Prove that $\text{rk}(A_f) \leq \binom{r+d}{d}$.

(d) Show that each of these bounds are tight for all r, i.e., for every r and d there exists a matrix A such that $\text{rk} A' = \binom{r+d-1}{d}$, and for every r and f there exists a matrix B such that $\text{rk} B_f = \binom{r+d}{d}$.
Chapter 4

Theory of Systems of Linear Equations I: Qualitative Theory

4.1 Homogeneous systems of linear equations

Matrices allow us to concisely express systems of linear equations. In particular, consider the general system of \(k \) linear equations in \(n \) unknowns,

\[
\begin{align*}
\alpha_{11}x_1 + \alpha_{12}x_2 + \cdots + \alpha_{1n}x_n &= \beta_1 \\
\alpha_{21}x_1 + \alpha_{22}x_2 + \cdots + \alpha_{2n}x_n &= \beta_2 \\
&\vdots \\
\alpha_{k1}x_1 + \alpha_{k2}x_2 + \cdots + \alpha_{kn}x_n &= \beta_k
\end{align*}
\]

Here, the \(\alpha_{ij} \) and \(\beta_i \) are scalars, while the \(x_j \) are unknowns. In Section 1.1, we represented this system as a linear combination of column vectors. Matrices allow us to write this system even more concisely as \(Ax = b \), where

\[
A = \begin{pmatrix}
\alpha_{11} & \alpha_{12} & \cdots & \alpha_{1n} \\
\alpha_{21} & \alpha_{22} & \cdots & \alpha_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
\alpha_{k1} & \alpha_{k2} & \cdots & \alpha_{kn}
\end{pmatrix}, \quad x = \begin{pmatrix} x_1 \\
x_2 \\
\vdots \\
x_n \end{pmatrix}, \quad b = \begin{pmatrix} \beta_1 \\
\beta_2 \\
\vdots \\
\beta_k \end{pmatrix}. \quad (4.1)
\]
4.1. HOMOGENEOUS SYSTEMS OF LINEAR EQUATIONS

We know that the simplest linear equation is of the form \(ax = b \) (one equation in one unknown); remarkably, thanks to the power of our matrix formalism, essentially the same equation now describes the far more complex systems of linear equations. The first question we ask about any system of equations is its solvability.

Definition 4.1.1 (Solvable system of linear equations). Given a matrix \(A \in \mathbb{F}^{k \times n} \) and a vector \(b \in \mathbb{F}^k \), we say that the system \(Ax = b \) of linear equations is *solvable* if there exists a vector \(x \in \mathbb{F}^n \) that satisfies \(Ax = b \).

Definition 4.1.2 (Homogeneous system of linear equations). The system \(Ax = 0 \) is called a *homogeneous* system of linear equations.

Every system of homogeneous linear equations is solvable.

Definition 4.1.3 (Trivial solution to a homogeneous system of linear equations). The *trivial solution* to the homogeneous system of linear equations \(Ax = 0 \) is the solution \(x = 0 \).

So when presented with a homogeneous system of linear equations, the question we ask is not, “Is this system solvable?” but rather, “Does this system have a nontrivial solution?”

Definition 4.1.4 (Solution space). Let \(A \in \mathbb{F}^{k \times n} \). The set of solutions to the homogeneous system of linear equations \(Ax = 0 \) is the set \(U = \{ x \in \mathbb{F}^n \mid Ax = 0 \} \) and is called the *solution space* of \(Ax = 0 \). Ex. 4.1.7 explains the terminology.

Definition 4.1.5 (Null space). The *null space* or kernel of a matrix \(A \in \mathbb{F}^{k \times n} \), denoted \(\text{null}(A) \), is the set

\[
\text{null}(A) = \{ v \in \mathbb{F}^n \mid Av = 0 \} .
\]

Definition 4.1.6. The *nullity* of a matrix \(A \) is the dimension of its null space.

For the following three exercises, let \(A \in \mathbb{F}^{k \times n} \) and let \(U \leq \mathbb{F}^n \) be the solution space of the system \(Ax = 0 \).

Exercise 4.1.7. Prove that \(U \leq \mathbb{F}^n \).

Exercise 4.1.8. Show that \(\text{null}(A) = U \).

Proposition 4.1.9. Let \(A \in \mathbb{F}^{k \times n} \) and consider the homogeneous system \(Ax = b \).

(a) Let \(\text{rk} A = r \) and let \(n = r + d \). Then it is possible to relabel the unknowns \(x_1, \ldots, x_n \) as \(x'_1, \ldots, x'_n \), so that \(x'_j \) can be represented as a linear combination of \(x'_{d+1}, \ldots, x'_n \) for \(j = 1, \ldots, d \), say

\[
x'_i = \sum_{j=d+1}^{n} \lambda_{ij} x'_j .
\]
(b) The vectors $e_i + \sum_{j=d+1}^{n} \lambda_{ij} \lambda_j$ form a basis of U', the solution space of the relabeled system of equations.

(c) $\dim U = \dim U'$

(d) $\dim U = n - \text{rk } A$

An immediate consequence of (d) is the Rank-Nullity Theorem, which will be crucial in our study of linear maps in Chapter 16.

Corollary 4.1.10 (Rank-Nullity Theorem). Let $A \in \mathbb{F}^{k \times n}$ be a matrix. Then

$$\text{rk}(A) + \text{nullity}(A) = n .$$

(4.3)

An explanation of (d) is that $\dim U$ measures the number of coordinates of x that we can choose independently. This quantity is referred to by physicists as the “degree of freedom” left in our choice of x after the set $Ax = b$ of constraints. If there are no constraints, the degree of freedom of the system is equal to n. It is plausible that each constraint reduces the degree of freedom by 1, which would suggest $\dim U = n - k$, but effectively there are only $\text{rk } A$ constraints because every equation that is a linear combination of previous equations can be thrown out. This makes it plausible that the degree of freedom is $n - \text{rk } A$. This argument is not a proof, however.

Proposition 4.1.11. Let $A \in \mathbb{F}^{k \times n}$ and consider the homogeneous system $Ax = 0$ of linear equations. Let U be the solution space of $Ax = 0$. Prove that the following are equivalent.

(a) $Ax = 0$ has no nontrivial solution, i.e., $U = \{0\}$

(b) The columns of A are linearly independent

(c) The rows of A span \mathbb{F}^n

(d) A has full row rank, i.e., $\text{rk } A = n$

(e) A has a left inverse

Proposition 4.1.12. Let A be a square matrix. Then $Ax = 0$ has no nontrivial solution if and only if A is nonsingular.

1In Chapter 16 we will formulate the Rank-Nullity Theorem in terms of linear maps rather than matrices, but the two formulations are equivalent.
4.2 General systems of linear equations

Proposition 4.2.1. The system of linear equations $Ax = b$ is solvable if and only if $b \in \text{col } A$.

Definition 4.2.2 (Augmented system). When speaking of the system $Ax = b$, we call A the matrix of the system and $[A \mid b]$ (the column b added to A) the augmented system.

Proposition 4.2.3. The system $Ax = b$ of linear equations is solvable if and only if the matrix of the system and the augmented matrix have the same rank, i.e., $\text{rk } A = \text{rk } [A \mid b]$.

Definition 4.2.4 (Translation). Let $S \subseteq \mathbb{F}^n$, and let $v \in \mathbb{F}^n$. The set

$$S + v = \{s + v \mid s \in S\} \quad (4.4)$$

is called the translate of S by v. Such an object is called an affine subspace of \mathbb{F}^n (Def. 5.1.3).

Proposition 4.2.5. Let $S = \{x \in \mathbb{F}^n \mid Ax = b\}$ be the set of solutions to a system of linear equations. Then S is either empty or a translate of a subspace of \mathbb{F}^n, namely, of the solution space of to the homogeneous system $Ax = 0$.

Proposition 4.2.6 (Equivalent characterizations of nonsingular matrices). Let $A \in M_n(\mathbb{F})$. The following are equivalent.

(a) A is nonsingular, i.e., $\text{rk}(A) = n$

(b) The rows of A are linearly independent

(c) The columns of A are linearly independent

(d) The rows of A span \mathbb{F}^n

(e) The columns of A span \mathbb{F}^n

(f) The rows of A form a basis of \mathbb{F}^n

(g) The columns of A form a basis of \mathbb{F}^n

(h) A has a left inverse

(i) A has a right inverse
(j) A has a two-sided inverse

(k) $Ax = 0$ has no nontrivial solution

(l) For all $b \in \mathbb{F}^n$, $Ax = b$ is solvable

(m) For all $b \in \mathbb{F}^n$, $Ax = b$ has a unique solution

Our discussion of the determinant in the next chapter will allow us to add a particularly important additional property:

(n) $\det A \neq 0$
Chapter 5

(\mathbb{F}, \mathbb{R}) Affine and Convex Combinations (optional)

The reader comfortable with abstract vector spaces can skip to Chapter ?? for a more general discussion of this material.

5.1 (\mathbb{F}) Affine combinations

In Section 1.1, we defined linear combinations of column vectors (Def. 1.1.13). We now consider affine combinations.

Definition 5.1.1 (Affine combination). An affine combination of the vectors $v_1, \ldots, v_k \in \mathbb{F}^n$ is a linear combination $\sum_{i=1}^{k} \alpha_i v_i$ where $\sum_{i=1}^{k} \alpha_i = 1$.

Example 5.1.2.

$2v_1 - \frac{1}{2}v_2 - \frac{1}{3}v_4 - \frac{1}{6}v_5$

is an affine combination of the column vectors v_1, \ldots, v_5.

Definition 5.1.3 (Affine-closed set). The set $S \subseteq \mathbb{F}^n$ is affine-closed if it is closed under affine combinations.

Fact 5.1.4. The empty set is affine-closed (why?).
Definition 5.1.5 (Affine subspace). A nonempty, affine-closed subset U of \mathbb{F}^n is called an affine subspace of \mathbb{F}^n (notation: $U \leq_{aff} \mathbb{F}^n$).

Proposition 5.1.6. The intersection of a (finite or infinite) family of affine-closed subsets of \mathbb{F}^n is affine-closed. In other words, an intersection affine subspaces is either empty or an affine subspace.

Throughout this book, the term “subspace” refers to subsets that are closed under linear combinations (\textit{I12} Def. 1.2.1). Subspaces are also referred to as “linear subspaces.” This (redundant) longer term is especially useful in contexts where affine subspaces are discussed in order to distinguish linear subspaces from affine subspaces.

Definition 5.1.7 (Affine hull). The affine hull of a subset $S \subseteq \mathbb{F}^n$, denoted $\text{aff } S$, is the smallest affine-closed set containing S, i.e.,

(a) $\text{aff } S \supseteq S$;

(b) $\text{aff } S$ is affine-closed;

(c) for every affine set $T \subseteq \mathbb{F}^n$, if $T \supseteq S$ then $T \supseteq \text{aff } S$.

Fact 5.1.8. $\text{aff } \emptyset = \emptyset$.

Contrast this with the fact that $\text{span } \emptyset = \{0\}$.

Theorem 5.1.9. Let $S \subseteq \mathbb{F}^n$. Then $\text{aff } S$ exists and is unique. \hfill ♦

Theorem 5.1.10. For $S \subseteq \mathbb{F}^n$, $\text{aff } S$ is the set of all affine combinations of the finite subsets of S. \hfill ♦

Proposition 5.1.11. Let $S \subseteq \mathbb{F}^n$. Then $\text{aff(aff } S) = \text{aff } S$.

Proposition 5.1.12. Let $S \subseteq \mathbb{F}^n$. Then S is affine-closed if and only if $S = \text{aff } S$.

Proposition 5.1.13. Let $S \subseteq \mathbb{F}^n$ be affine-closed. Then $S \leq \mathbb{F}^n$ if and only if $0 \in S$.

Proposition 5.1.14.

(a) Let $W \leq \mathbb{F}^n$. All translates $W + v$ of W (\textit{I42} Def. 4.2.4) are affine subspaces.

(b) Every affine subspace $S \leq_{aff} \mathbb{F}^n$ is the translate of a (unique) subspace of \mathbb{F}^n.
5.1. AFFINE COMBINATIONS

Proposition 5.1.15. The intersection of a (finite or infinite) family of affine subspaces is either empty or equal to a translate of the intersection of their corresponding linear subspaces.

* * *

Next we connect these concepts with the theory of systems of linear equations.

Exercise 5.1.16. Let $A \in \mathbb{F}^{k \times n}$ and let $b \in \mathbb{F}^k$. Then the set of solutions to the system $Ax = b$ of linear equations is an affine-closed subset of \mathbb{F}^n.

The next exercise shows the converse.

Exercise 5.1.17. Every affine-closed subset of \mathbb{F}^n is the set of solutions to the system $Ax = b$ of linear equations for some $A \in \mathbb{F}^{k \times n}$ and $b \in \mathbb{F}^k$.

Proposition 5.1.18 (General vs. homogeneous systems of linear equations). Let $A \in \mathbb{F}^{k \times n}$ and $b \in \mathbb{F}^n$. Let $S = \{x \in \mathbb{F}^n \mid Ax = b\}$ be the set of solutions of the system $Ax = b$ and let $U = \{x \in \mathbb{F}^n \mid Ax = 0\}$ be the set of solutions of the corresponding system of homogeneous linear equations. Then either S is empty or S is a translate of U.

* * *

We now study geometric features of \mathbb{F}^n, viewed as an affine space.

Proposition 5.1.19. The span of the set $S \subseteq \mathbb{F}^n$ is the affine hull of $S \cup \{0\}$.

Proposition 5.1.20. Let $S \subseteq W$ be nonempty. Then for any $u \in S$, we have

$$\text{aff } S = u + \text{span}(S - u)$$ \hspace{1cm} (5.1)

where $S - u$ is the translate of S by $-u$.

Definition 5.1.21 (Dimension of an affine subspace). The (affine) dimension of an affine subspace $U \leq_{\text{aff}} \mathbb{F}^n$, denoted $\dim_{\text{aff}} U$, is the dimension of its corresponding linear subspace (of which it is a translate). In order to assign a dimension to all affine-closed sets, we adopt the convention that $\dim \emptyset = -1$.

Exercise 5.1.22. Let $U \leq \mathbb{F}^k$. Then $\dim_{\text{aff}} U = \dim U$.

Exercise 5.1.23. What are the 0-dimensional affine subspaces?

Definition 5.1.24 (Affine independence). The vectors \(v_1, \ldots, v_k \in \mathbb{F}^n \) are affine-independent if for every \(\alpha_1, \ldots, \alpha_k \in \mathbb{F} \), the two conditions \(\sum_{i=1}^{k} \alpha_i v_i = 0 \) and \(\sum_{i=1}^{k} \alpha_i = 0 \) imply \(\alpha_1 = \cdots = \alpha_k = 0 \).

Proposition 5.1.25. The vectors \(v_1, \ldots, v_k \in \mathbb{F}^n \) are affine-independent if and only if none of them belongs to the affine hull of the others.

Fact 5.1.26. Any single vector is affine-independent and affine-closed at the same time.

Proposition 5.1.27 (Translation invariance). Let \(v_1, \ldots, v_k \in \mathbb{F}^n \) be affine-independent and let \(w \in \mathbb{F}^n \) be any vector. Then \(v_1 + w, \ldots, v_k + w \) are also affine-independent.

Proposition 5.1.28 (Affine vs. linear independence). Let \(v_1, \ldots, v_k \in \mathbb{F}^n \).

(a) For \(k \geq 0 \), the vectors \(v_1, \ldots, v_k \) are linearly independent if and only if the vectors \(0, v_1, \ldots, v_k \) are affine-independent.

(b) For \(k \geq 1 \), the vectors \(v_1, \ldots, v_k \) are affine-independent if and only if the vectors \(v_2 - v_1, \ldots, v_k - v_1 \) are linearly independent.

Definition 5.1.29 (Affine basis). An affine basis of an affine subspace \(W \leq_{\text{aff}} \mathbb{F}^n \) is an affine-independent set \(S \) such that \(\text{aff } S = W \).

Proposition 5.1.30. Let \(W \) be an affine subspace of \(\mathbb{F}^n \). Every affine basis of \(W \) has \(1 + \text{dim } W \) elements.

Corollary 5.1.31. If \(W_1, \ldots, W_k \) are affine subspaces of \(\mathbb{F}^n \), then

\[
\dim_{\text{aff}} (\text{aff}\{W_1, \ldots, W_k\}) \leq (k - 1) + \sum_{i=1}^{k} \dim_{\text{aff}} W_i .
\] (5.2)
5.2 (F) Hyperplanes

Definition 5.2.1 (Linear hyperplane). A linear hyperplane of \(\mathbb{F}^n \) is a subspace of \(\mathbb{F}^n \) of codimension 1 (\(\text{[Cor. 3.5.1]} \)).

Definition 5.2.2 (Codimension of an affine subspace). The (affine) codimension of an affine subspace \(U \leq_{\text{aff}} \mathbb{F}^n \), denoted \(\text{codim}_{\text{aff}} U \), is the codimension of its corresponding linear subspace (of which it is a translate).

Definition 5.2.3 (Hyperplane). A hyperplane is an affine subspace of codimension 1.

Proposition 5.2.4. Let \(S \subseteq \mathbb{F}^n \) be a hyperplane. Then there exist a nonzero vector \(a \in \mathbb{F}^n \) and \(\beta \in \mathbb{F} \) such that \(a^T v = \beta \) if and only if \(v \in S \).

The vector \(a \) whose existence is guaranteed by the preceding proposition is called the normal vector of the hyperplane \(S \).

Proposition 5.2.5. Let \(W \leq \mathbb{F}^n \). Then

(a) \(W \) is the intersection of linear hyperplanes;

(b) if \(\dim W = k \), then \(W \) is the intersection of \(n - k \) linear hyperplanes.

Proposition 5.2.6. Let \(W \leq_{\text{aff}} \mathbb{F}^n \) be an affine subspace. Then

(a) \(W \) is the intersection of hyperplanes;

(b) if \(\dim_{\text{aff}} W = k \), then \(W \) is the intersection of \(n - k \) hyperplanes.

5.3 (R) Convex combinations

In the preceding section, we studied affine combinations over an arbitrary field \(\mathbb{F} \). We now restrict ourselves to the case where \(\mathbb{F} = \mathbb{R} \).

Definition 5.3.1 (Convex combination). A convex combination is an affine combination with non-negative coefficients. So the expression \(\sum_{i=1}^{k} \alpha_i v_i \) is a convex combination if \(\sum_{i=1}^{k} \alpha_i = 1 \) and \(\alpha_i \geq 0 \) for all \(i \).
Example 5.3.2.

\[\frac{1}{2}v_1 + \frac{1}{4}v_2 + \frac{1}{6}v_4 + \frac{1}{12}v_5 \]

is a convex combination of the vectors \(v_1, \ldots, v_5 \). Note that the affine combination in Example 5.1.2 is not convex.

Fact 5.3.3. Every convex combination is an affine combination.

Definition 5.3.4 (Convex set). A convex set is a subset \(S \subseteq \mathbb{R}^n \) that is closed under convex combinations.

Proposition 5.3.5. The intersection of a (finite or infinite) family of convex sets is convex.

Definition 5.3.6. The convex hull of a subset \(S \subseteq \mathbb{R}^n \), denoted \(\text{conv} \, S \), is the smallest convex set containing \(S \), i.e.,

(a) \(\text{conv} \, S \supseteq S \);

(b) \(\text{conv} \, S \) is convex;

(c) for every convex set \(T \subseteq \mathbb{R}^n \), if \(T \supseteq S \) then \(T \supseteq \text{conv} \, S \).

Theorem 5.3.7. Let \(S \subseteq \mathbb{R}^n \). Then \(\text{conv} \, S \) exists and is unique. \(\diamond \)

Theorem 5.3.8. For \(S \subseteq \mathbb{R} \), \(\text{conv} \, S \) is the set of all convex combinations of the finite subsets of \(S \). \(\diamond \)

Proposition 5.3.9. Let \(S \subseteq \mathbb{R}^n \). Then \(S \) is convex if and only if \(S = \text{conv} \, S \).

Fact 5.3.10. \(\text{conv} \, S \subseteq \text{aff} \, S \).

Definition 5.3.11 (Straight-line segment). Let \(u, v \in \mathbb{R}^n \). The straight-line segment connecting \(u \) and \(v \) is the convex hull of \(\{u, v\} \), i.e., the set

\[\text{conv}(u, v) = \{ \lambda u + (1 - \lambda)v \mid 0 \leq \lambda \leq 1 \} . \]

Proposition 5.3.12. The set \(S \subseteq \mathbb{R}^n \) is convex if and only if it contains the straight-line segment connecting \(u \) and \(v \) for every \(u, v \in S \).
Definition 5.3.13 (Dimension). The dimension of a convex set $C \subseteq \mathbb{R}^n$, denoted $\dim_{\text{conv}} C$, is the dimension of its affine hull. A convex subset C of \mathbb{R}^n is full-dimensional if $\text{aff } C = \mathbb{R}^n$.

Definition 5.3.14 (Half-space). A closed half-space is a region of \mathbb{R}^n defined as $\{ v \in \mathbb{R}^n \mid a^T v \geq \beta \}$ for some nonzero $a \in \mathbb{R}^n$ and $\beta \in \mathbb{R}$ and is denoted $H(a, \beta)$. An open half-space is a region of \mathbb{R}^n defined as $\{ v \in \mathbb{R}^n \mid a^T v > \beta \}$ for some nonzero $a \in \mathbb{R}^n$ and $\beta \in \mathbb{R}$ and is denoted $H^o(a, \beta)$.

Exercise 5.3.15. Let $a \in \mathbb{R}^n$ be a nonzero vector and let $\beta \in \mathbb{R}$. Prove: the set $\{ v \in \mathbb{R}^n \mid a^T v \leq \beta \}$ is also a (closed) half-space.

Fact 5.3.16. Let $S \subseteq \mathbb{R}^n$ be a hyperplane defined by $a^T v = \beta$. Then S divides \mathbb{R}^n into two half-spaces, defined by $a^T v \geq \beta$ and $a^T v \leq \beta$. The intersection of these two half-spaces is S.

Proposition 5.3.17. (a) Every closed (Def. 19.4.11) convex set is the intersection of the closed half-spaces containing it.

(b) If $S \subseteq \mathbb{R}^n$ is finite then $\text{conv}(S)$ is the intersection of a finite number of closed half-spaces.

Exercise 5.3.18. Find a convex set which is not the intersection of any number of open or closed half-spaces. (Such a set already exists in 2 dimensions.)

Proposition* 5.3.19. Every open (Def. 19.4.10) convex set is the intersection of the open half-spaces containing it.

5.4 (R) Helly’s Theorem

The main result of this section is the following theorem.

Theorem 5.4.1 (Helly’s Theorem). If $C_1, \ldots, C_k \subseteq \mathbb{R}^n$ are convex sets such that any $n+1$ of them intersect then all of them intersect.

Lemma 5.4.2 (Radon). Let $S \subseteq \mathbb{R}^n$ be a set of $k \geq n+2$ vectors in \mathbb{R}^n. Then S has two disjoint subsets S_1 and S_2 whose convex hulls intersect.

Exercise 5.4.3. Show that the inequality $k \geq n+2$ is tight, i.e., that there exists a set S of $n+1$ vectors in \mathbb{R}^n such that for any two subsets $S_1, S_2 \subseteq S$, we have $\text{conv } S_1 \cap \text{conv } S_2 = \emptyset$.

Exercise 5.4.4. Use Radon’s Lemma to prove Helly’s Theorem.

Exercise 5.4.5. Show the bound in Helly’s Theorem is tight, i.e., there exist $n+1$ convex subsets of \mathbb{R}^n such that every n of them intersect but the intersection of all of them is empty.
5.5 Additional exercises

Observe that a half-space can be defined by \(n + 1 \) real parameters, i.e., by defining \(a \) and \(\beta \). The following project asks you to define a similar object which can be defined by \(2n - 1 \) real parameters.

Project 5.5.1. Define a “partially open half-space” which can be defined by \(2n - 1 \) parameters\(^1\) so that every convex set is the intersection of the partially open half-spaces and the closed half-spaces containing it.

\(^1\)In fact, in a well-defined sense, half-spaces can be defined by \(n \) real parameters.

\(^2\)In fact, this object can be defined by \(2n - 3 \) real parameters.
Chapter 6

The Determinant

While many systems of linear equations are too large to reasonably solve by hand using methods like elimination, the general system of two equations in two unknowns

\[\alpha_{11}x_1 + \alpha_{12}x_2 = \beta_1 \]
\[\alpha_{21}x_1 + \alpha_{22}x_2 = \beta_2 \]

is not too cumbersome to work out and find

\[x_1 = \frac{\alpha_{22}\beta_1 - \alpha_{12}\beta_2}{\alpha_{22}\alpha_{11} - \alpha_{12}\alpha_{21}} \]
\[x_2 = \frac{\alpha_{11}\beta_2 - \alpha_{21}\beta_1}{\alpha_{22}\alpha_{11} - \alpha_{12}\alpha_{21}} \]

For the case of 3 equations in 3 unknowns, we have

\[x_1 = \frac{N_{31}}{D_3} \]
\[x_2 = \frac{N_{32}}{D_3} \]
\[x_3 = \frac{N_{33}}{D_3} \]
where

\[D_3 = \alpha_{11}\alpha_{22}\alpha_{33} + \alpha_{12}\alpha_{23}\alpha_{31} + \alpha_{13}\alpha_{21}\alpha_{32} \quad (6.8) \]
\[- \alpha_{11}\alpha_{23}\alpha_{32} - \alpha_{12}\alpha_{21}\alpha_{33} - \alpha_{13}\alpha_{22}\alpha_{31} \quad (6.9) \]
\[N_{31} = \alpha_{22}\alpha_{33}\beta_1 + \alpha_{12}\alpha_{23}\beta_3 + \alpha_{13}\alpha_{32}\beta_2 \quad (6.10) \]
\[- \alpha_{23}\alpha_{32}\beta_1 - \alpha_{12}\alpha_{33}\beta_2 - \alpha_{13}\alpha_{22}\beta_3 \quad (6.11) \]
\[N_{32} = \alpha_{11}\alpha_{33}\beta_2 + \alpha_{23}\alpha_{31}\beta_1 + \alpha_{13}\alpha_{32}\beta_3 \quad (6.12) \]
\[- \alpha_{11}\alpha_{23}\beta_3 - \alpha_{21}\alpha_{33}\beta_1 - \alpha_{13}\alpha_{31}\beta_2 \quad (6.13) \]
\[N_{33} = \alpha_{11}\alpha_{22}\beta_3 + \alpha_{12}\alpha_{31}\beta_2 + \alpha_{21}\alpha_{32}\beta_1 \quad (6.14) \]
\[- \alpha_{11}\alpha_{32}\beta_2 - \alpha_{12}\alpha_{21}\beta_3 - \alpha_{22}\alpha_{31}\beta_1 \quad (6.15) \]

In particular, the numerators and denominators of these expressions each have six terms. For a system of 4 equations in 4 unknowns, the numerators and denominators each have 24 terms, and, in general, we have \(n!\) terms in the numerators and denominators of the solutions to \(n\) equations in \(n\) unknowns.

The denominator of these expressions is known as the \textit{determinant} of the matrix \(A\) (where our system of linear equations is written as \(Ax = b\)). Many books explain the determinant by explaining the rules of how to calculate it, but we will instead define it, and then discuss how to calculate it.

The determinant is a function from the space of \(n \times n\) matrices to numbers, that is, \(\text{det} : M_n(\mathbb{F}) \to \mathbb{F}\).

6.1 Permutations

Definition 6.1.1 (Permutation). A \textit{permutation} of a set \(\Omega\) is a bijection \(f : \Omega \to \Omega\). The set \(\Omega\) is called the \textit{permutation domain}.

Definition 6.1.2 (Symmetric group). The \textit{symmetric group of degree} \(n\), denoted \(S_n\), is the set of all permutations of the set \(\{1, \ldots, n\}\).

Definition 6.1.3 (Inversion). Let \(\sigma \in S_n\) be a permutation of the set \(\{1, \ldots, n\}\), and let \(1 \leq i, j \leq n\) with \(i \neq j\). We say that the pair \(\{i, j\}\) is \textit{inverted} by \(\sigma\) if \(i < j\) and \(\sigma(i) > \sigma(j)\) or \(i > j\) and \(\sigma(i) < \sigma(j)\). We denote by \(\text{Inv}(\sigma)\) the number of inversions of \(\sigma\), that is, the number of pairs \(\{i, j\}\) which are inverted by \(\sigma\).
Exercise 6.1.4. For $\sigma \in S_n$ we have $0 \leq \text{Inv}(\sigma) \leq \binom{n}{2}$. (Why?) Show that both extremes occur: find a permutation with no inversions and another with $\binom{n}{2}$ inversions.

Definition 6.1.5 (Even and odd permutations). If $\text{Inv}(\sigma)$ is even, then we say that σ is an even permutation, and if $\text{Inv}(\sigma)$ is odd, then σ is an odd permutation.

Proposition 6.1.6. Half of the $n!$ permutations of $\{1, \ldots, n\}$ are even.

Definition 6.1.7 (Sign of a permutation). Let $\sigma \in S_n$ be a permutation. The sign of σ, denoted $\text{sgn} \sigma$, is defined as

$$\text{sgn}(\sigma) := (-1)^{\text{Inv}(\sigma)} \quad (6.16)$$

In particular, $\text{sgn}(\sigma) = 1$ if σ is an even permutation and $\text{sgn}(\sigma) = -1$ if σ is an odd permutation. The sign of a permutation (equivalently, whether it is even or odd) is also referred to as the parity of the permutation.

Definition 6.1.8 (Composition of permutations). Let Ω be a set, and let σ and τ be permutations of Ω. Then the composition of σ with τ, denoted $\sigma \tau$, is defined by

$$(\sigma \tau)(a) := \sigma(\tau(a)) \quad (6.17)$$

for all $a \in \Omega$.

We also refer to the composition of σ with τ as the product of σ and τ.

Definition 6.1.9 (Transposition). Let Ω be a set. The transposition of the elements $a \neq b \in \Omega$ is the permutation that swaps a and b and fixes every other element. Formally, it is the permutation τ defined by

$$\tau(x) := \begin{cases} b & x = a \\ a & x = b \\ x & \text{otherwise} \end{cases} \quad (6.18)$$

This permutation is denoted $\tau = (a, b)$.

Proposition 6.1.10. Transpositions generate S_n, i.e., every permutation $\sigma \in S_n$ can be written as a composition of transpositions.

Theorem 6.1.11. A permutation σ of $\{1, \ldots, n\}$ is even if and only if σ is a product of an even number of transpositions. ♦
In the light of this theorem, we could use its conclusion as the definition of even permutations. The advantage of this definition is that it can be applied to any set \(\Omega \), not just the ordered set \(\{1, \ldots, n\} \).

Corollary 6.1.12. While the number of inversions of a permutation depends on the ordering of the permutation domain, its parity does not.

Definition 6.1.13 (Neighbor transposition). A *neighbor transposition* of the set \(\{1, \ldots, n\} \) is a transposition of the form \(\tau = (i, i + 1) \).

Exercise 6.1.14. Let \(\sigma \in S_n \) and let \(\tau \) be a neighbor transposition. Show

\[
|\text{Inv}(\sigma) - \text{Inv}(\sigma \tau)| = 1.
\]

Corollary 6.1.15. Let \(\sigma \in S_n \) and let \(\tau \) be a neighbor transposition. Then \(\text{sgn}(\sigma \tau) = -\text{sgn}(\sigma) \).

Proposition 6.1.16. Every transposition is the composition of an odd number of neighbor transpositions.

Proposition 6.1.17. Neighbor transpositions generate the symmetric group. That is, every element of \(S_n \) can be expressed as the composition of neighbor transpositions.

Proposition 6.1.18. Composition with a transposition changes the parity of a permutation.

Corollary 6.1.19. Let \(\sigma \in S_n \) be a permutation. Then \(\sigma \) is even if and only if \(\sigma \) is the product of an even number of transpositions.

Theorem 6.1.20. Let \(\sigma, \tau \in S_n \). Then

\[
\text{sgn}(\sigma \tau) = \text{sgn}(\sigma) \text{sgn}(\tau).
\] \hspace{1cm} (6.19)

Definition 6.1.21 (\(k \)-cycle). A \(k \)-cycle is a permutation that cyclically permutes \(k \) elements \(\{a_1, \ldots, a_k\} \) and fixes all others (FIGURE). That is, \(\sigma \) is a \(k \)-cycle if \(\sigma(a_i) = a_{i+1} \) for some elements \(a_1, \ldots, a_k \) (where \(a_{k+1} = a_1 \)) and \(\sigma(x) = x \) if \(x \not\in \{a_1, \ldots, a_k\} \).

In particular, transpositions are 2-cycles.

Definition 6.1.22 (Disjoint cycles). Let \(\sigma \) and \(\tau \) be cycles with permutation domain \(\Omega \). Then \(\sigma \) and \(\tau \) are *disjoint* if no element of \(\Omega \) is permuted by both \(\sigma \) and \(\tau \).
Proposition 6.1.23. Every permutation uniquely decomposes into disjoint cycles.

Exercise 6.1.24. Let σ be a k-cycle. Show that σ is an even permutation if and only if k is odd.

Corollary 6.1.25. Let σ be a permutation. Then σ is even if and only if its cycle decomposition includes an even number of even cycles.

Proposition 6.1.26. Let σ be a permutation. Then $\text{Inv}(\sigma^{-1}) = \text{Inv}(\sigma)$.

6.2 Defining the determinant

Definition 6.2.1 (Determinant). The determinant of an $n \times n$ matrix $A = (\alpha_{ij})$ is

$$
\det A := \sum_{\sigma \in S_n} \text{sgn}(\sigma) \prod_{i=1}^{n} \alpha_{i,\sigma(i)}.
$$

(6.20)

Notation 6.2.2. The determinant of a matrix $A = \begin{pmatrix}
\alpha_{11} & \cdots & \alpha_{1n} \\
\vdots & \ddots & \vdots \\
\alpha_{n1} & \cdots & \alpha_{nn}
\end{pmatrix}$ may also be represented with vertical bars, that is,

$$
\det A = |A| = \det \begin{pmatrix}
\alpha_{11} & \cdots & \alpha_{1n} \\
\vdots & \ddots & \vdots \\
\alpha_{n1} & \cdots & \alpha_{nn}
\end{pmatrix} = \begin{vmatrix}
\alpha_{11} & \cdots & \alpha_{1n} \\
\vdots & \ddots & \vdots \\
\alpha_{n1} & \cdots & \alpha_{nn}
\end{vmatrix}.
$$

(6.21)

(6.22)

Proposition 6.2.3. Show

(a) $\det \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} = \alpha \delta - \beta \gamma$

(b) $\det \begin{pmatrix} \alpha_{11} & \alpha_{12} & \alpha_{13} \\
\alpha_{21} & \alpha_{22} & \alpha_{23} \\
\alpha_{31} & \alpha_{32} & \alpha_{33}\end{pmatrix} =$
\[
\alpha_{11}\alpha_{22}\alpha_{33} + \alpha_{12}\alpha_{23}\alpha_{31} + \alpha_{13}\alpha_{21}\alpha_{32} - \alpha_{11}\alpha_{23}\alpha_{32} - \alpha_{12}\alpha_{21}\alpha_{33} - \alpha_{13}\alpha_{22}\alpha_{31}
\]

For the following exercises, let \(A \) be an \(n \times n \) matrix.

Proposition 6.2.4. If a column of \(A \) is 0, then \(\det A = 0 \).

Proposition 6.2.5. Let \(A' \) be the matrix obtained by swapping two columns of \(A \). Then \(\det A' = -\det A \).

Proposition 6.2.6. Show that \(\det A^T = \det A \). This fact follows from what property of inversions?

Proposition 6.2.7. If two columns of \(A \) are equal, then \(\det A = 0 \).

Proposition 6.2.8. The determinant of a diagonal matrix is the product of its diagonal entries.

Proposition 6.2.9. The determinant of an upper triangular matrix is the product of its diagonal entries.

Example 6.2.10.

\[
\det \begin{pmatrix} 5 & 1 & 7 \\ 0 & 2 & 6 \\ 0 & 0 & 3 \end{pmatrix} = 30
\]

(6.23)

and this value does not depend on the three entries in the upper-right corner.

Definition 6.2.11 (k-linearity). A function \(f : V \times \cdots \times V \to W \) is linear in the \(i \)-th component, if, whenever we fix \(x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_k \), the function

\[
g(y) := f(x_1, \ldots, x_{i-1}, y, x_{i+1}, \ldots, x_k)
\]

is a linear\(^1 \), i.e.,

\[
\begin{align*}
g(y_1 + y_2) &= g(y_1) + g(y_2) \\
g(\alpha y) &= \alpha g(y)
\end{align*}
\]

(6.24) (6.25)

The function \(f \) is \([k-linear]\) if it is linear in all \(k \) components. A function which is 2-linear is said to be *bilinear*.

\(^1\)Linear maps will be discussed in more detail in Chapter 16.
6.2. DEFINING THE DETERMINANT

Proposition 6.2.12 (Multilinearity). The determinant is multilinear in the columns of A. That is,

$$
\det[\begin{array}{c|c|c|c}
 a_1 & \cdots & a_i & b \\
 \vdots & \ddots & \vdots & \vdots \\
 a_{i-1} & \cdots & a_i & a_{i+1} \\
 a_i & \cdots & a_n & a_{i+1} \\
\end{array}] = \det[\begin{array}{c|c|c|c}
 a_1 & \cdots & a_i & b \\
 \vdots & \ddots & \vdots & \vdots \\
 a_{i-1} & \cdots & a_i & a_{i+1} \\
 a_i & \cdots & a_n & a_{i+1} \\
\end{array}] + \det[\begin{array}{c|c|c|c}
 a_1 & \cdots & a_i & b \\
 \vdots & \ddots & \vdots & \vdots \\
 a_{i-1} & \cdots & a_i & a_{i+1} \\
 a_i & \cdots & a_n & a_{i+1} \\
\end{array}]$$

(6.26)

and

$$
\det[\begin{array}{c|c|c|c}
 a_1 & \cdots & a_i & \alpha a_i \\
 \vdots & \ddots & \vdots & \vdots \\
 a_{i-1} & \cdots & a_i & a_{i+1} \\
 a_i & \cdots & a_n & a_{i+1} \\
\end{array}] = \alpha \det[\begin{array}{c|c|c|c}
 a_1 & \cdots & a_i & b \\
 \vdots & \ddots & \vdots & \vdots \\
 a_{i-1} & \cdots & a_i & a_{i+1} \\
 a_i & \cdots & a_n & a_{i+1} \\
\end{array}] .$$

(6.27)

Proposition 6.2.13. Performing elementary column operations (Def. 3.2.1) does not change the determinant of a matrix.

Proposition 6.2.14. Let $A, B \in M_n(F)$. Then $\det(AB) = \det(A) \det(B)$.

Numerical exercise 6.2.15. Let $A = \begin{pmatrix} 2 & 1 & -3 \\ 4 & -1 & 0 \\ 2 & 5 & -1 \end{pmatrix}$.

(a) Use the formula derived in part (b) of Prop. 6.2.3 to compute $\det A$.

(b) Compute the matrix A' obtained by performing the column operation $(1, 2, -4)$ on A.

(c) Self-check: Use the same formula to compute $\det A'$, and verify that $\det A' = \det A$.

Theorem 6.2.16 (Determinant vs. linear independence). Let A be a square matrix. Then $\det A = 0$ if and only if the columns of A are linearly dependent.

The proof of this theorem requires the following two lemmas.

Lemma 6.2.17. Let A be an $n \times n$ matrix whose columns are linearly dependent. Then through a series of elementary column operations, it is possible to bring A into a form in which one column is all zeros.

Lemma 6.2.18. Let A be an $n \times n$ matrix whose columns are linearly independent. Then through a series of elementary column operations, it is possible to bring A into a form in which each row and column contains exactly one nonzero entry.

Theorem 6.2.19 (Determinant vs. system of linear equations). The homogeneous system $Ax = 0$ of n linear equations in n unknowns has a nontrivial solution if and only if $\det A = 0$.

Definition 6.2.20 (Skew-symmetric matrix). The matrix \(A \in M_n(F) \) is skew-symmetric if \(A^T = -A \).

Exercise 6.2.21. Let \(F \) be a field in which \(1 + 1 \neq 0 \).

(a) Show that if \(A \in M_n(F) \) is skew-symmetric and \(n \) is odd then \(\det A = 0 \).

(b) For all even \(n \), find a nonsingular skew-symmetric matrix \(A \in M_n(F) \).

Exercise 6.2.22. Show that part (a) of the preceding exercise is false over \(F_2 \) (and every field of characteristic 2).

Exercise 6.2.23. Let \(F \) be a field of characteristic 2 and let \(n \) be odd. If \(A \in M_n(F) \) is symmetric and all of its diagonal entries are 0, then \(A \) is singular.

Proposition 6.2.24 (Hadamard’s Inequality). Let \(A = [a_1 \mid \cdots \mid a_n] \in M_n(\mathbb{R}) \). Prove

\[
|\det A| \leq \prod_{j=1}^{n} \|a_j\|.
\] (6.28)

where \(\|a_j\| \) is the norm of the vector \(a_j \) (Def. 1.5.2).

Exercise 6.2.25. When does equality hold in Hadamard’s Inequality?

Definition 6.2.26 (Parallelepiped). Let \(v_1, v_2 \in \mathbb{R}^2 \). The parallelogram spanned by \(v_1 \) and \(v_2 \) is the set (PICTURE)

\[
\text{parallelogram}(v_1, v_2) := \{ \alpha v_1 + \beta v_2 \mid 0 \leq \alpha, \beta \leq 1 \}.
\] (6.29)

More generally, the parallelepiped spanned by the vectors \(v_1, \ldots, v_n \in \mathbb{R}^n \) is the set

\[
\text{parallelepiped}(v_1, \ldots, v_n) := \left\{ \sum_{i=1}^{n} \alpha_i v_i \mid 0 \leq \alpha_i \leq 1 \right\}.
\] (6.30)

Exercise 6.2.27. Let \(a, b \in \mathbb{R}^2 \). Show that the area of the parallelogram spanned by these vectors (PICTURE) is \(|\det A| \), where \(A = [a \mid b] \in M_2(\mathbb{R}) \).

The following theorem is a generalization of Ex. 6.2.27.

Theorem 6.2.28. If \(v_1, \ldots, v_n \in \mathbb{R}^n \), then the volume of \(\text{parallelepiped}(v_1, \ldots, v_n) \) is \(|\det A| \), where \(A \) is the \(n \times n \) matrix whose \(i \)-th column is \(v_i \). \(\diamond \)

\(^2\)Observe that in a field of characteristic 2, “skew-symmetric” means the same thing as “symmetric.”
6.3 Cofactor expansion

Definition 6.3.1 (Cofactor). Let $A \in M_n(\mathbb{F})$ be a matrix. The (i, j) cofactor of A is $(-1)^{i+j} \det(A_{ij})$, where A_{ij} is the $(n-1) \times (n-1)$ matrix obtained by removing the i-th row and j-th column of A.

Theorem 6.3.2 (Cofactor expansion). Let $A = (\alpha_{ij})$ be an $n \times n$ matrix, and let C_{ij} be the (i, j) cofactor of A. Then for all i,

$$\det A = \sum_{j=1}^{n} \alpha_{ij} C_{ij}. \quad (6.31)$$

This is the cofactor expansion of A along the i-th row. Similarly, for all j,

$$\det A = \sum_{i=1}^{n} \alpha_{ij} C_{ij}. \quad (6.32)$$

This is the cofactor expansion of A along the j-th column.

Numerical exercise 6.3.3. Compute the determinants of the following matrices by cofactor expansion (a) along the first row and (b) along the second column. Self-check: your answers should be the same.

(a) \[
\begin{pmatrix}
2 & 3 & 1 \\
0 & -4 & -1 \\
1 & -3 & 4
\end{pmatrix}
\]

(b) \[
\begin{pmatrix}
3 & -3 & 2 \\
4 & 7 & -1 \\
6 & -4 & 2
\end{pmatrix}
\]

(c) \[
\begin{pmatrix}
1 & 3 & 2 \\
3 & -1 & 0 \\
0 & 6 & 5
\end{pmatrix}
\]

(d) \[
\begin{pmatrix}
6 & 2 & -1 \\
0 & 4 & 1 \\
-3 & 1 & 1
\end{pmatrix}
\]

Exercise 6.3.4. Compute the determinants of the following matrices.
Exercise 6.3.5. Compute the determinant of the Vandermonde matrix (\(K \equiv \text{Def. } 2.5.9\) generated by \(\alpha_1, \ldots, \alpha_n\).

Definition 6.3.6 (Fixed point). Let \(\Omega\) be a set, and let \(f : \Omega \to \Omega\) be a permutation of \(\Omega\). We say that \(x \in \Omega\) is a fixed point of \(f\) if \(f(x) = x\). We say that \(f\) is fixed-point-free, or a derangement, if \(f\) has no fixed points.

\(\heartsuit\) Exercise 6.3.7. Let \(F_n\) denote the set of fixed-point free permutations of the set \(\{1, \ldots, n\}\). Decide, for each \(n\), whether the majority of \(F_n\) is odd or even. (The answer will depend on \(n\).)

6.4 Matrix inverses and the determinant

We now derive an explicit form for the inverse of an \(n \times n\) matrix. Our tool for this will be the cofactor expansion in addition to the skew cofactor expansion. In Theorem 6.3.2, we took the dot
6.4. MATRIX INVERSES AND THE DETERMINANT

product of the i-th column of a matrix with the cofactors of corresponding to the i-th column. We now instead take the dot product of the i-th column with the cofactors corresponding to the j-th column.

Proposition 6.4.1 (Skew cofactor expansion). Let $A = (\alpha_{ij})$ be an $n \times n$ matrix, and fix i and j ($1 \leq i, j \leq n$) such that $i \neq j$. Let C_{kj} be the (k, j) cofactor of A. Then

$$\sum_{k=1}^{n} \alpha_{ki} C_{kj} = 0 . \tag{6.33}$$

Definition 6.4.2 (Adjugate of a matrix). Let $A \in M_n(\mathbb{F})$. Then the **adjugate** of A, denoted adj(A), is the matrix whose (i, j) entry is the (j, i) cofactor of A.

Theorem 6.4.3 (Explicit form of the matrix inverse). Let A be a nonsingular $n \times n$ matrix. Then

$$A^{-1} = \frac{1}{\det A} \text{adj}(A) . \tag{6.34}$$

Numerical exercise 6.4.4. Compute the inverses of the following matrices. **Self-check**: multiply your answer by the original matrix to get the identity.

(a) $\begin{pmatrix} 1 & -3 \\ -2 & 4 \end{pmatrix}$

(b) $\begin{pmatrix} -4 & 2 \\ -1 & -1 \end{pmatrix}$

(c) $\begin{pmatrix} 3 & 4 & -7 \\ -2 & 1 & -4 \\ 0 & -2 & 5 \end{pmatrix}$

(d) $\begin{pmatrix} -1 & 4 & 2 \\ -3 & 2 & -3 \\ 1 & 0 & 2 \end{pmatrix}$

Proposition 6.4.5. If $A \in M_n(\mathbb{F})$ is invertible, then $\det A^{-1} = \frac{1}{\det A}$.

Exercise 6.4.6. When is $A \in M_n(\mathbb{Z})$ invertible over \mathbb{Z}? Give a simple condition in terms of $\det A$.

Exercise 6.4.7. Let n be odd and let $A \in M_n(\mathbb{Z})$ be an invertible symmetric matrix whose diagonal entries are all 0. Show that $A^{-1} \notin M_n(\mathbb{Z})$.
6.5 Additional exercises

Notation 6.5.1. Let $A \in \mathbb{F}^{k \times n}$ and $B \in \mathbb{F}^{n \times k}$ be matrices, and let $I \subseteq [n]$. The matrix A_I is the matrix whose columns are the columns of A which correspond to the elements of I. The matrix B_I is $(B^T_I)^T$, i.e., the matrix whose rows are the rows of B which correspond to the elements of I.

Example 6.5.2. Let $A = \begin{pmatrix} 3 & 1 & 7 \\ 2 & 3 & 2 \end{pmatrix}$, $B = \begin{pmatrix} -4 & 1 \\ 6 & 2 \\ -1 & 0 \end{pmatrix}$, and let $I = \{1, 3\}$. Then $A_I = \begin{pmatrix} 3 & 7 \\ 2 & 2 \end{pmatrix}$ and $B_I = \begin{pmatrix} -4 & 1 \\ -1 & 0 \end{pmatrix}$.

Exercise 6.5.3 (Cauchy-Binet formula). Let $A \in \mathbb{F}^{k \times n}$ and let $B \in \mathbb{F}^{n \times k}$. Show that

$$
\det(AB) = \sum_{|I| = k, I \subseteq [n]} \det(A_I) \det(B_I).
$$

(6.35)
Chapter 7

Theory of Systems of Linear Equations II: Cramer’s Rule

7.1 Cramer’s Rule

With the determinant in hand, we are now able to return to the problem of solving systems of linear equations. In particular, we have the following result.

Theorem 7.1.1. Let A be a nonsingular square matrix. Then the system $Ax = b$ of n linear equations in n unknowns is solvable.

In particular, if A is a square matrix, then $Ax = b$ is solvable (and in fact has a unique solution) precisely when A is invertible. It is easy to see that in this case, the solution to $Ax = b$ is given by $x = A^{-1}b$, but we now demonstrate that it is possible to determine the solution to this system of equations without ever computing a matrix inverse.

Theorem 7.1.2 (Cramer’s Rule). Let A be an invertible $n \times n$ matrix over F, and let $b \in F^n$. Let $a = A^{-1}b = \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{pmatrix}$. Then

(a) $Aa = b$
(b) For each $i \leq n$,

$$
\alpha_i = \frac{\det A_i}{\det A}
$$

(7.1)

where A_i is the matrix obtained by replacing the i-th column of A by b.

Numerical exercise 7.1.3. Use Cramer’s Rule to solve the following systems of linear equations. Self-check: plug your answers back into the original equations.

(a)

\begin{align*}
x_1 + 2x_2 &= 3 \\
x_1 - x_2 &= 6
\end{align*}

(b)

\begin{align*}
-x_1 + x_2 - x_3 &= 4 \\
2x_1 + 3x_2 + 4x_3 &= -2 \\
-x_1 - x_2 - 3x_3 &= 3
\end{align*}
Chapter 8

(\mathbb{F}) Eigenvectors and Eigenvalues

8.1 Eigenvector and eigenvalue basics

Definition 8.1.1 (Eigenvector). Let \(A \in M_n(\mathbb{F}) \) and let \(v \in \mathbb{F}^n \). Then \(v \) is an eigenvector of \(A \) if \(v \neq 0 \) and there exists \(\lambda \in \mathbb{F} \) such that \(Av = \lambda v \).

Definition 8.1.2 (Eigenvalue). Let \(A \in M_n(\mathbb{F}) \). Then \(\lambda \in \mathbb{F} \) is an eigenvalue of \(A \) if there exists a nonzero vector \(v \in \mathbb{F}^n \) such that \(Av = \lambda v \).

Exercise 8.1.3. What are the eigenvalues and eigenvectors of the \(n \times n \) identity matrix?

Exercise 8.1.4. Let \(D = \text{diag}(\lambda_1, \ldots, \lambda_n) \) be the \(n \times n \) diagonal matrix whose diagonal entries are \(\lambda_1, \ldots, \lambda_n \). What are the eigenvalues and eigenvectors of \(D \)?

Exercise 8.1.5. Determine the eigenvalues of the \(2 \times 2 \) matrix \(\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \).

Exercise 8.1.6. Find examples of real \(2 \times 2 \) matrices with

(a) no eigenvectors in \(\mathbb{R}^2 \)

(b) exactly one eigenvector in \(\mathbb{R}^2 \), up to scaling

(c) two eigenvectors in \(\mathbb{R}^2 \), up to scaling

(d) infinitely many eigenvectors in \(\mathbb{R}^2 \), up to scaling
CHAPTER 8. EIGENVECTORS AND EIGENVALUES

Exercise 8.1.7. Show that eigenvectors of a matrix corresponding to distinct eigenvalues are linearly independent.

Proposition 8.1.8. Let \(A \in M_n(\mathbb{F}) \) be a matrix and let \(\mathbf{v}_1 \) and \(\mathbf{v}_2 \) be eigenvectors to distinct eigenvalues. Then \(\mathbf{v}_1 + \mathbf{v}_2 \) is not an eigenvector.

Proposition 8.1.9. Let \(A \in M_n(\mathbb{F}) \) be a matrix to which every nonzero vector is an eigenvector. Then \(A \) is a scalar matrix (Def. 2.2.13).

Definition 8.1.10 (Eigenbasis). Let \(A \in M_n(\mathbb{F}) \) be a matrix. An eigenbasis of \(A \) is a basis of \(\mathbb{F}^n \) made up of eigenvectors of \(A \).

Exercise 8.1.11. Find all eigenbases of \(I \).

Exercise 8.1.12. Let \(\lambda_1, \ldots, \lambda_n \) be scalars. Find an eigenbasis of \(\text{diag}(\lambda_1, \ldots, \lambda_n) \).

Exercise 8.1.13. Prove that
\[
\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}
\]
has no eigenbasis.

Proposition 8.1.14. Let \(A \in M_n(\mathbb{F}) \). Then \(A \) is nonsingular if and only if 0 is not an eigenvalue of \(A \).

Definition 8.1.15 (Left eigenvector). Let \(A \in M_n(\mathbb{F}) \). Then \(\mathbf{x} \in \mathbb{F}^{1 \times n} \) is a left eigenvector if \(\mathbf{x} \neq \mathbf{0} \) and there exists \(\lambda \in \mathbb{F} \) such that \(\mathbf{x}A = \lambda \mathbf{x} \).

Definition 8.1.16 (Left eigenvalue). Let \(A \in M_n(\mathbb{F}) \). Then \(\lambda \in \mathbb{F} \) is a left eigenvalue of \(A \) if there exists a nonzero row vector \(\mathbf{v} \in \mathbb{F}^{1 \times n} \) such that \(\mathbf{v}A = \lambda \mathbf{v} \).

Convention 8.1.17. When we use the word “eigenvector” without a modifier, we refer to a right eigenvector; the term “right eigenvector” is occasionally used for clarity.

Exercise 8.1.18. Let \(A \in M_n(\mathbb{F}) \). Show that if \(\mathbf{x} \) is a right eigenvector to eigenvalue \(\lambda \) and \(\mathbf{y} \) is a left eigenvector to eigenvalue \(\mu \), then \(\mathbf{x} \cdot \mathbf{y}^T = 0 \), i.e., \(\mathbf{x} \perp \mathbf{y}^T \).

Definition 8.1.19 (Eigenspace). Let \(A \in M_n(\mathbb{F}) \). We denote by \(U_\lambda \) the set
\[
U_\lambda := \{ \mathbf{v} \in \mathbb{F}^n \mid A\mathbf{v} = \lambda \mathbf{v} \}.
\]
This set is called the eigenspace corresponding to the eigenvalue \(\lambda \).

The following exercise explains this terminology.
Exercise 8.1.20. Let \(A \in M_n(\mathbb{F}) \) be a square matrix with eigenvalue \(\lambda \). Show that \(U_\lambda \) is a subspace of \(\mathbb{F}^n \).

Definition 8.1.21 (Geometric multiplicity). Let \(A \in M_n(\mathbb{F}) \) be a square matrix and let \(\lambda \) be an eigenvalue of \(A \). Then the geometric multiplicity of \(\lambda \) is \(\dim U_\lambda \).

The next exercise provides a method of calculating this quantity.

Exercise 8.1.22. Let \(\lambda \) be an eigenvalue of the \(n \times n \) matrix \(A \). Give a simple expression for the geometric multiplicity in terms of \(A \) and \(\lambda \).

Proposition 8.1.23. If \(N \) is a nilpotent matrix (\(\text{Def. 2.2.18} \)) and \(\lambda \) is an eigenvalue of \(N \), then \(\lambda = 0 \).

Exercise 8.1.24. Let \(N \) be a nilpotent matrix.

(a) Show that \(I + N \) is invertible.

(b) Let \(D \) be a nonsingular diagonal matrix. Show that \(D + N \) is invertible.

(c) Find a nonsingular matrix \(A \) and a nilpotent matrix \(N \) such that \(A + N \) is singular.

8.2 Similar matrices and diagonalizability

Definition 8.2.1 (Similar matrices). Let \(A, B \in M_n(\mathbb{F}) \). Then \(A \) and \(B \) are similar (notation: \(A \sim B \)) if there exists a nonsingular matrix \(S \) such that \(B = S^{-1}AS \).

Exercise 8.2.2. Let \(A \) and \(B \) be similar matrices. Show that, for \(k \geq 0 \), we have \(A^k \sim B^k \).

Proposition 8.2.3. Let \(A \sim B \) (\(\text{Def. 8.2.1} \)). Then \(\det A = \det B \).

Exercise 8.2.4. Let \(N \in M_n(\mathbb{F}) \) be a matrix. Then \(N \) is nilpotent if and only if it is similar to a strictly upper triangular matrix.

Proposition 8.2.5. Every matrix is similar to a block diagonal matrix where each block has the form \(\alpha I + N \) where \(\alpha \in \mathbb{F} \) and \(N \) is nilpotent.

Blocks of this form are "proto-Jordan blocks." We will discuss Jordan blocks and the Jordan canonical form of matrices in Section ??
Definition 8.2.6 (Diagonalizability). Let \(A \in M_n(\mathbb{F}) \). Then \(A \) is *diagonalizable* if \(A \) is similar to a diagonal matrix.

Exercise 8.2.7.

(a) Prove that \(\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \) is not diagonalizable.

(b) Prove that \(\begin{pmatrix} 1 & 2 \\ 0 & 3 \end{pmatrix} \) is diagonalizable.

(c) When is the matrix \(\begin{pmatrix} \alpha_{11} & \alpha_{12} \\ 0 & \alpha_{22} \end{pmatrix} \) diagonalizable?

Proposition 8.2.8. Let \(A \in M_n(\mathbb{F}) \). Then \(A \) is diagonalizable if and only if \(A \) has an eigenbasis.

8.3 Polynomial basics

We now digress from the theory of eigenvectors and eigenvalues in order to build a foundation in polynomials. We will discuss polynomials in more depth in Section 14.4, but now we establish the basics necessary for studying the characteristic polynomial in Section 8.4.

Definition 8.3.1 (Polynomial). A *polynomial* over the field \(\mathbb{F} \) is an expression \(f : \mathbb{F} \to \mathbb{F} \) of the form

\[
f = \alpha_0 + \alpha_1 t + \alpha_2 t^2 + \cdots + \alpha_n t^n \tag{8.2}
\]

We may omit any terms with zero coefficient, e.g.,

\[
6 + 0t - 3t^2 + 0t^3 = 6 - 3t^2 \tag{8.3}
\]

The set of polynomials over the field \(\mathbb{F} \) is denoted \(\mathbb{F}[t] \).

Definition 8.3.2 (Zero polynomial). The polynomial which has all coefficients equal to zero is called the *zero polynomial* and is denoted by \(0 \).

1In Chapter 14 we will refine this definition and study polynomials more formally.
8.3. POLYNOMIAL BASICS

Definition 8.3.3. The *leading term* of a polynomial \(f = \alpha_0 + \alpha_1 t + \cdots + \alpha_n t^n \) is the term corresponding to the highest power of \(t \) with a nonzero coefficient, that is, the term \(\alpha_k t^k \) where \(\alpha_k \neq 0 \) and \(\alpha_j = 0 \) for all \(j > k \). The zero polynomial does not have a leading term. The *leading coefficient* of a polynomial \(f \) is the coefficient of the leading term of \(f \). The *degree* of a polynomial \(f \), denoted \(\deg f \), is the exponent of its leading term. A polynomial is *monic* if its leading coefficient is 1.

Convention 8.3.4. The zero polynomial has degree \(-\infty \).

Example 8.3.5. Let \(f = 6 - 3t^2 + 4t^5 \). Then the leading term of \(f \) is \(4t^5 \), the leading coefficient of \(f \) is 4, and \(\deg f = 5 \).

Exercise 8.3.6. Which polynomials have degree 0?

Notation 8.3.7. We denote the set of polynomials of degree at most \(n \) over \(\mathbb{F} \) by \(P_n(\mathbb{F}) \).

Definition 8.3.8 (Divisibility of polynomials). Let \(f, g \in \mathbb{F}[t] \). We say that \(g \) divides \(f \), or \(f \) is divisible by \(g \), written \(g | f \), if there exists a polynomial \(h \in \mathbb{F}[t] \) such that \(f = gh \). In this case we say that \(g \) is a divisor of \(f \) and \(f \) is a multiple of \(g \).

Definition 8.3.9 (Root of a polynomial). Let \(f \in \mathbb{F}[t] \) be a polynomial. Then \(\zeta \in \mathbb{F}[t] \) is a root of \(f \) if \(f(\zeta) = 0 \).

Proposition 8.3.10. Let \(f \in \mathbb{F}[t] \) be a polynomial and let \(\alpha \in \mathbb{F}[t] \). Then \(\zeta \) is a root of \(f \) if and only if \(t - \zeta | f \).

Definition 8.3.11 (Multiplicity of a root). Let \(f \) be a polynomial and let \(\zeta \) be a root of \(f \). The multiplicity of the root \(\zeta \) is the largest \(k \) for which \((t - \zeta)^k | f \).

Proposition 8.3.12. Let \(f \) be a polynomial of degree \(n \). Then \(f \) has at most \(n \) roots (counting multiplicity).

Theorem 8.3.13 (Fundamental Theorem of Algebra). Let \(f \in \mathbb{C}[t] \). If \(\deg f \geq 1 \), then \(f \) can be written as

\[
\begin{align*}
f &= \alpha_k \prod_{i=1}^{k} (t - \zeta_i) \\
&= \alpha_k (t - \zeta_1) \cdots (t - \zeta_k)
\end{align*}
\]

(8.4)

where \(\alpha_k \) is the leading coefficient of \(f \) and the \(\zeta_i \) are complex numbers.
8.4 The characteristic polynomial

We now establish a method for finding the eigenvalues of general $n \times n$ matrices.

Definition 8.4.1 (Characteristic polynomial). Let A be an $n \times n$ matrix. Then the characteristic polynomial of A is defined by

$$f_A(t) := \det(tI - A).$$

(8.5)

Exercise 8.4.2. (a) Explicitly calculate the characteristic polynomial for general 1×1 matrices.

(b) Explicitly calculate the characteristic polynomial for general 2×2 matrices.

Exercise 8.4.3. Show that the characteristic polynomial of an $n \times n$ matrix is a monic polynomial of degree n.

Theorem 8.4.4. The eigenvalues of a square matrix A are precisely the roots of its characteristic polynomial. ♦

Proposition 8.4.5. Every matrix $A \in M_3(\mathbb{R})$ has an eigenvector.

Exercise 8.4.6. Find a matrix $A \in M_2(\mathbb{R})$ which does not have an eigenvector.

Exercise 8.4.7. Let N be an $n \times n$ nilpotent matrix. What is its characteristic polynomial?

In Section 8.1, we defined the geometric multiplicity of an eigenvalue ([8.21](#8.21)). We now define the algebraic multiplicity of an eigenvalue.

Definition 8.4.8 (Algebraic multiplicity). Let A be a square matrix with eigenvalue λ. The algebraic multiplicity of λ is its multiplicity as a root of the characteristic polynomial of A.

Proposition 8.4.9. Let A be an $n \times n$ matrix with distinct complex eigenvalues $\lambda_1, \ldots, \lambda_\ell$, and let k_i be the algebraic multiplicity of λ_i for each i. Then

$$\sum_{i=1}^\ell k_i = n$$

(8.6)

and

$$f_A = \prod_{i=1}^\ell (t - \lambda_i)^{k_i}.$$

(8.7)
Proposition 8.4.10. Let A be as in the preceding proposition. Show that the coefficient of $t^{n-\ell}$ in f_A is
\[(-1)^\ell \sum_{i_1, \ldots, i_\ell \text{ distinct}} \lambda_{i_1} \lambda_{i_2} \cdots \lambda_{i_\ell}. \]

Theorem 8.4.11. Let A be an $n \times n$ matrix with eigenvalues $\lambda_1, \ldots, \lambda_n$ (with their algebraic multiplicities). Then
\[\text{Tr } A = \sum_{i=1}^{n} \lambda_i \quad (8.8) \]
\[\det A = \prod_{i=1}^{n} \lambda_i \quad (8.9) \]

Proposition 8.4.12. Let A be a square matrix and let λ be an eigenvalue of A. Then the geometric multiplicity of λ is less than or equal to the algebraic multiplicity of λ.

Exercise 8.4.13. Determine the eigenvalues and their (algebraic and geometric) multiplicities of the all ones matrix J_n over \mathbb{R}.

Proposition 8.4.14. Let A be a square matrix. Then A is diagonalizable over \mathbb{C} if and only if for every eigenvalue λ, the geometric and algebraic multiplicities of λ are equal.

Proposition 8.4.15. Let $A \in M_n(\mathbb{F})$. Then the left eigenvalues of A are the same as the right eigenvalues, including their geometric and algebraic multiplicities.

Proposition 8.4.16. Suppose $n \geq k$. Let $A \in \mathbb{F}^{k \times n}$ and $B \in \mathbb{F}^{n \times k}$. Then $f_{AB} = f_{BA} \cdot t^{n-k}$.

Definition 8.4.17 (Companion matrix). Let $f \in P_n[\mathbb{F}]$ be a monic polynomial, say
\[f = \alpha_0 + \alpha_1 t + \cdots + \alpha_{n-1} t^{n-1} + \alpha_n t^n. \quad (8.10) \]
Then the companion matrix of f is the matrix $C(f) \in M_n(\mathbb{F})$ defined by
\[C(f) := \begin{pmatrix} 0 & 0 & \cdots & 0 & -\alpha_0 \\ 1 & 0 & \cdots & 0 & -\alpha_1 \\ 0 & 1 & \cdots & 0 & -\alpha_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 0 & -\alpha_{n-2} \\ 0 & 0 & \cdots & 1 & -\alpha_{n-1} \end{pmatrix}. \quad (8.11) \]
Proposition 8.4.18. Let f be a monic polynomial and let $A = C(f)$ be its companion matrix. Then the characteristic polynomial of A is equal to f. That is,

$$f = f_A = \det(tI - C(f)). \quad (8.12)$$

Corollary 8.4.19. Every monic polynomial $f \in \mathbb{Q}[t]$ is the characteristic polynomial of a rational matrix.

8.5 The Cayley-Hamilton Theorem

In Section 2.3, we defined how to substitute a square matrix into a polynomial (Def. 2.3.3). We repeat that definition here.

Definition 8.5.1 (Substitution of a matrix into a polynomial). Let $f \in \mathbb{F}[t]$ be the polynomial (Def. 8.3.1) defined by

$$f = \alpha_0 + \alpha_1 t + \cdots + \alpha_d t^d.$$

Just as we may substitute $\zeta \in \mathbb{F}$ for the variable t in f to obtain a value $f(\zeta) \in \mathbb{F}$, we may also “plug in” the matrix $A \in M_n(\mathbb{F})$ to obtain $f(A) \in M_n(\mathbb{F})$. The only thing we have to be careful about is what we do with the scalar term α_0; we replace it with α_0 times the identity matrix, so

$$f(A) := \alpha_0 I + \alpha_1 A + \cdots + \alpha_d A^d. \quad (8.13)$$

Exercise 8.5.2. Let A and B be similar matrices, and let f be a polynomial. Show that $f(A) \sim f(B)$.

The main result of this section is the following theorem.

Theorem 8.5.3 (Cayley-Hamilton Theorem). Let A be an $n \times n$ matrix. Then $f_A(A) = 0$.

Exercise 8.5.4. What is wrong with the following “proof” of the Cayley-Hamilton Theorem?

$$f_A(A) = \det(AI - A) = \det 0 = 0. \quad (8.14)$$

Exercise 8.5.5. Prove the Cayley-Hamilton Theorem by brute force

(a) for 1×1 matrices,

(b) for 2×2 matrices.
8.6. ADDITIONAL EXERCISES

We will first prove the Cayley-Hamilton Theorem for diagonal matrices, and then more generally for diagonalizable matrices (Def. 8.2.6).

Proposition 8.5.6. Let D be a diagonal matrix, and let f_D be its characteristic polynomial. Then $f_D(D) = 0$.

Proposition 8.5.7. Let $A \sim B$, so $B = S^{-1}AS$. Then
$$tI - B = S^{-1}(tI - A)S.$$ (8.15)

Theorem 8.5.8. If $A \sim B$, then the characteristic polynomials of A and B are equal, i.e., $f_A = f_B$. ♦

Proposition 8.5.9. Let A be an $n \times n$ matrix with characteristic polynomial $f_A = \prod_{i=1}^{n}(t - \lambda_i)$. Then
$$A \sim \begin{pmatrix}
\lambda_1 & 0 & \cdots & 0 \\
0 & \lambda_2 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \lambda_n
\end{pmatrix}.$$ (8.16)

Lemma 8.5.10. Let $g \in \mathbb{F}[t]$, and let $A, S \in M_n(\mathbb{F})$ with S nonsingular. Then $g(S^{-1}AS) = S^{-1}g(A)S$. ♦

Corollary 8.5.11. Let $g \in \mathbb{F}[t]$ and let $A, B \in M_n(\mathbb{F})$ with $A \sim B$. Then $g(A) \sim g(B)$.

Proposition 8.5.12. The Cayley-Hamilton Theorem holds for diagonalizable matrices.

Exercise 8.5.13. Let N be a nilpotent matrix. Show that $N^n = 0$.

8.6 Additional exercises

The following two exercises are easier for diagonalizable matrices.

Exercise 8.6.1. Let $f(t) = \sum_{i=0}^{\infty} \alpha_i t^i$ be a function which is convergent for all t such that $|t| < r$ for some $r \in \mathbb{R}^+ \cup \{\infty\}$. Define, for $A \in M_n(\mathbb{R})$,
$$f(A) = \sum_{i=0}^{\infty} \alpha_i A^i.$$ (8.17)

Prove that $f(A)$ converges if $|\lambda_i| < r$ for all eigenvalues λ_i of A. In particular, e^A always converges.
Exercise 8.6.2.

(a) Find square matrices A and B such that $e^{A+B} \neq e^A e^B$.

(b) Give a natural sufficient condition under which $e^{A+B} = e^A \cdots e^B$.
Chapter 9

(R) Orthogonal Matrices

9.1 Orthogonal matrices

In Section 1.4, we defined the standard dot product (Def. 1.4.1) and the notions of orthogonal vectors (Def. 1.4.8). In this chapter we study **orthogonal matrices**, matrices whose columns form an orthonormal basis (Def. 1.5.6) of \(\mathbb{R}^n \).

Definition 9.1.1 (Orthogonal matrix). The matrix \(A \in M_n(\mathbb{R}) \) is **orthogonal** if \(A^T A = I \). The set of orthogonal \(n \times n \) matrices is denoted by \(O(n) \).

Fact 9.1.2. \(A \in M_n(\mathbb{R}) \) is orthogonal if and only if its columns form an orthonormal basis of \(\mathbb{R}^n \).

Proposition 9.1.3. \(O(n) \) is a group (Def. 14.2.1) under matrix multiplication (it is called the **orthogonal group**).

Exercise 9.1.4. Which diagonal matrices are orthogonal?

Theorem 9.1.5 (Third Miracle of Linear Algebra). Let \(A \in M_n(\mathbb{R}) \). Then the columns of \(A \) are orthonormal if and only if the rows of \(A \) are orthonormal.

Proposition 9.1.6. Let \(A \in O(n) \). Then all eigenvalues of \(A \) have absolute value 1.

Exercise 9.1.7. The matrix \(A \in M_n(\mathbb{R}) \) is orthogonal if and only if \(A \) preserves the dot product, i.e., for all \(v, w \in \mathbb{R}^n \), we have \((Av)^T (Aw) = v^T w \).

Exercise 9.1.8. The matrix \(A \in M_n(\mathbb{R}) \) is orthogonal if and only if \(A \) preserves the norm, i.e., for all \(v \in \mathbb{R}^n \), we have \(\|Av\| = \|v\| \).

Definition 9.1.9 (Hadamard matrix). The matrix $A = (\alpha_{ij}) \in M_n(\mathbb{R})$ is an *Hadamard matrix* if $\alpha_{ij} = \pm 1$ for all i, j, and the columns of A are orthogonal. We denote by \mathcal{H} the set

$$\mathcal{H} := \{ n \mid \text{an } n \times n \text{ Hadamard matrix exists}\}.$$

(9.1)

Example 9.1.10. The matrix

$$\begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$

is an Hadamard matrix.

Exercise 9.1.11. Let A be an $n \times n$ Hadamard matrix. Create a $2n \times 2n$ Hadamard matrix.

Proposition 9.1.12. If $n \in \mathcal{H}$ and $n > 2$, then $4 \mid n$.

Proposition 9.1.13. If p is prime and $p \equiv -1 \pmod{4}$, then $p + 1 \in \mathcal{H}$.

Proposition 9.1.14. If $k, \ell \in \mathcal{H}$, then $k\ell \in \mathcal{H}$.

Proposition 9.1.15. Let A be an $n \times n$ Hadamard matrix. Then $\frac{1}{\sqrt{n}}A$ is an orthogonal matrix.

9.2 Orthogonal similarity

Definition 9.2.1 (Orthogonal similarity). Let $A, B \in M_n(\mathbb{R})$. We say that A is *orthogonally similar* to B, denoted $A \sim_o B$, if there exists an orthogonal matrix O such that $A = O^{-1}BO$.

Note that $O^{-1}BO = O^TBO$ because O is orthogonal.

Proposition 9.2.2. Let $A \sim_o B$.

(a) If A is symmetric then so is B.

(b) If A is orthogonal then so is B.

Proposition 9.2.3. Let $A \sim_o \text{diag}(\lambda_1, \ldots, \lambda_n)$. Then

(a) If all eigenvalues of A are real then A is symmetric.

(b) If all eigenvalues of A have unit absolute value then A is orthogonal.

Proposition 9.2.4. $A \in M_n(\mathbb{R})$ has an orthonormal eigenbasis if and only if A is orthogonally similar to a diagonal matrix.
Proposition 9.2.5. Let $A \in M_n(\mathbb{R})$. Then $A \in O(n)$ if and only if it is orthogonally similar to a matrix which is the diagonal sum of some of the following: an identity matrix, a negative identity matrix, 2×2 rotation matrices (compare with Prop. 16.4.44).

Examples 9.2.6. The following are examples of the matrices described in the preceding proposition.

(a) $\begin{pmatrix} -1 & 0 & 0 \\ 0 & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ 0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix}$

(b) $\begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & \frac{\sqrt{3}}{2} & \frac{1}{2} & \frac{-1}{2} \\ 0 & 0 & 0 & 0 & 0 & 0 & \frac{-\sqrt{3}}{2} & \frac{1}{2} & \frac{-1}{2} \\ 0 & 0 & 0 & 0 & 0 & 0 & \frac{\sqrt{3}}{2} & \frac{-1}{2} & \frac{1}{2} \end{pmatrix}$
Chapter 10

The Spectral Theorem

10.1 Statement of the Spectral Theorem

The Spectral Theorem is one of the most significant results of linear algebra, as well as one of the most frequently applied mathematical results in pure math, applied math, and science. We will see a number of different versions of this theorem, and we will not prove it until Section 19.4. However, we now have developed the tools necessary to understand the statement of the theorem and some of its applications.

Theorem 10.1.1 (The Spectral Theorem for real symmetric matrices). Let $A \in M_n(\mathbb{R})$ be a real symmetric matrix. Then A has an orthonormal eigenbasis.

The Spectral Theorem can be restated in terms of orthogonal similarity (Def. 9.2.1).

Theorem 10.1.2 (The Spectral Theorem for real symmetric matrices, restated). Let $A \in M_n(\mathbb{R})$ be a real symmetric matrix. Then A is orthogonally similar to a diagonal matrix.

Exercise 10.1.3. Verify that these two formulations of the Spectral Theorem are equivalent.

Corollary 10.1.4. Let A be a real symmetric matrix. Then A is diagonalizable.

Corollary 10.1.5. Let A be a real symmetric matrix. Then all of the eigenvalues of A are real.
10.2 Applications of the Spectral Theorem

Although we have not yet proved the Spectral Theorem, we can already begin to study some of its many applications.

Proposition 10.2.1. If two symmetric matrices are similar then they are orthogonally similar.

Exercise 10.2.2. Let A be a symmetric real $n \times n$ matrix, and let $v \in \mathbb{R}^n$. Let $b = (b_1, \ldots, b_n)$ be an orthonormal eigenbasis of A. Express $v^T Av$ in terms of the eigenvalues and the coordinates of v with respect to b.

Definition 10.2.3 (Positive definite matrix). An $n \times n$ real matrix $A \in M_n(\mathbb{R})$ is *positive definite* if for all $x \in \mathbb{R}^n$ ($x \neq 0$), we have $x^T Ax > 0$.

Proposition 10.2.4. Let $A \in M_n(\mathbb{R})$ be a real symmetric $n \times n$ matrix. Then A is positive definite if and only if all eigenvalues of A are positive.

Another consequence of the Spectral Theorem is Rayleigh’s Principle.

Definition 10.2.5 (Rayleigh quotient). Let $A \in M_n(\mathbb{R})$. The Rayleigh quotient of A is a function $R_A : \mathbb{R}^n \setminus \{0\} \to \mathbb{R}$ defined by

$$R_A(v) = \frac{v^T Av}{\|v\|^2}.$$

Recall that $\|v\|^2 = v^T v$ (Def. 1.5.2).

Proposition 10.2.6 (Rayleigh’s Principle). Let A be an $n \times n$ real symmetric matrix with eigenvalues $\lambda_1 \geq \cdots \geq \lambda_n$. Then

(a) $\max_{v \in \mathbb{R}^n \setminus \{0\}} R_A(v) = \lambda_1$

(b) $\min_{v \in \mathbb{R}^n \setminus \{0\}} R_A(v) = \lambda_n$

Theorem 10.2.7 (Courant-Fischer). Let A be a symmetric real matrix with eigenvalues $\lambda_1 \geq \cdots \geq \lambda_n$. Then

$$\lambda_i = \max_{\dim U = i} \min_{v \in U \setminus \{0\}} R_A(v).$$

\diamond
Theorem 10.2.8 (Interlacing). Let $A \in M_n(\mathbb{R})$ be an $n \times n$ symmetric real matrix. Let B be the $(n-1) \times (n-1)$ matrix obtained by deleting the i-th column and the i-th row of A (so B is also symmetric). Prove that the eigenvalues of A and B interlace, i.e., if the eigenvalues of A are $\lambda_1 \geq \cdots \geq \lambda_n$ and the eigenvalues of B are $\mu_1 \geq \cdots \geq \mu_{n-1}$, then

$$\lambda_1 \geq \mu_1 \geq \lambda_2 \geq \mu_2 \geq \cdots \geq \lambda_{n-1} \geq \mu_{n-1} \geq \lambda_n.$$
Chapter 11

(\mathbb{F}, \mathbb{R}) Bilinear and Quadratic Forms

11.1 (\mathbb{F}) Linear and bilinear forms

Definition 11.1.1 (Linear form). A **linear form** is a function \(f : \mathbb{F}^n \rightarrow \mathbb{F} \) with the following properties.

(a) \(f(x + y) = f(x) + f(y) \) for all \(x, y \in \mathbb{F}^n \);

(b) \(f(\lambda x) = \lambda f(x) \) for all \(x \in \mathbb{F}^n \) and \(\lambda \in \mathbb{F} \).

Exercise 11.1.2. Let \(f \) be a linear form. Show that \(f(0) = 0 \).

Definition 11.1.3 (Dual space). The set of linear forms \(f : \mathbb{F}^n \rightarrow \mathbb{F} \) is called the **dual space** of \(\mathbb{F}^n \) and is denoted \((\mathbb{F}^n)^*\).

Example 11.1.4. The function \(f(x) = x_1 + \cdots + x_n \) (where \(x = (x_1, \ldots, x_n)^T \)) is a linear form. More generally, for any \(a = (\alpha_1, \ldots, \alpha_n)^T \in \mathbb{F}^n \), the function

\[
 f(x) = a^T x = \sum_{i=1}^{n} \alpha_i x_i
\]

is a linear form.

Theorem 11.1.5 (Representation Theorem for Linear Forms). Every linear form \(f : \mathbb{F}^n \rightarrow \mathbb{F} \) has the form (11.1) for some column vector \(a \in \mathbb{F}^n \). \(\diamond \)
Definition 11.1.6 (Bilinear form). A bilinear form is a function $f : \mathbb{F}^n \times \mathbb{F}^n \to \mathbb{F}$ with the following properties.

(a) $f(x_1 + x_2, y) = f(x_1, y) + f(x_2, y)$

(b) $f(\lambda x, y) = \lambda f(x, y)$

(c) $f(x, y_1 + y_2) = f(x, y_1) + f(x, y_2)$

(d) $f(x, \lambda y) = \lambda f(x, y)$

Exercise 11.1.7. Let $f : \mathbb{F}^n \times \mathbb{F}^n \to \mathbb{F}$ be a bilinear form. Show that for all $x, y \in \mathbb{F}$, we have
\[f(x, 0) = f(0, y) = 0. \] (11.2)

The next result explains the term “bilinear.”

Proposition 11.1.8. The function $f : \mathbb{F}^n \times \mathbb{F}^n \to \mathbb{F}$ is a bilinear form exactly if

(a) for all $a \in \mathbb{F}^n$ the function $f^{(1)}_a : \mathbb{F}^n \to \mathbb{F}$ defined by $f^{(1)}_a(x) = f(a, x)$ is a linear form and

(b) for all $b \in \mathbb{F}^n$ the function $f^{(2)}_b : \mathbb{F}^n \to \mathbb{F}$ defined by $f^{(2)}_b(x) = f(x, b)$ is a linear form.

Examples 11.1.9. The standard dot product
\[f(x, y) = x^T y = \sum_{i=1}^{n} x_i y_i \] (11.3)
is a bilinear form. More generally, for any matrix $A \in M_n(\mathbb{F})$, the expression
\[f(x, y) = x^T Ay = \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{ij} x_i y_j \] (11.4)
is a bilinear form.

Theorem 11.1.10 (Representation Theorem for bilinear forms). Every bilinear form f has the form (11.4) for some matrix A. ♦

Definition 11.1.11 (Nonsingular bilinear form). We say that the bilinear form $f(x, y) = x^T Ay$ is nonsingular if the matrix A is nonsingular.
Exercise 11.1.12. Is the standard dot product nonsingular?

Exercise 11.1.13.

(a) Assume \(\mathbb{F} \) does not have characteristic 2, i.e., \(1 + 1 \neq 0 \) in \(\mathbb{F} \) (Section 14.3 for more about the characteristic of a field). Prove: if \(n \) is odd and the bilinear form \(f : \mathbb{F}^n \times \mathbb{F}^n \to \mathbb{F} \) satisfies \(f(x, x) = 0 \) for all \(x \in \mathbb{F}^n \), then \(f \) is singular.

(b) Prove this without the assumption that \(1 + 1 \neq 0 \).

(b) Over every field \(\mathbb{F} \), find a nonsingular bilinear form \(f \) over \(\mathbb{F}^2 \) such that \(f(x, x) = 0 \) for all \(x \in \mathbb{F}^2 \).

(c) Extend this to all even dimensions.

11.2 (\(\mathbb{F} \)) Multivariate polynomials

Definition 11.2.1 (Multivariate monomial). A monomial in the variables \(x_1, \ldots, x_n \) is an expression of the form

\[
f = \alpha \prod_{i=1}^{n} x_i^{k_i}
\]

for some nonzero scalar \(\alpha \) and exponents \(k_i \). The degree of this monomial is

\[
\deg f := \sum_{i=1}^{n} k_i .
\] (11.5)

Examples 11.2.2. The following expressions are multivariate monomials of degree 4 in the variables \(x_1, \ldots, x_6 \): \(x_1^2 x_2 x_3 \), \(5x_4 x_5^3 \), \(-3x_6^4 \).

Definition 11.2.3 (Multivariate polynomial). A multivariate polynomial is an expression which is the sum of multivariate monomials.

Observe that the preceding definition includes the possibility of the empty sum, corresponding to the 0 polynomial.
Definition 11.2.4 (Monic monomial). We call the monomials of the form \(\prod_{i=1}^{n} x_i^{k_i} \) monic. We define the monic part of the monomial \(f = \alpha \prod_{i=1}^{n} x_i^{k_i} \) to be the monomial \(\prod_{i=1}^{n} x_i^{k_i} \).

Definition 11.2.5 (Standard form of a multivariate polynomial). A multivariate polynomial is in standard form if it is expressed as a (possibly empty) sum of monomials with distinct monic parts. The empty sum of monomials is the zero polynomial, denoted by 0.

Examples 11.2.6. The following are multivariate polynomials in the variables \(x_1, \ldots, x_7 \) (in standard form).

(a) \(3x_1x_3^3x_5 + 2x_2x_6 - x_4 \)

(b) \(4x_1^3 + 2x_5x_7^2 + 3x_1x_5x_7 \)

(c) 0

Definition 11.2.7 (Degree of a multivariate polynomial). The degree of a multivariate polynomial \(f \) is the highest degree of a monomial in the standard form expression for \(f \). The degree of the 0 polynomial is defined to be \(-\infty\).

Exercise 11.2.8. Let \(f \) and \(g \) be multivariate polynomials. Then

(a) \(\deg(f + g) \leq \max\{\deg f, \deg g\} \)

(b) \(\deg(fg) = \deg f + \deg g \).

Note that by our convention, these rules remain valid if \(f \) or \(g \) is the zero polynomial.

Definition 11.2.9 (Homogeneous multivariate polynomial). The multivariate polynomial \(f \) is a homogeneous polynomial of degree \(k \) if every monomial in the standard form expression of \(f \) has degree \(k \).

Fact 11.2.10. The 0 polynomial is a homogeneous polynomial of degree \(k \) for all \(k \).

Fact 11.2.11.

\(^1\)This is in accordance with the natural convention that the maximum of the empty list is \(-\infty\).
11.3. QUADRATIC FORMS

(a) If \(f \) and \(g \) are homogeneous polynomials of degree \(k \), then \(f + g \) is a homogeneous polynomial of degree \(k \).

(b) If \(f \) is a homogeneous polynomial of degree \(k \) and \(g \) is a homogeneous polynomial of degree \(\ell \), then \(fg \) is a homogeneous polynomial of degree \(k + \ell \).

Exercise 11.2.12. For all \(n \) and \(k \), count the monic monomials of degree \(k \) in the variables \(x_1, \ldots, x_n \). Note that this is the dimension (Ref. Def. 15.3.6) of the space of homogeneous polynomials of degree \(k \).

Exercise 11.2.13. What are the homogeneous polynomials of degree 0?

Fact 11.2.14. Linear forms are exactly the homogeneous polynomials of degree 1.

In the next section we explore quadratic forms, which are the homogeneous polynomials of degree 2 (Ref. 11.6).

11.3 (\(\mathbb{R} \)) Quadratic forms

In this section we restrict our attention to the field of real numbers.

Definition 11.3.1 (Quadratic form). A quadratic form is a function \(Q : \mathbb{R}^n \to \mathbb{R}^n \) where \(Q(\mathbf{x}) = f(\mathbf{x}, \mathbf{x}) \) for some bilinear form \(f \).

Definition 11.3.2. Let \(A \in M_n(\mathbb{R}) \) be an \(n \times n \) matrix. The quadratic form associated with \(A \), denoted \(Q_A \), is defined by

\[
Q_A(\mathbf{x}) = \mathbf{x}^T A \mathbf{x} = \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{ij} x_i x_j . \tag{11.6}
\]

Note that for all matrices \(A \in M_n(\mathbb{R}) \), we have \(Q_A(\mathbf{0}) = 0 \). Note further that for a symmetric matrix \(B \), the quadratic form \(Q_B \) is the numerator of the Rayleigh quotient \(R_B \) (Ref. Def. 10.2.5).

Proposition 11.3.3. For all \(A \in M_n(\mathbb{R}) \), there is a unique \(B \in M_n(\mathbb{R}) \) such that \(B \) is a symmetric matrix and \(Q_A = Q_B \), i.e., for all \(\mathbf{x} \in \mathbb{R}^n \), we have

\[
\mathbf{x}^T A \mathbf{x} = \mathbf{x}^T B \mathbf{x} .
\]
Exercise 11.3.4. Find the symmetric matrix \(B \) such that
\[Q_B(x) = 3x_1^2 - 7x_1x_2 + 2x_2^2 \]
where \(x = (x_1, x_2)^T \).

Definition 11.3.5. Let \(Q \) be a quadratic form in \(n \) variables.

(a) \(Q \) is positive definite if \(Q(x) > 0 \) for all \(x \neq 0 \).

(b) \(Q \) is positive semidefinite if \(Q(x) \geq 0 \) for all \(x \).

(c) \(Q \) is negative definite if for all \(Q(x) < 0 \) for all \(x \neq 0 \).

(d) \(Q \) is negative semidefinite if for all \(Q(x) \leq 0 \) for all \(x \).

(e) \(Q \) is indefinite if it is neither positive semidefinite nor negative semidefinite, i.e., there exist \(x, y \in \mathbb{R}^n \) such that \(Q(x) > 0 \) and \(Q(y) < 0 \).

Definition 11.3.6. We say that a matrix \(A \in M_n(\mathbb{R}) \) is positive definite if it is symmetric and its associated quadratic form \(Q_A \) is positive definite. Positive semidefinite, negative definite, negative semidefinite, and indefinite symmetric matrices are defined analogously.

Notice that we shall not call a non-symmetric matrix \(A \) positive definite, etc., even if the quadratic form \(Q_A \) is positive definite, etc.

Exercise 11.3.7. Categorize diagonal matrices according to their definiteness, i.e., tell, which diagonal matrices are positive definite, etc.

Exercise 11.3.8. Let \(A \in M_n(\mathbb{R}) \). Assume \(Q_A \) is positive definite and \(\lambda \) is a real eigenvalue of \(A \). Prove \(\lambda > 0 \). Note that \(A \) is not necessarily symmetric.

Corollary 11.3.9. If \(A \) is a positive definite (and therefore symmetric by definition) matrix and \(\lambda \) is an eigenvalue of \(A \) then \(\lambda > 0 \).

Proposition 11.3.10. Let \(A \in M_n(\mathbb{R}) \) be a symmetric real matrix with eigenvalues \(\lambda_1 \geq \cdots \geq \lambda_n \).

(a) \(Q_A \) is positive definite if and only if \(\lambda_i > 0 \) for all \(i \).

(b) \(Q_A \) is positive semidefinite if and only if \(\lambda_i \geq 0 \) for all \(i \).
(c) Q_A is negative definite if and only if $\lambda_i < 0$ for all i.

(d) Q_A is negative semidefinite if and only if $\lambda_i \leq 0$ for all i.

(e) Q_A is indefinite if there exist i and j such that $\lambda_i > 0$ and $\lambda_j < 0$ for all i.

Proposition 11.3.11. If $A \in M_n(\mathbb{R})$ is positive definite, then its determinant is positive.

Exercise 11.3.12. Show that if A and B are symmetric $n \times n$ matrices and $A \sim B$ and A is positive definite, then so is B.

Definition 11.3.13 (Corner matrix). Let $A = (\alpha_{ij})_{i,j=1}^n \in M_n(\mathbb{R})$ and define for $k = 1, \ldots, n$, the corner matrix $A_k := (\alpha_{ij})_{i,j=1}^k$ to be the $k \times k$ submatrix of A, obtained by taking the intersection of the first k rows of A with the first k columns of A. In particular, $A_n = A$. The k-th corner determinant of A is $\det A_k$.

Exercise 11.3.14. Let $A \in M_n(\mathbb{R})$ be a symmetric matrix.

(a) If A is positive definite then all of its corner matrices are positive definite.

(b) If A is positive definite then all of its corner determinants are positive.

The next theorem says that (b) is actually a necessary and sufficient condition for positive definiteness.

Theorem 11.3.15. Let $A \in M_n(\mathbb{R})$ be a symmetric matrix. A is positive definite if and only if all of its corner determinants are positive. ♦

Exercise 11.3.16. Show that the following statement is false for every $n \geq 2$: The $n \times n$ symmetric matrix A is positive semidefinite if and only if all corner determinants are nonnegative.

Exercise 11.3.17. Show that the statement of Ex. 11.3.16 remains false for $n \geq 3$ if in addition we require all diagonal elements to be positive.

* *

In the next sequence of exercises we study the definiteness of quadratic forms Q_A where A is not necessarily symmetric.
Exercise 11.3.18. Let $A \in M_n(\mathbb{R})$ be an $n \times n$ matrix such that Q_A is positive definite. Show that A need not have all of its corner determinants positive. Give a 2×2 counterexample. Contrast this with part (b) of Ex. 11.3.14.

Proposition 11.3.19. Let $A \in M_n(\mathbb{R})$. If Q_A is positive definite, then so is Q_A^T; analogous results hold for positive semidefinite, negative definite, negative semidefinite, and indefinite quadratic forms.

Exercise 11.3.20. Let $A, B, C \in M_n(\mathbb{R})$. Assume $B = C^T A C$. Prove: if Q_A is positive semidefinite then so is Q_B.

Exercise 11.3.21. Let $A, B \in M_n(\mathbb{R})$. Show that if $A \sim_o B$ (A and B are orthogonally similar, Def. 9.2.1) and Q_A is positive definite then Q_B is positive definite.

Exercise 11.3.22. Let $A = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix}$. Prove that Q_A is positive definite if and only if $\alpha, \delta > 0$ and $(\beta + \gamma)^2 < 4 \alpha \delta$.

Exercise 11.3.23. Let $A, B \in M_n(\mathbb{R})$ be matrices that are not necessarily symmetric.

(a) Prove that if $A \sim B$ and Q_A is positive definite, then Q_B cannot be negative definite.

(b) Find 2×2 matrices A and B such that $A \sim B$ and Q_A is positive definite but Q_B is indefinite. (Contrast this with Ex. 11.3.12)

11.4 (F) Geometric algebra (optional)

Let us fix a bilinear form $f : \mathbb{F}^n \times \mathbb{F}^n \to \mathbb{F}$.

Definition 11.4.1 (Orthogonality). Let $x, y \in \mathbb{F}^n$. We say that x and y are orthogonal with respect to f (notation: $x \perp y$) if $f(x, y) = 0$.

Definition 11.4.2. Let $S, T \subseteq \mathbb{F}^n$. For $v \in \mathbb{F}^n$, we say that v is orthogonal to S (notation: $v \perp S$) if for all $s \in S$, we have $v \perp s$. Moreover, we say that S is orthogonal to T (notation: $S \perp T$) if $s \perp t$ for all $s \in S$ and $t \in T$.

Definition 11.4.3. Let $S \subseteq \mathbb{F}^n$. Then S^\perp ("S perp") is the set of vectors orthogonal to S, i.e.,

$$S^\perp := \{ v \in \mathbb{F}^n \mid v \perp S \}. \quad (11.7)$$
Proposition 11.4.4. For all subsets $S \subseteq \mathbb{F}^n$, we have $S^\perp \subseteq \mathbb{F}^n$.

Proposition 11.4.5. Let $S \subseteq \mathbb{F}^n$. Then $S \subseteq (S^\perp)^\perp$.

Exercise 11.4.6. Prove: $(\mathbb{F}^n)^\perp = \{0\}$ if and only if f is nonsingular.

Exercise 11.4.7. Verify $\{0\}^\perp = \mathbb{F}^n$.

Exercise 11.4.8. What is \emptyset^\perp?

For the rest of this section we assume that f is nonsingular.

Theorem 11.4.9 (Dimensional complementarity). Let $U \leq \mathbb{F}^n$. Then
\[\dim U + \dim U^\perp = n. \] \hfill (11.8)

Corollary 11.4.10. Let $S \subseteq \mathbb{F}^n$. Then
\[(S^\perp)^\perp = \text{span}(S). \] \hfill (11.9)

In particular, if $U \leq \mathbb{F}^n$ then
\[(U^\perp)^\perp = U. \] \hfill (11.10)

Definition 11.4.11 (Isotropic vector). The vector $\mathbf{v} \in \mathbb{F}^n$ is isotropic if $\mathbf{v} \neq 0$ and $\mathbf{v} \perp \mathbf{v}$.

Exercise 11.4.12. Let $A = I$, i.e., $f(x, y) = x^Ty$ (the standard dot product).

(a) Prove: over \mathbb{R}, there are no isotropic vectors.

(b) Find isotropic vectors in \mathbb{C}^2, \mathbb{F}_5^2, and \mathbb{F}_2^2.

(c) For what primes p is there an isotropic vector in \mathbb{F}_p^2?

Definition 11.4.13 (Totally isotropic subspace). The subspace $U \leq \mathbb{F}^n$ is totally isotropic if $U \perp U$, i.e., $U \leq U^\perp$.

Exercise 11.4.14. If \(S \subseteq \mathbb{F}^n \) and \(S \perp S \) then \(\text{span}(S) \) is a totally isotropic subspace.

Corollary 11.4.15 (to Theorem 11.4.9). If \(U \subseteq \mathbb{F}^n \) is a totally isotropic subspace then \(\dim U \leq \left\lfloor \frac{n}{2} \right\rfloor \).

Exercise 11.4.16. For even \(n \), find an \(\frac{n}{2} \)-dimensional totally isotropic subspace in \(\mathbb{C}^n \), \(\mathbb{F}_5^n \), and \(\mathbb{F}_2^n \).

Exercise 11.4.17. Let \(\mathbb{F} \) be a field and let \(k \geq 2 \). Consider the following statement.

\[\text{Stm}(\mathbb{F}, k): \text{If } U \subseteq \mathbb{F}^n \text{ is a } k\text{-dimensional subspace then } U \text{ contains an isotropic vector.} \]

Prove:

(a) if \(k \leq \ell \) and \(\text{Stm}(\mathbb{F}, k) \) is true, then \(\text{Stm}(\mathbb{F}, \ell) \) is also true;

(b) \(\text{Stm}(\mathbb{F}, 2) \) is true

- (b1) for \(\mathbb{F} = \mathbb{F}_2 \) and
- (b2) for \(\mathbb{F} = \mathbb{C} \);

(c) \(\text{Stm}(\mathbb{F}, 2) \) holds for all finite fields of characteristic 2;

(d) \(\text{Stm}(\mathbb{F}, 2) \) is false for all finite fields of odd characteristic;

(e)\(^* \) \(\text{Stm}(\mathbb{F}, 3) \) holds for all finite fields.

Exercise 11.4.18. Prove: if \(\text{Stm}(\mathbb{F}, 2) \) is true then every maximal totally isotropic subspace of \(\mathbb{F}^n \) has dimension \(\left\lfloor \frac{n}{2} \right\rfloor \). In particular, this conclusion holds for \(\mathbb{F} = \mathbb{F}_2 \) and for \(\mathbb{F} = \mathbb{C} \).

Exercise 11.4.19. Prove: for all finite fields \(\mathbb{F} \), every maximal totally isotropic subspace of \(\mathbb{F}^n \) has dimension \(\geq \frac{n}{2} - 1 \).
Chapter 12

Complex Matrices

12.1 Complex numbers

Before beginning our discussion of matrices with entries taken from the field \(\mathbb{C} \), we provide a refresher of complex numbers and their properties.

Definition 12.1.1 (Complex number). A complex number is a number \(z \in \mathbb{C} \) of the form \(z = a + bi \), where \(a, b \in \mathbb{R} \) and \(i = \sqrt{-1} \).

Notation 12.1.2. Let \(z \) be a complex number. Then \(\text{Re} \, z \) denotes the real part of \(z \) and \(\text{Im} \, z \) denotes the imaginary part of \(z \). In particular, if \(z = a + bi \), then \(\text{Re} \, z = a \) and \(\text{Im} \, z = b \).

Definition 12.1.3 (Complex conjugate). Let \(z = a + bi \in \mathbb{C} \). Then the complex conjugate of \(z \), denoted \(\overline{z} \), is

\[
\overline{z} = a - bi .
\]

(12.1)

Exercise 12.1.4. Let \(z_1, z_2 \in \mathbb{C} \). Show that

\[
\overline{z_1 \cdot z_2} = \overline{z_1} \cdot \overline{z_2} .
\]

(12.2)

Fact 12.1.5. Let \(z = a + bi \). Then \(z \overline{z} = a^2 + b^2 \). In particular, \(z \overline{z} \in \mathbb{R} \) and \(z \overline{z} \geq 0 \).

Definition 12.1.6 (Magnitude of a complex number). Let \(z \in \mathbb{C} \). Then the magnitude, norm, or absolute value of \(z \) is \(|z| = \sqrt{z \overline{z}} \). If \(|z| = 1 \), then \(z \) is said to have unit norm.
Proposition 12.1.7. Let \(z \in \mathbb{C} \) have unit norm. Then \(z \) can be expressed in the form
\[
z = \cos \theta + i \sin \theta
\] (12.3)
for some \(\theta \in [0, 2\pi) \).

Proposition 12.1.8. The complex number \(z \) has unit norm if and only if \(\overline{z} = z^{-1} \).

Until now, we have dealt with matrices over the reals or over a general field \(\mathbb{F} \). We now turn our attention specifically to matrices with complex entries.

12.2 Hermitian dot product in \(\mathbb{C}^n \)

Definition 12.2.1 (Conjugate-transpose). Let \(A = (\alpha_{ij}) \in \mathbb{C}^{k \times \ell} \). The conjugate-transpose of \(A \) is the \(\ell \times k \) matrix \(A^\ast \) whose \((i,j)\) entry is \(\overline{\alpha_{ji}} \). The conjugate-transpose is also called the (Hermitian) adjoint.

Fact 12.2.2. Let \(A, B \in \mathbb{C}^{k \times n} \). Then
\[
(A + B)^\ast = A^\ast + B^\ast .
\] (12.4)

Exercise 12.2.3. Let \(A \in \mathbb{C}^{k \times n} \) and let \(B \in \mathbb{C}^{n \times \ell} \). Show that \((AB)^\ast = B^\ast A^\ast \).

Fact 12.2.4. Let \(\lambda \in \mathbb{C} \) and \(A \in \mathbb{C}^{k \times n} \). Then \((\lambda A)^\ast = \overline{\lambda} A^\ast \).

In Section 1.4, we defined the standard dot product (Def. 1.4.1). We now define the standard Hermitian dot product for vectors in \(\mathbb{C}^n \).

Definition 12.2.5 (Standard Hermitian dot product). Let \(\mathbf{v}, \mathbf{w} \in \mathbb{C}^n \). Then the Hermitian dot product of \(\mathbf{v} \) with \(\mathbf{w} \) is
\[
\mathbf{v} \cdot \mathbf{w} := \mathbf{v}^\ast \mathbf{w} = \sum_{i=1}^{n} \overline{\alpha_i} \beta_i
\] (12.5)
where \(\mathbf{v} = (\alpha_1, \ldots, \alpha_n)^T \) and \(\mathbf{w} = (\beta_1, \ldots, \beta_n)^T \).

In particular, observe that \(\mathbf{v}^\ast \mathbf{v} \) is real and positive for all \(\mathbf{v} \neq 0 \). The following pair of exercises show some of the things that would go wrong if we did not conjugate.

Exercise 12.2.6. Find a nonzero vector \(\mathbf{v} \in \mathbb{C}^n \) such that \(\mathbf{v}^T \mathbf{v} = 0 \).
12.2. HERMITIAN DOT PRODUCT IN \mathbb{C}^N

Exercise 12.2.7. Let $A \in \mathbb{C}^{k \times n}$.

(a) Show that $\text{rk} (A^*A) = \text{rk} A$.

(b) Find $A \in M_2(\mathbb{C})$ such that $\text{rk} (A^TA) < \text{rk} (A)$.

The standard dot product in \mathbb{R}^n (Def. 1.4.1) carries with it the notions of norm and orthogonality; likewise, the standard Hermitian dot product carries these notions with it.

Definition 12.2.8 (Norm). Let $v \in \mathbb{C}^n$. The **norm** of v, denoted $\|v\|$, is

$$\|v\| := \sqrt{v \cdot v}.$$ \hfill (12.6)

This norm is also referred to as the (complex) **Euclidean norm** or the ℓ^2 **norm**.

Fact 12.2.9. If $v = (\alpha_1, \ldots, \alpha_n)^T$, then

$$\|v\| = \sqrt{\sum_{i=1}^{n} |\alpha_i|^2}.$$ \hfill (12.7)

Definition 12.2.10 (Orthogonality). The vectors $v, w \in \mathbb{C}^n$ are **orthogonal** (notation: $x \perp y$) if $v \cdot w = 0$.

Definition 12.2.11 (Orthogonal system). An **orthogonal system** in \mathbb{C}^n is a list of (pairwise) orthogonal nonzero vectors in \mathbb{C}^n.

Exercise 12.2.12. Let $S \subseteq \mathbb{C}^k$ be an orthogonal system in \mathbb{C}^n. Prove that S is linearly independent.

Definition 12.2.13 (Orthonormal system). An **orthonormal system** in \mathbb{C}^n is a list of (pairwise) orthogonal vectors in V, all of which have unit norm. So (v_1, v_2, \ldots) is an orthonormal system if $v_i \cdot v_j = \delta_{ij}$ for all i, j.

Definition 12.2.14 (Orthonormal basis). An **orthonormal basis** of \mathbb{C}^n is an orthonormal system that is a basis of \mathbb{C}^n.

12.3 Hermitian and unitary matrices

Definition 12.3.1 (Self-adjoint matrix). The matrix $A \in M_n(\mathbb{C})$ is said to be self-adjoint or Hermitian if $A^* = A$.

Exercise 12.3.2. Which diagonal matrices are Hermitian?

Theorem 12.3.3. Let A be a Hermitian matrix. Then all eigenvalues of A are real. ♦

Exercise 12.3.4 (Alternative proof of the real Spectral Theorem). The key part of the proof of the Spectral Theorem (IFF Theorem 19.4.4) given in Section 19.4 is the following lemma (IFF Lemma 19.4.7): Let A be a symmetric real matrix. Then A has an eigenvector. Derive this lemma from Theorem 12.3.3.

Recall that a square matrix A is orthogonal (IFF Def. 9.1.1) if $A^T A = I$. Unitary matrices are the complex generalization of orthogonal matrices.

Definition 12.3.5 (Unitary matrix). The matrix $A \in M_n(\mathbb{C})$ is unitary if $A^* A = I$. The set of unitary $n \times n$ matrices is denoted by $U(n)$.

Fact 12.3.6. $A \in M_n(\mathbb{C})$ is unitary if and only if its columns form an orthonormal basis of \mathbb{C}^n.

Proposition 12.3.7. $U(n)$ is a group under matrix multiplication (it is called the unitary group).

Exercise 12.3.8. Which diagonal matrices are unitary?

Theorem 12.3.9 (Third Miracle of Linear Algebra). Let $A \in M_n(\mathbb{C})$. Then the columns of A are orthonormal if and only if the rows of A are orthonormal. ♦

Proposition 12.3.10. Let $A \in U(n)$. Then all eigenvalues of A have absolute value 1.

Exercise 12.3.11. The matrix $A \in M_n(\mathbb{C})$ is unitary if and only if A preserves the Hermitian dot product, i.e., for all $v, w \in \mathbb{C}^n$, we have $(Av)^*(Aw) = v^* w$.

Exercise* 12.3.12. The matrix $A \in M_n(\mathbb{C})$ is unitary if and only if A preserves the norm, i.e., for all $v \in \mathbb{C}^n$, we have $\|Av\| = \|v\|$.

Warning. The proof of this is trickier than in the real case (IFF Ex. 9.1.8).

Exercise 12.3.13. Find an $n \times n$ unitary circulant matrix (IFF Def. 2.5.12) with no zero entries.
12.4. NORMAL MATRICES AND UNITARY SIMILARITY

Definition 12.3.14 (Discrete Fourier transform matrix). The discrete Fourier transform (DFT) matrix is the $n \times n$ Vandermonde matrix (Def. 2.5.9) F generated by $1, \omega, \omega^2, \ldots, \omega^{n-1}$, where ω is a primitive n-th root of unity.

Exercise 12.3.15. Let F be the $n \times n$ DFT matrix. Prove that $\frac{1}{\sqrt{n}}F$ is unitary.

Exercise 12.3.16. Which circulant matrices are unitary?

12.4 Normal matrices and unitary similarity

Definition 12.4.1 (Normal matrix). A matrix $A \in M_n(\mathbb{C})$ is normal if it commutes with its conjugate-transpose, i.e., $AA^* = A^*A$.

Exercise 12.4.2. Which diagonal matrices are normal?

Definition 12.4.3 (Unitary similarity). Let $A, B \in M_n(\mathbb{C})$. We say that A is unitarily similar to B, denoted $A \sim_u B$, if there exists a unitary matrix U such that $A = U^{-1}BU$.

Note that $U^{-1}BU = U^*BU$ because U is unitary.

Proposition 12.4.4. Let $A \sim_u B$.

(a) If A is Hermitian then so is B.

(b) If A is unitary then so is B.

(c) If A is normal then so is B.

Proposition 12.4.5. Let $A \sim_u \text{diag}(\lambda_1, \ldots, \lambda_n)$. Then

(a) A is normal;

(b) if all eigenvalues of A are real then A is Hermitian;

(c) if all eigenvalues of A have unit absolute value then A is unitary.

We note that all of these implications are actually “if and only if,” as we shall demonstrate (Theorem 12.4.14).
Proposition 12.4.6. \(A \in M_n(\mathbb{C}) \) has an orthonormal eigenbasis if and only if \(A \) is unitarily similar to a diagonal matrix.

We now show (Cor. 12.4.8) that this condition is equivalent to \(A \) being normal.

Lemma 12.4.7. Let \(A, B \in M_n(\mathbb{C}) \) with \(A \sim_u B \). Then \(A \) is normal if and only if \(B \) is normal. ♦

Corollary 12.4.8. If \(A \) is unitarily similar to a diagonal matrix, then \(A \) is normal.

Unitary similarity is a powerful tool to study matrices, owing largely to the following theorem.

Theorem 12.4.9 (Schur). Every matrix \(A \in M_n(\mathbb{C}) \) is unitarily similar to a triangular matrix. ♦

Definition 12.4.10 (Dense subset). A subset \(S \subseteq \mathbb{F}^{k \times n} \) is dense in \(\mathbb{F}^{k \times n} \) if for every \(A \in S \) and every \(\varepsilon > 0 \), there exists \(B \in S \) such that every entry of the matrix \(A - B \) has absolute value less than \(\varepsilon \).

Proposition 12.4.11. Diagonalizable matrices are dense in \(M_n(\mathbb{C}) \).

Exercise 12.4.12. Complete the proof of the Cayley-Hamilton Theorem over \(\mathbb{C} \) (\(\mathbb{F} \) Theorem 8.5.3) using Prop. 12.4.11.

We now generalize the Spectral Theorem to normal matrices.

Theorem 12.4.13 (Complex Spectral Theorem). Let \(A \in M_n(\mathbb{C}) \). Then \(A \) has an orthonormal eigenbasis if and only if \(A \) is normal. ♦

Before giving the proof, let us restate the theorem.

Theorem 12.4.14 (Complex Spectral Theorem, restated). Let \(A \in M_n(\mathbb{C}) \). Then \(A \) is unitarily similar to a diagonal matrix if and only if \(A \) is normal. ♦

Exercise 12.4.15. Prove that Theorems 12.4.13 and 12.4.14 are equivalent.

Exercise 12.4.16. Infer Theorem 12.4.14 from Schur’s Theorem (Theorem 12.4.9) via the following lemma.

Lemma 12.4.17. If a triangular matrix is normal, then it is diagonal. ♦

Theorem 12.4.18 (Real version of Schur’s Theorem). If \(A \in M_n(\mathbb{R}) \) and all eigenvalues of \(A \) are real, then \(A \) is orthogonally similar to an upper triangular matrix. ♦

Exercise 12.4.19 (Third proof of the real Spectral Theorem). Infer the Spectral Theorem for real symmetric matrices (\(\mathbb{F} \) Theorem 10.1.1) from the complex Spectral Theorem and the fact, separately proved, that all eigenvalues of a symmetric matrix are real (\(\mathbb{F} \) Theorem 12.3.3).
Chapter 13

(\mathbb{C}, \mathbb{R}) Matrix Norms

13.1 (\mathbb{R}) Operator norm

Definition 13.1.1 (Operator norm). The operator norm of a matrix \(A \in \mathbb{R}^{k \times n} \) is defined to be

\[
\| A \| = \max_{\| x \| \neq 0} \frac{\| Ax \|}{\| x \|} \tag{13.1}
\]

where the \(\| \cdot \| \) notation on the right-hand side represents the Euclidean norm.

Proposition 13.1.2. Let \(A \in \mathbb{R}^{k \times n} \). Then \(\| A \| \) exists.

Proposition 13.1.3. Let \(A \in \mathbb{R}^{k \times n} \) and \(\lambda \in \mathbb{R} \). Then \(\| \lambda A \| = |\lambda| \| A \| \).

Proposition 13.1.4 (Triangle inequality). Let \(A, B \in \mathbb{R}^{k \times n} \). Then \(\| A + B \| \leq \| A \| + \| B \| \).

Proposition 13.1.5 (Submultiplicativity). Let \(A \in \mathbb{R}^{k \times n} \) and \(B \in \mathbb{R}^{n \times \ell} \). Then \(\| AB \| \leq \| A \| \cdot \| B \| \).

Exercise 13.1.6. Let \(A = [a_1 | \cdots | a_n] \in \mathbb{R}^{k \times n} \). (The \(a_i \) are the columns of \(A \).) Show \(\| A \| \geq \| a_i \| \) for every \(i \).

Exercise 13.1.7. Let \(A = (\alpha_{ij}) \in \mathbb{R}^{k \times n} \). Show that \(\| A \| \geq |\alpha_{ij}| \) for every \(i \) and \(j \).

Proposition 13.1.8. If \(A \) is a orthogonal matrix then \(\| A \| = 1 \).
CHAPTER 13. MATRIX NORMS

Proposition 13.1.9. Let $A \in \mathbb{R}^{k \times n}$. Let $S \in O(k)$ and $T \in O(n)$ be orthogonal matrices. Then
\[\|SA\| = \|A\| = \|AT\|. \]

(13.2)

Proposition 13.1.10. Let A be a symmetric real matrix with eigenvalues $\lambda_1 \geq \cdots \geq \lambda_n$. Then $\|A\| = \max |\lambda_i|$.

Exercise 13.1.11. Let $A \in \mathbb{R}^{k \times n}$. Show that $A^T A$ is positive semidefinite (Def. 11.3.6).

Exercise 13.1.12. Let $A \in \mathbb{R}^{k \times n}$ and let $A^T A$ have eigenvalues $\lambda_1 \geq \cdots \geq \lambda_n$. Show that $\|A\| = \sqrt{\lambda_1}$.

Proposition 13.1.13. For all $A \in \mathbb{R}^{k \times n}$, we have $\|A^T\| = \|A\|$.

(a) Find a stochastic matrix (Def. 22.1.2) of norm greater than 1.

(b) Find an $n \times n$ stochastic matrix of norm \sqrt{n}.

(c) Show that an $n \times n$ stochastic matrix cannot have norm greater than \sqrt{n}.

Numerical exercise 13.1.15.

(a) Let $A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$. Calculate $\|A\|$.

(b) Let $B = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$. Calculate $\|B\|$.

13.2 (R) Frobenius norm

Definition 13.2.1 (Frobenius norm). Let $A = (a_{ij}) \in \mathbb{R}^{k \times n}$ be a matrix. The Frobenius norm of A, denoted $\|A\|_F$, is defined as
\[\|A\|_F = \sqrt{\sum_{i,j} |a_{ij}|^2}. \]

(13.3)

Proposition 13.2.2. Let $A \in \mathbb{R}^{k \times n}$. Then $\|A\|_F = \sqrt{\text{Tr}(A^T A)}$.

13.3. COMPLEX MATRICES

Proposition 13.2.3. Let $A \in \mathbb{R}^{k \times n}$ and $\lambda \in \mathbb{R}$. Then $\|\lambda A\|_F = |\lambda|\|A\|_F$.

Proposition 13.2.4 (Triangle inequality). Let $A, B \in \mathbb{R}^{k \times n}$. Then $\|A + B\|_F \leq \|A\|_F + \|B\|_F$.

Proposition 13.2.5 (Submultiplicativity). Let $A \in \mathbb{R}^{k \times n}$ and $B \in \mathbb{R}^{n \times \ell}$. Then $\|AB\|_F \leq \|A\|_F \cdot \|B\|_F$.

Proposition 13.2.6. If $A \in O(k)$ then $\|A\|_F = \sqrt{k}$.

Proposition 13.2.7. Let $A \in \mathbb{R}^{k \times n}$. Let $S \in O(k)$ and $T \in O(n)$ be orthogonal matrices. Then
\[\|SA\|_F = \|A\|_F = \|AT\|_F. \] (13.4)

Proposition 13.2.8. For all $A \in \mathbb{R}^{k \times n}$, we have $\|A^T\|_F = \|A\|_F$.

Proposition 13.2.9. Let $A \in \mathbb{R}^{k \times n}$. Then
\[\|A\| \leq \|A\|_F \leq \sqrt{n}\|A\|. \] (13.5)

Exercise 13.2.10. Prove $\|A\| = \|A\|_F$ if and only if $\text{rk} A = 1$. Use the Singular Value Decomposition (T12.1.2).

Exercise 13.2.11. Let A be a symmetric real matrix. Show that $\|A\|_F = \sqrt{n}\|A\|$ if and only if $A = \lambda R$ for some reflection matrix (T12 ??) R.

13.3 (C) Complex Matrices

Exercise 13.3.2. Generalize the definition of the Frobenius norm and statements [13.2.2,13.2.10] to \mathbb{C}.

Exercise 13.3.3. Let A be a normal matrix with eigenvalues $\lambda_1, \ldots, \lambda_n$. Show that $\|A\|_F = \sqrt{n}\|A\|$ if and only if $|\lambda_1| = \cdots = |\lambda_n|$.

Question 13.3.4. Is normality necessary?
Part II

Linear Algebra of Vector Spaces
Introduction to Part II

TO BE WRITTEN.
Chapter 14

Preliminaries

14.1 Modular arithmetic

Notation 14.1.1. The integers \{..., -2, -1, 0, 1, 2, ...\} are denoted by \(\mathbb{Z}\). The set \{1, 2, 3, ...\} of positive integers is denoted by \(\mathbb{Z}^+\).

Definition 14.1.2 (Sum of sets). Let \(A, B \subseteq \mathbb{Z}\). Then \(A + B\) is the set

\[A + B = \{a + b \mid a \in A, b \in B\}. \tag{14.1} \]

Definition 14.1.3 (Cartesian product). Let \(A\) and \(B\) be sets. Then the Cartesian product of \(A\) and \(B\) is the set \(A \times B\) defined by

\[A \times B = \{(a, b) \mid a \in A, b \in B\}. \tag{14.2} \]

Notice that \((a, b)\) in the above definition is an ordered pair. In particular, if \(a_1, a_2 \in A\), then \((a_1, a_2)\) and \((a_2, a_1)\) are distinct elements of \(A \times A\).

Notation 14.1.4 (Cardinality). For a set \(A\) we denote the cardinality of \(A\) (the number of elements of \(A\)) by \(|A|\).

For instance, \(|\{4, 5, 6, 4\}| = 3\).

Exercise 14.1.5. Let \(A, B \subseteq \mathbb{Z}\) with \(|A| = n\) and \(B = m\). Show that

(a) \(m + n - 1 \leq |A + B| \leq mn\)
14.1. MODULAR ARITHMETIC

(b) \(|A + A| \leq \left(\frac{n+1}{2}\right)

(c) \(|A + A + A| \leq \left(\frac{n+2}{3}\right)

(d) \(|A \times B| = mn

Definition 14.1.6 (Divisibility). Let \(a, b \in \mathbb{Z}\). Then \(a\) divides \(b\), or \(a\) is a divisor of \(b\) (notation: \(a \mid b\)) if there exists some \(c \in \mathbb{Z}\) such that \(b = ac\).

Proposition 14.1.7. For all \(a \in \mathbb{Z}\), \(1 \mid a\).

Proposition 14.1.8. Show that \(0 \mid 0\).

Notice that this does not violate any rules that we know about division by 0 because our definition of divisibility does not involve division.

Exercise 14.1.9. For which \(a\) do we have \(a \mid b\) for all \(b \in \mathbb{Z}\)?

Exercise 14.1.10. For what \(b\) do we have \(a \mid b\) for all \(a \in \mathbb{Z}\)?

Proposition 14.1.11. Let \(a, b, c \in \mathbb{Z}\). If \(c \mid a\) and \(c \mid b\) then \(c \mid a + b\).

Proposition 14.1.12 (Transitivity of divisibility). Let \(a, b, c \in \mathbb{Z}\). if \(a \mid b\) and \(b \mid c\), then \(a \mid c\).

Definition 14.1.13 (Congruence modulo \(m\)). Let \(a, b, m \in \mathbb{Z}\). Then \(a\) is congruent to \(b\) modulo \(m\) (written \(a \equiv b \pmod{m}\)) if \(m \mid a - b\).

Exercise 14.1.14. Let \(a, b \in \mathbb{Z}\). Show

(a) \(a \equiv b \pmod{1}\)

(b) \(a \equiv b \pmod{2}\) if and only if \(a\) and \(b\) are either both even or both odd

(c) \(a \equiv b \pmod{0}\) if and only if \(a = b\)

Exercise 14.1.15. Let \(a, b, c, d, m \in \mathbb{Z}\). Show that if \(a \equiv c \pmod{m}\) and \(b \equiv d \pmod{m}\), then

(a) \(a + b \equiv c + d \pmod{m}\)

(b) \(a - b \equiv c - d \pmod{m}\)
Exercise 14.1.16. Let \(k \geq 0 \). Show that if \(a \equiv b \pmod{m} \), then \(a^k \equiv b^k \pmod{m} \).

Example 14.1.17. Calendar arithmetic is an application of modular arithmetic; for example, if August 3 is a Wednesday, then August 24 is also a Wednesday, because \(3 \equiv 24 \pmod{7} \).

Definition 14.1.18 (Binary relation). A binary relation on the set \(A \) is a subset \(R \subseteq A \times A \). The relation \(R \) holds for the elements \(a, b \in A \) if \((a, b) \in R \). In this case, we write \(aRb \) or \(R(a, b) \).

Definition 14.1.19 (Equivalence relation). Let \(\sim \) be a binary relation on a set \(A \). The relation \(\sim \) is said to be an equivalence relation if the following properties hold for all \(a, b, c \in A \).

(a) \(a \sim a \) (reflexivity)

(b) \(a \sim b \) if and only if \(b \sim a \) (symmetry)

(c) If \(a \sim b \) and \(b \sim c \), then \(a \sim c \) (transitivity)

Proposition 14.1.20. For all \(m \in \mathbb{Z} \), “congruence modulo \(m \)” is an equivalence relation.

Definition 14.1.21 (Equivalence class). Let \(A \) be a set with an equivalence relation \(\sim \), and let \(a \in A \). The equivalence class of \(a \) with respect to \(\sim \), denoted \([a] \), is the set

\[
[a] = \{ b \in A \mid a \sim b \} \tag{14.3}
\]

The equivalence classes of the equivalence relation “congruence modulo \(m \)” in \(\mathbb{Z} \) are called residue classes of \(\mathbb{Z} \) modulo \(m \).

Proposition 14.1.22. Let \(\sim \) be an equivalence relation on a set \(A \). Then our choice of representatives for equivalence classes does not matter; that is, if \(a \sim b \) then \([a] = [b] \).

Exercise 14.1.23. For each \(m \in \mathbb{Z} \), how many residue classes modulo \(m \) are there?

Definition 14.1.24 (Sum of residue classes). Let \([a] \) and \([b] \) be residue classes of \(\mathbb{Z} \) modulo \(m \). Then their sum is

\[
[a] + [b] = [a + b] \tag{14.4}
\]

Definition 14.1.25 (Product of residue classes). Let \([a] \) and \([b] \) be residue classes of \(\mathbb{Z} \) modulo \(m \). Then their product is

\[
[a] \cdot [b] = [a \cdot b] \tag{14.5}
\]
Exercise 14.1.26. Show that the sum and product of residue classes are well defined, that is, that they do not depend on our choice of representative for each residue class.

Convention 14.1.27. The residue classes of \mathbb{Z} modulo m are generally represented by the integers $0, 1, \ldots, m - 1$.

Proposition 14.1.28. Let \mathbb{Z}_m denote the set of residue classes modulo m with the operations of multiplication and addition as defined above. Verify the following properties of these operations.

(a) For all $a, b \in \mathbb{Z}_m$, there exist unique $a + b \in \mathbb{Z}_m$ and $a \cdot b \in \mathbb{Z}_m$

(b) For all $a, b, c \in \mathbb{Z}_m$, $(a + b) + c = a + (b + c)$ and $(a \cdot b) \cdot c = a \cdot (b \cdot c)$ (associativity)

(c) There exists an additive identity element $e \in \mathbb{Z}_m$ such that for all $a \in \mathbb{Z}_m$, $e + a = a + e = a$ (additive identity)

(d) There exists a multiplicative identity element $f \in \mathbb{Z}_m$ such that for all $a \in \mathbb{Z}_m$, $f + a = a + f = a$ (multiplicative identity)

(e) For each $a \in \mathbb{Z}_m$, there exists an element $-a \in \mathbb{Z}_m$ such that $a + (-a) = e$ (additive inverses)

(f) For all $a, b \in \mathbb{Z}_m$, we have $a + b = b + a$ and $a \cdot b = b \cdot a$ (commutativity)

(g) For all $a, b, c \in \mathbb{Z}_m$, $a \cdot (b + c) = a \cdot b + a \cdot c$ (distributivity)

Further, if m is prime, then

(h) For all $a \in \mathbb{Z}_m$, there exists an element $a^{-1} \in \mathbb{Z}_m$ such that $a \cdot a^{-1} = f$ (multiplicative inverse)

14.2 Abelian groups

The set \mathbb{Z}_m of residue classes modulo m of \mathbb{Z} is an example of a group, when it is endowed with the operation of addition (or multiplication, if m is prime). We now generalize this notion to include a much larger collection of sets.

Definition 14.2.1 (Group). A group is a set G along with a binary operation \circ that satisfies the following axioms.

(a) For all $a, b \in G$, there exists a unique $a \circ b \in G$
(b) For all $a, b, c \in G$, $(a \circ b) \circ c = a \circ (b \circ c)$ (associativity)

(c) There exists an identity element $e \in G$ such that for all $a \in G$, $e \circ a = a \circ e = a$ (identity element)

(d) For each $a \in G$, there exists $b \in G$ such that $a \circ b = b \circ a = e$ (inverses)

The inverse of an element a is often written as a^{-1}, and we often write ab instead of $a \circ b$. The set G along with the binary operation \circ is the group (G, \circ). We often omit \circ and we refer to G as the group when the binary operation is clear from context. Groups satisfying the additional axiom

(e) $a \circ b = b \circ a$ for all $a, b \in G$ (commutativity)

are called abelian groups.

When discussing abelian groups, we typically use additive notation (that is, we write the binary operation \circ as $+$), and we write the identity as 0 and the inverse of an element a as $-a$.

Definition 14.2.2 (Order of a group). Let G be a group. The order of G is its cardinality, $|G|$.

Observe that Prop. 14.1.28 asserted that $(\mathbb{Z}_m, +)$ is a group for $m \geq 0$ and that (\mathbb{Z}_p, \cdot) is a group when p is prime. We now present more examples of groups.

Examples 14.2.3. Show that the following are abelian groups.

(a) The integers with addition, $(\mathbb{Z}, +)$

(b) The real numbers with addition, $(\mathbb{R}, +)$

(c) The real numbers except for 0 with multiplication, $(\mathbb{R}^\times, \times)$

(d) The space $\mathbb{R}^\mathbb{R}$ of real functions $f : \mathbb{R} \to \mathbb{R}$ with addition, $(\mathbb{R}^\mathbb{R}, +)$, where addition is defined pointwise, that is, $(f + g)(\zeta) = f(\zeta) + g(\zeta)$ for all $\zeta \in \mathbb{R}$.

(e) The complex n-th roots of unity, that is, the set

$$\{ \zeta \in \mathbb{C} \mid \zeta^n = 1 \}$$

with multiplication.

In particular, it follows from (e) that there exist abelian groups of every finite order.
14.2. ABELIAN GROUPS

Definition 14.2.4. We define the sum \(\sum_{i=1}^{k} a_i \) by induction. For the base case of \(k = 1 \), \(\sum_{i=1}^{1} a_i = a_i \), and for \(k > 1 \),
\[
\sum_{i=1}^{k} a_i = a_k + \sum_{i=1}^{k-1} a_i .
\] (14.6)

Convention 14.2.5 (Empty sum). The empty sum is equal to 0, that is,
\[
\sum_{i=1}^{0} a_i = 0 .
\] (14.7)

Convention 14.2.6 (Empty product). By convention, the empty product \(\prod_{a \in \emptyset} a \) is equal to 1. In particular, \(0^0 = 1 \) and \(0! = 1 \).

Exercise 14.2.7. Let \(G \) be a group and let \(A, B \subseteq G \) with \(|A| = n \) and \(B = m \). Show that
(a) \(|A + B| \leq mn \)
(b) \(|A + A| \leq \binom{n+1}{2} \)
(c) \(|A + A + A| \leq \binom{n+2}{3} \)

Definition 14.2.8 (Subgroup). Let \(G \) be a group. If \(H \subseteq G \) is nonempty and is a group under the same operation as \(G \), we say that \(H \) is a subgroup of \(G \), denoted \(H \leq G \).

We require \(H \) to be nonempty because the empty group does not contain the identity.

Proposition 14.2.9. The relation \(\leq \) is transitive, that is, if \(K \leq H \) and \(H \leq G \), then \(K \leq G \).

Proposition 14.2.10. The intersection of any collection of subgroups of a group \(G \) is itself a subgroup of \(G \).

Proposition 14.2.11. Let \(G \) be a group and let \(H, K \in G \). Then \(H \cup K \leq G \) if and only if \(H \subseteq K \) or \(K \subseteq H \).

Proposition 14.2.12. Let \(G \) be an abelian group and let \(H \leq G \). Then
(a) The identity of H is the same as the identity of G.

(b) Let $a \in H$. The inverse of a in H is the same as the inverse of a in G.

Notation 14.2.13. Let G be a group, and let $H, K \subseteq G$. We write $-H$ for the set $-H = \{-h \mid h \in H\}$, and $H - K$ for the set

$$H - K = H + (-K) = \{h - k \mid h \in H, k \in K\} \quad (14.8)$$

Proposition 14.2.14. Let G be a group and $H \subseteq G$. Then $H \leq G$ if and only if

(a) $0 \in H$

(b) $-H \subseteq H$ (closed under inverses)

(c) $H + H \subseteq H$ (closed under addition)

Proposition 14.2.15. Let G be a group and let $H \subseteq G$. Then $H \leq G$ if and only if $H \neq \emptyset$ and $H - H \subseteq H$ (that is, H is closed under subtraction).

14.3 Fields

The field \mathbb{F}_p has p elements; there are finite fields other than \mathbb{F}_p as well. The number of elements of a field is referred to as the *order* of the field. Fields were invented by Évariste Galois (1811-1832); Galois showed that (a) the order of every finite field is a prime power and (b) for every prime power q there exists a unique field \mathbb{F}_q of order q.

TO BE WRITTEN.

14.4 Polynomials

In Section 8.3 we developed a basic theory of polynomials. In that section, however, we considered polynomials as functions. We now develop a more formal theory of polynomials, first considering a polynomial f as a formal expression whose coefficients are taken from a field \mathbb{F} of scalars, rather than as a function $f : \mathbb{F} \to \mathbb{F}$.
14.4. POLYNOMIALS

Definition 14.4.1 (Polynomial). A polynomial over the field \mathbb{F} is an expression of the form

$$f = \alpha_0 + \alpha_1 t + \alpha_2 t^2 + \cdots + \alpha_n t^n$$

(14.9)

where the coefficients α_i are scalars (elements of \mathbb{F}), and t is a symbol. The set of all polynomials over \mathbb{F} is denoted $\mathbb{F}[t]$. Two expressions, (14.9) and

$$g = \beta_0 + \beta_1 t + \beta_2 t^2 + \cdots + \beta_m t^m$$

(14.10)

define the same polynomial if they only differ in leading zero coefficients, i.e., there is some k for which $\alpha_0 = \beta_0, \ldots, \alpha_k = \beta_k$, and all coefficients α_j, β_j are zero for $j > k$. We may omit any terms with zero coefficient, e.g.,

$$3 + 0t + 2t^2 + 0t^3 = 3 + 2t^2$$

(14.11)

Definition 14.4.2 (Zero polynomial). The polynomial which has all coefficients equal to zero is called the zero polynomial and is denoted by 0.

Definition 14.4.3 (Leading term). The leading term of a polynomial $f = \alpha_0 + \alpha_1 t + \cdots + \alpha_n t^n$ is the term corresponding to the highest power of t with a nonzero coefficient, that is, the term $\alpha_k t^k$ where $\alpha_k \neq 0$ and $\alpha_j = 0$ for all $j > k$. The zero polynomial does not have a leading term.

Definition 14.4.4 (Leading coefficient). The leading coefficient of a polynomial f is the coefficient of the leading term of f.

For example, the leading term of the polynomial $3 + 2t^2 + 5t^7$ is $5t^7$ and the leading coefficient is 5.

Definition 14.4.5 (Monic polynomial). A polynomial is monic if its leading coefficient is 1.

Definition 14.4.6 (Degree of a polynomial). The degree of a polynomial $f = \alpha_0 + \alpha_1 t + \cdots + \alpha_n t^n$, denoted $\deg f$, is the exponent of its leading term.

For example, $\deg (3 + 2t^2 + 5t^7) = 7$.

Convention 14.4.7. The zero polynomial has degree $-\infty$.

Exercise 14.4.8. Which polynomials have degree 0?

Notation 14.4.9. We denote the set of polynomials of degree at most n over \mathbb{F} by $P_n[\mathbb{F}]$.

\footnote{Strictly speaking, a polynomial is an equivalence class of such expressions, as explained in the next sentence.}
Definition 14.4.10 (Sum and difference of polynomials). Let \(f = \alpha_0 + \alpha_1 t + \cdots + \alpha_n t^n \) and \(g = \beta_0 + \beta_1 t + \cdots + \beta_n t^n \) be polynomials. Then the sum of \(f \) and \(g \) is defined as
\[
f + g = (\alpha_0 + \beta_0) + (\alpha_1 + \beta_1)t + \cdots + (\alpha_n + \beta_n)t^n \tag{14.12}
\]
and the difference \(f - g \) is defined as
\[
f - g = (\alpha_0 - \beta_0) + (\alpha_1 - \beta_1)t + \cdots + (\alpha_n - \beta_n)t^n \tag{14.13}
\]
Note that \(f \) and \(g \) need not be of the same degree; we can add on leading zeros if necessary.

Numerical exercise 14.4.11. Let
\[
f = 2t + t^2 \\
g = 3 + t + 2t^2 + 3t^3 \\
h = 5 + t^3 + t^4
\]
Compute the polynomials
(a) \(e_1 = f - g \)
(b) \(e_2 = g - h \)
(c) \(e_3 = h - f \)
Self-check: verify that \(e_1 + e_2 + e_3 = 0 \).

Proposition 14.4.12. Addition of polynomials is (a) commutative and (b) associative, that is, if \(f, g, h \in \mathbb{F}[t] \) then
(a) \(f + g = g + f \)
(b) \(f + (g + h) = (f + g) + h \)

Definition 14.4.13 (Multiplication of polynomials). Let \(f = \alpha_0 + \alpha_1 t + \cdots + \alpha_n t^n \) and \(g = \beta_0 + \beta_1 t + \cdots + \beta_m t^m \) be polynomials. Then the product of \(f \) and \(g \) is defined as
\[
f \cdot g = \sum_{i=0}^{n+m} \left(\sum_{j+k=i} \alpha_j \beta_k \right) t^i \tag{14.14}
\]
Numerical exercise 14.4.14. Let f, g, and h be as in Example 14.4.11. Compute

(a) $e_4 = f \cdot g$

(b) $e_5 = f \cdot h$

(c) $e_6 = f \cdot (g + h)$

Self-check: verify that $e_4 + e_5 = e_6$.

Proposition 14.4.15. Let $f, g \in \mathbb{F}[t]$. Then

(a) $\deg(f + g) \leq \max\{\deg f, \deg g\}$,

(b) $\deg(fg) = \deg f + \deg g$.

Note that both of these statements hold even if one of the polynomials is the zero polynomial.

Notation 14.4.16 (Set of functions). Let A and B be sets. The set of functions $f : B \to A$ is denoted by A^B. Here B is the domain of the functions f in question and A is the target set (into which f maps B).

The following exercise explains the reason for this notation.

Exercise 14.4.17. Let A and B be finite sets. Show that $|A^B| = |A|^{|B|}$.

Definition 14.4.18 (Substitution). For $\zeta \in \mathbb{F}$ and $f = \alpha_0 + \alpha_1 t + \cdots + \alpha_n t^n \in \mathbb{F}[t]$, we set

$$f(\zeta) = \alpha_0 + \alpha_1 \zeta + \cdots + \alpha_n \zeta^n \in \mathbb{F} \quad (14.15)$$

The substitution $t \mapsto \zeta$ defines a mapping $\mathbb{F}[t] \to \mathbb{F}$ which assigns the value $f(\zeta)$ to f. We denote the $\mathbb{F} \to \mathbb{F}$ function $\zeta \mapsto f(\zeta)$ by \overrightarrow{f} and call f a polynomial function. So \overrightarrow{f} is a function while f is a formal expression. If A is an $n \times n$ matrix, then we define

$$f(A) = \alpha_0 I + \alpha_1 A + \cdots + \alpha_n A^n \in M_n(\mathbb{F}) \quad (14.16)$$

Definition 14.4.19 (Divisibility of polynomials). Let $f, g \in \mathbb{F}[t]$. We say that g divides f, or f is divisible by g, written $g \mid f$, if there exists a polynomial $h \in \mathbb{F}[t]$ such that $f = gh$. In this case we say that g is a divisor of f and f is a multiple of g.
Notation 14.4.20 (Divisors of a polynomial). Let $f \in \mathbb{F}[t]$. We denote by $\text{Div}(f)$ the set of all divisors of f. We denote by $\text{Div}(f, g)$ the set of polynomials which divide both f and g, that is, $\text{Div}(f, g) = \text{Div}(f) \cap \text{Div}(g)$.

Theorem 14.4.21 (Division Theorem). Let $f, g \in \mathbb{F}[t]$ where g is not be the zero polynomial. Then there exist unique polynomials q and r such that

$$f = q g + r$$

and $\deg r < \deg g$. \Diamond

Exercise 14.4.22. Let $f \in \mathbb{F}[t]$ and $\zeta \in \mathbb{F}$.

(a) Show that there exist $q \in \mathbb{F}[t]$ and $\xi \in \mathbb{F}$ such that

$$f = (t - \zeta)q + \xi$$

(b) Prove that $\xi = f(\zeta)$

Exercise 14.4.23. Let $f \in \mathbb{F}[t]$.

(a) Show that if \mathbb{F} is an infinite field, then $\overline{f} = 0$ if and only $f = 0$.

(b) Let \mathbb{F} be a finite field of order q.

(b1) Prove that there exists $f \neq 0$ such that $\overline{f} = 0$.

(b2) Show that if $\deg f < q$, then $f = 0$ if and only if $\overline{f} = 0$. Do not use (b3) to solve this; your solution should be just one line, based on a very simple formula defining f.

(b3) \ast (Fermat’s Little Theorem, generalized) Show that if $|\mathbb{F}| = q$ and $f = t^q - t$, then $\overline{f} = 0$.

Definition 14.4.24 (Ideal). Let $I \subseteq \mathbb{F}[t]$. Then I is an ideal if the following three conditions hold.

(a) $0 \in I$

(b) I is closed under addition

(c) If $f \in I$ and $g \in \mathbb{F}[t]$ then $fg \in I$
14.4. POLYNOMIALS

Notation 14.4.25. Let \(f \in \mathbb{F}[t] \). We denote by \((f)\) the set of all multiples of \(f \), i.e.,
\[
(f) = \{ fg \mid g \in \mathbb{F}[t] \}.
\]

Proposition 14.4.26. Let \(f, g \in \mathbb{F}[t] \). Then \((f) \subseteq (g)\) if and only if \(g \mid f \).

Definition 14.4.27 (Principal ideal). Let \(f \in \mathbb{F}[t] \). The set \((f)\) is called the principal ideal generated by \(f \), and \(f \) is said to be a generator of this ideal.

Exercise 14.4.28. For \(f \in \mathbb{F}[t] \), verify that \((f)\) is indeed an ideal of \(\mathbb{F}[t] \).

Theorem 14.4.29 (Every ideal is principal). Every ideal of \(\mathbb{F}[t] \) is principal.

Proposition 14.4.30. Let \(f, g \in \mathbb{F}[t] \). Then \((f) = (g)\) if and only if there exists \(\zeta \neq 0 \in \mathbb{F} \) such that \(g = \alpha f \).

Theorem [14.4.29] will be our tool to prove the existence of greatest common divisors of polynomials.

Definition 14.4.31 (Greatest common divisor). Let \(f_1, \ldots, f_k, g \in \mathbb{F}[t] \). We say that \(g \) is a greatest common divisor (gcd) of \(f_1, \ldots, f_k \) if

(a) \(g \) is a common divisor of the \(f_i \), i.e., \(g \mid f_i \) for all \(i \),

(b) \(g \) is a common multiple of all common divisors of the \(f_i \), i.e., for all \(e \in \mathbb{F}[t] \), if \(e \mid f_i \) for all \(i \), then \(e \mid g \).

Proposition 14.4.32. Let \(f_1, \ldots, f_k, d, d_1, d_2 \in \mathbb{F}[t] \).

(a) Let \(\zeta \) be a nonzero scalar. If \(d \) is a gcd of \(f_1, \ldots, f_k \), then \(\zeta d \) is also a gcd of \(f_1, \ldots, f_k \).

(b) If \(d_1 \) and \(d_2 \) are both gcds of \(f_1, \ldots, f_k \), then there exists \(\zeta \in \mathbb{F}^\times = \mathbb{F} \setminus \{0\} \) such that \(d_2 = \zeta d_1 \).

Exercise 14.4.33. Let \(f_1, \ldots, f_k \in \mathbb{F}[t] \). Show that \(\gcd(f_1, \ldots, f_k) = 0 \) if and only if \(f_1 = \cdots = f_k = 0 \).

Proposition 14.4.34. Let \(f_1, \ldots, f_k \in \mathbb{F}[t] \) and suppose not all of the \(f_i \) are 0. Then among all of the greatest common divisors of \(f_1, \ldots, f_k \), there is a unique monic polynomial.

For the sake of uniqueness of the gcd notation, we write \(d = \gcd(f_1, \ldots, f_k) \) if, in addition to (a) and (b)
(c) d is monic or $d = 0$.

Theorem 14.4.35 (Existence of gcd). Let $f_1, \ldots, f_k \in \mathbb{F}[t]$. Then $\gcd(f_1, \ldots, f_k)$ exists and, moreover, there exist polynomials g_1, \ldots, g_k such that

$$\gcd(f_1, \ldots, f_k) = \sum_{i=1}^{k} f_ig_i \quad (14.18)$$

The second statement is called “Bézout’s Lemma.”

Lemma 14.4.36 (Euclid’s Lemma). Let $f, g, h \in \mathbb{F}[t]$. Then $\text{Div}(f, g) = \text{Div}(f - gh, g)$.

Theorem 14.4.37. Let $f_1, \ldots, f_k, g \in \mathbb{F}[t]$. Then g is a gcd of f_1, \ldots, f_k if and only if $\text{Div}(f_1, \ldots, f_k) = \text{Div}(g)$.

Exercise 14.4.38. Let $f \in \mathbb{F}[t]$. Show that $\text{Div}(f, 0) = \text{Div}(f)$.

By applying the above theorem and Euclid’s Lemma, we arrive at *Euclid’s Algorithm* for determining the gcd of polynomials.

Euclid’s algorithm

- **Input:** polynomials f_0, g_0
- **Output:** $\gcd(f_0, g_0)$

$f \leftarrow f_0$

$g \leftarrow g_0$

while $g \neq 0$

Find q and r such that

$f = gq + r$ and $\deg(r) < \deg(g)$

(Division Theorem)

$f \leftarrow g$

$g \leftarrow r$

end(while)

return f

Theorem 14.4.39. Euclid’s Algorithm returns a greatest common divisor of the two input polynomials in at most $\deg(g_0)$ rounds of the *while* loop.
The following example provides a demonstration of Euclid’s algorithm.

Example 14.4.40. Let \(f = t^5 + 2t^4 - 3t^3 + t^2 - 5t + 4 \) and let \(g = t^2 - 1 \). Then

\[
\text{Div}(f, g) = \text{Div} \left(f - \left(t^3 + 2t^2 - 2t + 3 \right) g, g \right) \\
= \text{Div} \left(t^2 - 1, -7t - 7 \right) \\
= \text{Div} \left(t^2 - 1 + \frac{t}{7}(-7t + 7), -7t + 7 \right) \\
= \text{Div} \left(t - 1, -7t + 7 \right) \\
= \text{Div} \left(t - 1 + \frac{1}{7}(-7t + 7), -7t + 7 \right) \\
= \text{Div} \left(0, -7t + 7 \right) \\
= \text{Div}(-7t + 7)
\]

Thus \(-7t + 7\) is a gcd of \(f \) and \(g \), and we can multiply by \(-\frac{1}{7}\) to get a monic polynomial. In particular, \(t - 1 \) is the gcd of \(f \) and \(g \), and we may write \(\gcd(f, g) = t - 1 \).

Exercise 14.4.41. Let

\[
\begin{align*}
 f_1 & = t^2 + t - 2 & (14.19) \\
 f_2 & = t^2 + 3t + 2 & (14.20) \\
 f_3 & = t^3 - 1 & (14.21) \\
 f_4 & = t^4 - t^2 - 2t - 1 & (14.22)
\end{align*}
\]

Determine the following greatest common divisors.

(a) \(\gcd(f_1, f_2) \)

(b) \(\gcd(f_1, f_3) \)

(c) \(\gcd(f_1, f_3, f_4) \)

(d) \(\gcd(f_1, f_2, f_3, f_4) \)

Proposition 14.4.42. Let \(f, g, h \in \mathbb{F}[t] \). Then \(\gcd(fg, fh) = fd \), where \(d = \gcd(g, h) \).

Proposition 14.4.43. If \(f \mid gh \) and \(\gcd(f, g) = 1 \), then \(f \mid h \).
Exercise 14.4.44. Determine $\gcd(f, f')$ where $f = t^n + t + 1$ (over \mathbb{R}).

Exercise 14.4.45. Determine $\gcd(t^n - 1, t^2 + t + 1)$.

Let $f \in \mathbb{F}[t]$ and let \mathbb{F} be a subfield of the field \mathbb{G}. Then we can also view f as a polynomial over \mathbb{G}. However, this changes the notion of linear combinations and therefore in principle it could affect the gcd of two polynomials. We shall see that this is not the case, but in order to be able to reason about this question, we temporarily use the notation $\gcd_\mathbb{F}(f)$ and $\gcd_\mathbb{G}(f)$ to denote the gcd of f with respect to the corresponding fields.

Exercise 14.4.46 (Insensitivity of gcd to field extensions). Let \mathbb{F} be a subfield of \mathbb{G}, and let $f, g \in \mathbb{F}[t]$. Then

$$\gcd_\mathbb{F}(f, g) = \gcd_\mathbb{G}(f, g).$$

Definition 14.4.47 (Irreducible polynomial). A polynomial $f \in \mathbb{F}[t]$ is irreducible over \mathbb{F} if $\deg f \geq 1$ and for all $g, h \in \mathbb{F}[t]$, if $f = gh$ then either $\deg g = 0$ or $\deg h = 0$.

We shall give examples of irreducible polynomials over various fields in Examples ??

Proposition 14.4.48. If $f \in \mathbb{F}[t]$ is irreducible and ζ is a nonzero scalar, then ζf is irreducible.

Proposition 14.4.49. Let $f \in \mathbb{F}[t]$ with $\deg f = 1$. Then f is irreducible.

Proposition 14.4.50. Let f be an irreducible polynomial, and let $f \mid gh$. Then either $f \mid g$ or $f \mid h$.

Proposition 14.4.51. Every nonzero polynomial is a product of irreducible polynomials.

Theorem 14.4.52 (Unique Factorization). Every polynomial in $\mathbb{F}[t]$ can be uniquely written as the product of irreducible polynomials over \mathbb{F}. ◊

Uniqueness holds up to the order of the factors and scalar multiples, i.e., if $f_1 \cdots f_k = g_1 \cdots g_\ell$ where the f_i and g_j are irreducible, then $k = \ell$ and there exists a permutation (bijection) $\sigma : \{1, \ldots, k\} \to \{1, \ldots, k\}$ and nonzero scalars $\alpha_i \in \mathbb{F}$ such that $f_i = \alpha_ig_{\sigma(i)}$.

Definition 14.4.53 (Root of a polynomial). Let $f \in \mathbb{F}[t]$. We say that $\zeta \in \mathbb{F}$ is a root of f if $f(\zeta) = 0$.

Proposition 14.4.54. Let $\zeta \in \mathbb{F}$ and let $f \in \mathbb{F}[t]$. Then

$$t - \zeta \mid f - f(\zeta).$$
Corollary 14.4.55. Let $\zeta \in F$ and $f \in F[t]$. Then ζ is a root of f if and only if $(t - \zeta) \mid f$.

Definition 14.4.56 (Multiplicity). The multiplicity of a root ζ of a polynomial $f \in F[t]$ is the largest k for which $(t - \zeta)^k \mid f$.

Exercise 14.4.57. Let $f \in \mathbb{R}[t]$. Show that $f(\sqrt{-1}) = 0$ if and only if $t^2 + 1 \mid f$.

Proposition 14.4.58. Let f be a polynomial of degree n. Then f has at most n roots (counting multiplicity).

Theorem 14.4.59 (Fundamental Theorem of Algebra). Let $f \in \mathbb{C}[t]$. If $\deg f \geq 1$, then f has a complex root, i.e., there exists $\zeta \in \mathbb{C}$ such that $f(\zeta) = 0$.

Proposition 14.4.60. If $f \in \mathbb{C}[t]$, then f is irreducible if and only if $\deg f = 1$.

Proposition 14.4.61. If $f \in \mathbb{C}[t]$ and $\deg f = k \geq 1$, then f can be written as

$$f = \alpha_k \prod_{i=1}^{k}(t - \zeta_i) \quad (14.23)$$

where α_k is the leading coefficient of f and the ζ_i are complex numbers.

Proposition 14.4.62. Let $f \in P_2[\mathbb{R}]$ be given by $f = at^2 + bt + c$ with $a \neq 0$. Then f is irreducible over \mathbb{R} if and only if $b^2 - 4ac < 0$.

Exercise 14.4.63. Let $f \in \mathbb{F}[t]$.

(a) If f has a root in \mathbb{F} and $\deg f \geq 2$, then f is reducible.

(b) Find a reducible polynomial over \mathbb{R} that has no real root.

Proposition 14.4.64. Let $f \in \mathbb{R}[t]$ be of odd degree. Then f has a real root.

Proposition 14.4.65. Let $f \in \mathbb{R}[t]$ and $\zeta \in \mathbb{C}$. Then $f(\overline{\zeta}) = \overline{f(\zeta)}$. Conclude that if ζ is a complex root of f, then so is $\overline{\zeta}$.

Exercise 14.4.66. Let $f \in \mathbb{R}[t]$. Show that if f is irreducible over \mathbb{R}, then $\deg f \leq 2$.

Exercise 14.4.67. Let $f \in \mathbb{R}[t]$ and $f \neq 0$. Show that f can be written as $f = \prod g_i$ where each g_i has degree 1 or 2.
Definition 14.4.68 (Formal derivative of a polynomial). Let $f = \sum_{i=0}^{n} \alpha_i t^i$. Then the formal derivative of f is defined to be

$$f' = \sum_{k=1}^{n} k\alpha_k t^{k-1}$$

(14.24)

That is,

$$f' = \alpha_1 + 2\alpha_2 t + \cdots + n\alpha_n t^{n-1}.$$

(14.25)

Note that this definition works even over finite fields. We write $f^{(k)}$ to mean the k-th derivative of f, defined inductively as $f^{(0)} = f$ and $f^{(k+1)} = (f^{(k)})'$.

Proposition 14.4.69 (Linearity of differentiation). Let f and g be a polynomials and let ζ be a scalar. Then

(a) $(f + g)' = f' + g'$,

(b) $(\zeta f)' = \zeta f'$.

Proposition 14.4.70 (Product rule). Let f and g be a polynomials and let ζ be a scalar. Then

$$(fg)' = f'g + fg'$$

(14.26)

Definition 14.4.71 (Composition of polynomials). Let f and g be polynomials. Then the composition of f with g, denoted $f \circ g$ is the polynomial obtained by replacing all occurrences of the symbol t in the expression for f with g, i.e., $f \circ g = f(g)$ (we “substitute g” into f).

Proposition 14.4.72. Let f and g be polynomials and let ζ be a scalar. Then

$$(f \circ g)(\zeta) = f(g(\zeta)).$$

(14.27)

Proposition 14.4.73 (Chain Rule). Let $f, g \in \mathbb{F}[t]$ and let $h = f \circ g$. Then

$$h' = (f' \circ g) \cdot g'.$$

(14.28)

Proposition 14.4.74.

(a) Let \mathbb{F} be \mathbb{Q}, \mathbb{R}, or \mathbb{C}. Let $f \in \mathbb{F}[t]$ and let $\zeta \in \mathbb{F}$. Then $(t - \zeta)^k \mid f$ if and only if

$$f(\zeta) = f'(\zeta) = \cdots = f^{(k-1)}(\zeta) = 0.$$

\footnote{This exercise holds for all subfields of \mathbb{C} and more generally for all fields of characteristic 0.}
(b) This is false if $\mathbb{F} = \mathbb{F}_p$.

Proposition 14.4.75. Let $f \in \mathbb{C}[t]$. Then f has no multiple roots if and only if $\gcd(f, f') = 1$.

Exercise 14.4.76. Let $n \geq 1$. Prove that the polynomial $f = t^n + t + 1$ has no multiple roots in \mathbb{C}.
Chapter 15

Vector Spaces: Basic Concepts

15.1 Vector spaces

Many sets with which we are familiar have the desirable property that they are closed under “linear combinations” of their elements. Consider, for example, the space \mathbb{R}^R of functions $f : \mathbb{R} \to \mathbb{R}$. If $f, g \in \mathbb{R}^R$ and $\alpha \in \mathbb{R}$, then $f + \alpha g \in \mathbb{R}^R$. The same is true for the space $C[0, 1]$ of continuous functions $f : [0, 1] \to \mathbb{R}$ as well as many other sets, like the space \mathbb{R}^N of sequences of real numbers and the 2- and 3-dimensional geometric spaces G_2 and G_3. We formalize this with the notion of a vector space.

Let \mathbb{F} be a (finite or infinite) field. The reader not familiar with fields may think of \mathbb{F} as being \mathbb{R} or \mathbb{C}.

Definition 15.1.1 (Vector space). A vector space V over a field \mathbb{F} of scalars is:

(a) An abelian group $(V,+)$

(b) Endowed with a scaling function $V \times F \to V$ such that

(b1) For all $\alpha \in F$ and $v \in V$, there exists a unique vector $\alpha v \in V$
(b2) For all $\alpha, \beta \in F$ and $v \in V$, $(\alpha \beta)v = \alpha(\beta v)$
(b3) For all $\alpha, \beta \in F$ and $v \in V$, $(\alpha + \beta)v = \alpha v + \beta v$
(b4) For every $\alpha \in F$ and $u, v \in V$, $\alpha(u + v) = \alpha u + \alpha v$
(b5) For every $v \in V$, $1 \cdot v = v$ (normalization)
15.1. VECTOR SPACES

The zero vector in a vector space V is written as 0_V, but we often just write 0 when the context is clear.

Property (b2) is referred to as “pseudo-associativity,” because it is a form of associativity in which we are dealing with different operations (multiplication in \mathbb{F} and scaling of vectors). Similarly, Properties (b3) and (b4) are both types of “pseudo-distributivity.”

Proposition 15.1.2. Let V be a vector space over the field \mathbb{F}. For all $v \in V$, $\alpha \in \mathbb{F}$:

(a) $0 \cdot v = 0$.

(b) $\alpha 0 = 0$.

(c) $\alpha v = 0$ if and only if either $\alpha = 0$ or $v = 0$.

Exercise 15.1.3. Let V be a vector space and let $x \in V$. Show that $x + x = x$ if and only if $x = 0$.

Example 15.1.4 (Elementary geometry). The most natural examples of vector spaces are the geometric spaces G_2 and G_3. We write G_2 for the plane and G_3 for the “space” familiar from elementary geometry. We think of G_2 and G_3 has having a special point called the origin. We view the points of G_2 and G_3 as “vectors” (line segments from the origin to the point). Addition is defined by the parallelogram rule and scalar multiplication (over \mathbb{R}) by scaling. Observe that G_2 and G_3 are vector spaces over \mathbb{R}. These classical geometries form the foundation of our intuition about vector spaces.

Note that G_2 is not the same as \mathbb{R}^2. Vectors in G_2 are directed segments (geometric objects), while the vectors in \mathbb{R}^2 are pairs of numbers. The connection between these two is one of the great discoveries of the mathematics of the modern era (Descartes).

Examples 15.1.5. Show that the following are vector spaces over \mathbb{R}.

(a) \mathbb{R}^n

(b) $M_n(\mathbb{R})$

(c) $\mathbb{R}^{k \times n}$

(d) $C[0, 1]$, the space of continuous real-valued functions $f : [0, 1] \rightarrow \mathbb{R}$

(e) The space $\mathbb{R}^\mathbb{N}$ of infinite sequences of real numbers
(f) The space \mathbb{R}^R of real functions $f : \mathbb{R} \to \mathbb{R}$

(g) The space $\mathbb{R}[t]$ of polynomials in one variable with real coefficients.

(h) For all $k \geq 0$, the space $P_k[\mathbb{R}]$ of polynomials of degree at most k with coefficients in \mathbb{R}.

(i) The space \mathbb{R}^Ω of functions $f : \Omega \to \mathbb{R}$ where Ω is an arbitrary set.

In Section 11.1, we defined the notion of a linear form over \mathbb{F}^n (Def. 11.1.1). This generalizes immediately to vector spaces over \mathbb{F}.

Definition 15.1.6 (Linear form). Let V be a vector space over \mathbb{F}. A linear form is a function $f : V \to \mathbb{F}$ with the following properties.

(a) $f(x + y) = f(x) + f(y)$ for all $x, y \in \mathbb{F}^n$;

(b) $f(\lambda x) = \lambda f(x)$ for all $x \in \mathbb{F}^n$ and $\lambda \in \mathbb{F}$.

Definition 15.1.7 (Dual space). Let V be a vector space over \mathbb{F}. The set of linear forms $f : V \to \mathbb{F}$ is called the dual space of V and is denoted V^*.

Exercise 15.1.8. Let V be a vector space over \mathbb{F}. Show that V^* is also a vector space over \mathbb{F}.

In Section 11.1 we defined linear combinations of column vectors (Def. 11.1.13). This is easily generalized to linear combinations of vectors in any vector space.

Definition 15.1.9 (Linear combination). Let V be a vector space over \mathbb{F}, and let $v_1, \ldots, v_k \in V$, $\alpha_1, \ldots, \alpha_k \in \mathbb{F}$. Then $\sum_{i=1}^{k} \alpha_i v_i$ is called a linear combination of the vectors v_1, \ldots, v_k. The linear combination for which all coefficients are zero is the trivial linear combination.

Exercise 15.1.10 (Empty linear combination). What is the linear combination of the empty set? Convention 14.2.5 explains our convention for the empty sum.

Exercise 15.1.11.

(a) Express the polynomial $t - 1$ as a linear combination of the polynomials $t^2 - 1$, $(t - 1)^2$, $t^2 - 3t + 2$.

(b) Give an elegant proof that the polynomial $t^2 + 1$ cannot be expressed as a linear combination of the polynomials $t^2 - 1$, $(t - 1)^2$, $t^2 - 3t + 2$.

Exercise 15.1.12. For $\alpha \in \mathbb{R}$, express $\cos(t + \alpha)$ as a linear combination of $\cos t$ and $\sin t$.
15.2 Subspaces and span

In Section 1.2, we studied subspaces and span in the context of \(\mathbb{F}^k \). We now generalize this to arbitrary vector spaces.

For this section, we will take \(V \) to be a vector space over a field \(\mathbb{F} \) and we will let \(W, S \subseteq V \).

Definition 15.2.1 (Subspace). \(W \subseteq V \) is a **subspace** (notation: \(W \leq V \)) if \(W \) is closed under linear combinations.

Definition 15.2.2 (Disjoint subspaces). Two subspaces \(U_1, U_2 \leq V \) are **disjoint** if \(U_1 \cap U_2 = \{0\} \).

Proposition 15.2.3. Let \(W \leq V \). Then \(W \) is also a vector space.

Exercise 15.2.4. Verify that Propositions 1.2.3 and 1.2.9 hold when \(\mathbb{F}^n \) is replaced by \(V \).

Exercise 15.2.5. Describe all subspaces of the geometric spaces \(G_2 \) and \(G_3 \).

Exercise 15.2.6. Determine which of the following are subspaces of \(\mathbb{R}[t] \), the space of polynomials in one variable over \(\mathbb{R} \).

(a) \(\{ f \in \mathbb{R}[t] \mid \deg(f) = 5 \} \)
(b) \(\{ f \in \mathbb{R}[t] \mid \deg(f) \leq 5 \} \)
(c) \(\{ f \in \mathbb{R}[t] \mid f(1) = 1 \} \)
(d) \(\{ f \in \mathbb{R}[t] \mid f(1) = 0 \} \)
(e) \(\{ f \in \mathbb{R}[t] \mid f(\sqrt{2}) = 0 \} \)
(f) \(\{ f \in \mathbb{R}[t] \mid f(\sqrt{-1}) = 0 \} \)
(g) \(\{ f \in \mathbb{R}[t] \mid f(1) = f(2) \} \)
(h) \(\{ f \in \mathbb{R}[t] \mid f(1) = (f(2))^2 \} \)
(i) \(\{ f \in \mathbb{R}[t] \mid f(1)f(2) = 0 \} \)
(j) \(\{ f \in \mathbb{R}[t] \mid f(1) = 3f(2) + 4f(3) \} \)
(k) \(\{ f \in \mathbb{R}[t] \mid f(1) = 3f(2) + 4f(3) + 1 \} \)
(l) \(\{ f \in \mathbb{R}[t] \mid f(1) \leq f(2) \} \)

Definition 15.2.7 (Span). Let \(V \) be a vector space and let \(\mathbf{v}_1, \ldots, \mathbf{v}_m \in V \). Then the span of \(S = \{ \mathbf{v}_1, \ldots, \mathbf{v}_m \} \), denoted \(\text{span}(\mathbf{v}_1, \ldots, \mathbf{v}_m) \), is the smallest subspace of \(V \) containing \(S \), i.e.,

(a) \(\text{span} \ S \supseteq S \);

(b) \(\text{span} \ S \) is closed under linear combinations

(c) for every subspace \(W \leq V \), if \(S \subseteq W \) then \(\text{span} \ S \leq W \).

Exercise 15.2.8. Repeat the exercises of Section 1.2, replacing \(F^k \) by \(V \).

15.3 Linear independence and bases

Let \(V \) be a vector space. In Section 1.3 we defined the notion of linear independence of matrices (\(\text{Def. 1.3.5} \)). We now generalize this to linear independence of a list (\(\text{Def. 1.3.1} \)) of vectors in a general vector space.

Definition 15.3.1 (Linear independence). The list \((\mathbf{v}_1, \ldots, \mathbf{v}_k) \) of vectors in \(V \) is said to be linearly independent over \(F \) if the only linear combination equal to \(0 \) is the trivial linear combination. The list \((\mathbf{v}_1, \ldots, \mathbf{v}_k) \) is linearly dependent if it is not linearly independent.

Definition 15.3.2. If a list \((\mathbf{v}_1, \ldots, \mathbf{v}_k) \) of vectors is linearly independent (dependent), we say that the vectors \(\mathbf{v}_1, \ldots, \mathbf{v}_k \) are linearly independent (dependent).

Definition 15.3.3. We say that a set of vectors is linearly independent if a list formed by its elements (in any order and without repetitions) is linearly independent.

Exercise 15.3.4. Show that the following sets are linearly independent over \(\mathbb{Q} \).

(a) \(\{ 1, \sqrt{2}, \sqrt{3} \} \)

(b) \(\{ \sqrt{x} \mid x \text{ is square-free} \} \) (an integer \(n \) is square-free if there is no perfect square \(k \neq 1 \) such that \(k \mid n \)).

Exercise 15.3.5. Let \(U_1, U_2 \leq V \) with \(U_1 \cap U_2 = \{ 0 \} \). Let \(\mathbf{v}_1, \ldots, \mathbf{v}_k \in U_1 \) and \(\mathbf{w}_1, \ldots, \mathbf{w}_\ell \in U_2 \). If the lists \((\mathbf{v}_1, \ldots, \mathbf{v}_k) \) and \((\mathbf{w}_1, \ldots, \mathbf{w}_\ell) \) are linearly independent, then so is the list \((\mathbf{v}_1, \ldots, \mathbf{v}_k, \mathbf{w}_1, \ldots, \mathbf{w}_\ell) \).
Definition 15.3.6 (Rank and dimension). The rank of a set of vectors is the maximum number of linearly independent vectors among them. For a vector space V, the dimension of V is its rank, that is, $\dim V = \text{rk} V$.

Exercise 15.3.7.

(a) When are two vectors in G_2 linearly independent?

(b) When are two vectors in G_3 linearly independent?

(c) When are three vectors in G_3 linearly independent?

You should phrase your answers in geometric terms.

Definition 15.3.8. We say that the vector w depends on the list (v_1, \ldots, v_k) of vectors if $w \in \text{span}(v_1, \ldots, v_k)$, i.e., if w can be expressed as a linear combination of the v_i.

Definition 15.3.9 (Linear independence of an infinite list). We say that an infinite list $(v_i \mid i \in I)$ (where I is an index set) is linearly independent if every finite sublist $(v_i \mid i \in J)$ (where $J \subseteq I$ and $|J| < \infty$) is linearly independent.

Exercise 15.3.10. Verify that Exercises 1.3.11-1.3.26 hold in general vector spaces (replace F^n by V where necessary).

Example 15.3.11. For $k = 0, 1, 2, \ldots$, let f_k be a polynomial of degree k. Show that the infinite list (f_0, f_1, f_2, \ldots) is linearly independent.

Exercise 15.3.12. Find three nonzero vectors in G_3 that are linearly dependent but no two are parallel.

Exercise 15.3.13. Prove that for all $\alpha, \beta \in \mathbb{R}$, the functions $\sin(t), \sin(t+\alpha), \sin(t+\beta)$ are linearly dependent (as members of the function space $\mathbb{R}^\mathbb{R}$).

Exercise 15.3.14. Let $\alpha_1 < \alpha_2 < \cdots < \alpha_n \in \mathbb{R}$. Consider the vectors

$$v_i = \begin{pmatrix} \alpha_1^i \\ \alpha_2^i \\ \vdots \\ \alpha_n^i \end{pmatrix} \quad (15.1)$$

for $i \geq 0$ (recall the convention that $\alpha^0 = 1$ even if $\alpha = 0$). Show that (v_0, \ldots, v_{n-1}) is linearly independent.
Exercise 15.3.15 (Moment curve). Find a continuous curve in \(\mathbb{R}^n \), i.e., a continuous injective function \(f : \mathbb{R} \to \mathbb{R}^n \), such that every set of \(n \) points on the curve are linearly independent. The simplest example is called the “moment curve,” and we bet you will find it.

Exercise 15.3.16. Let \(\alpha_1 < \alpha_2 < \cdots < \alpha_n \in \mathbb{R} \), and define the degree-\(n \) polynomial

\[
f = \prod_{j=1}^{n} (t - \alpha_j)
\]

For each \(1 \leq i \leq n \), define the polynomial \(g_i \) of degree \(n - 1 \) by

\[
g_i = \frac{f}{t - \alpha_i} = \prod_{j=1, j \neq i}^{n} (t - \alpha_j).
\]

Prove that the polynomials \(g_1, \ldots, g_n \) are linearly independent.

Definition 15.3.17. We say that a set \(S \subseteq V \) generates \(V \) if \(\text{span}(S) = V \). If \(S \) generates \(V \), then \(S \) is said to be a set of generators of \(V \).

Definition 15.3.18 (Finite-dimensional vector space). We say that the vector space \(V \) is finite dimensional if \(V \) has a finite set of generators. A vector space which is not finite dimensional is infinite dimensional.

Exercise 15.3.19. Show that \(\mathbb{F}[t] \) is infinite dimensional.

Definition 15.3.20 (Basis). A list \(\{e_1, \ldots, e_k\} \) of vectors is a basis of \(V \) if \(\{e_1, \ldots, e_k\} \) is linearly independent and generates \(V \).

In Section 1.3, we defined the standard basis of the space \(\mathbb{F}^n \) (Def. 1.3.34). However, general vector spaces do not have the notion of a standard basis.

Note that a list of vectors is not the same as a set of vectors, but a list of vectors which is linearly independent necessarily has no repeated elements. Note further that lists carry with them an inherent ordering; that is, bases are ordered.

Examples 15.3.21.

(a) Show that the polynomials \(1, t, t^2, \ldots, t^k \) form a basis for \(P_k[\mathbb{F}] \).

(b) Show that the polynomials \(t^2 + t + 1, t^2 - 2t + 2, t^2 - t - 1 \) form a basis of \(P_2[\mathbb{F}] \).
(c) Express the polynomial \(f = 1 \) as a linear combination of these basis vectors.

Examples 15.3.22. For each of the following sets \(S \), describe the vectors in \(\text{span}(S) \) and give a basis for \(\text{span}(S) \).

(a) \(S = \{t, t^2\} \subseteq \mathbb{F}[t] \)

(b) \(S = \{\sin(t), \cos(t), \cos(2t), e^{it}\} \subseteq \mathbb{C}^\mathbb{R} \)

(c) \(S = \left\{ \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \\ 4 \\ 1 \\ 4 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 4 \\ 7 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \right\} \subseteq \mathbb{F}^3 \)

(d) \(S = \left\{ \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 1 \\ 3 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \right\} \subseteq M_2(\mathbb{F}) \)

(e) \(S = \left\{ \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 6 \\ 0 \\ 0 \\ 3 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 3 \end{pmatrix} \right\} \subseteq M_3(\mathbb{F}) \)

Example 15.3.23. Show that the polynomials \(t^2, (t + 1)^2, \) and \((t + 2)^2 \) form a basis for \(P_2[\mathbb{F}] \). Express the polynomial \(t \) in terms of this basis, and write its coordinate vector.

Exercise 15.3.24. For \(\alpha \in \mathbb{R} \), write the coordinate vector of \(\cos(t + \alpha) \) in the basis \((\cos t, \sin t) \).

Exercise 15.3.25. Find a basis of the 0-weight subspace of \(\mathbb{F}^k \) (the 0-weight subspace is defined in \(\text{Ex. 1.2.7} \)).

Exercise 15.3.26.

(a) Find a basis of \(M_n(\mathbb{F}) \).

(b) Find a basis of \(M_n(\mathbb{F}) \) consisting of nonsingular matrices.
Warning. Part (b) is easier for fields of characteristic 0 than for fields of finite characteristic.

Proposition 15.3.27. Let \(b = (b_1, \ldots, b_n) \) be a list of vectors in \(V \). Then \(b \) is a basis of \(V \) if and only if every vector can be uniquely expressed as a linear combination of the \(b_i \), i.e., for every \(v \in V \), there exists a unique list of coefficients \((\alpha_1, \ldots, \alpha_n) \) such that \(v = \sum_{i=1}^{n} \alpha_i b_i \).

Definition 15.3.28 (Maximal linearly independent set). A linearly independent set \(S \subseteq V \) is maximal if, for all \(v \in V \setminus S \), \(S \cup \{v\} \) is not linearly independent.

Proposition 15.3.29. Let \(e \) be a list of vectors in a vector space \(V \). Then \(e \) is a basis of \(V \) if and only if it is a maximal linearly independent set.

Proposition 15.3.30. Let \(V \) be a vector space. Then \(V \) has a basis (Zorn’s lemma is needed for the infinite-dimensional case).

Proposition 15.3.31. Let \(e \) be a list of vectors in \(V \). Then it is possible to extend \(e \) to a basis of \(V \), that is, there exists a basis of \(V \) which has \(e \) as a sublist.

Proposition 15.3.32. Let \(V \) be a vector space and let \(S \subseteq V \) be a set of generators of \(V \). Then there exists a list \(e \) of vectors in \(S \) such that \(e \) is a basis of \(V \).

Definition 15.3.33 (Coordinates). The coefficients \(\alpha_1, \ldots, \alpha_n \) of Ex. 15.3.27 are called the coordinates of \(v \) with respect to the basis \(b \).

Definition 15.3.34 (Coordinate vector). Let \(b = (b_1, \ldots, b_k) \) be a basis of the vector space \(V \), and let \(v \in V \). Then the column vector representation of \(v \) with respect to the basis \(b \), or the coordinatization of \(v \) with respect to \(b \), denoted by \([v]_b\), is obtained by arranging the coordinates of \(v \) with respect to \(b \) in a column, i.e.,

\[
[v]_b = \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_k \end{pmatrix}
\]

(15.2)

where \(v = \sum_{i=1}^{k} \alpha_i b_i \).
15.4 The First Miracle of Linear Algebra

In Section 1.3, we proved the First Miracle of Linear Algebra for \mathbb{F}^n (Theorem 1.3.40). This generalizes immediately to abstract vector spaces.

Theorem 15.4.1 (First Miracle of Linear Algebra). Let v_1, \ldots, v_k be linearly independent with $v_i \in \text{span}(w_1, \ldots, w_m)$ for all i. Then $k \leq m$. \square

The proof of this theorem requires the following lemma.

Lemma 15.4.2 (Steinitz exchange lemma). Let (v_1, \ldots, v_k) be a linearly independent list such that $v_i \in \text{span}(w_1, \ldots, w_m)$ for all i. Then there exists j ($1 \leq j \leq m$) such that the list (w_j, v_2, \ldots, v_k) is linearly independent. \lozenge

Corollary 15.4.3. Let V be a vector space. All bases of V have the same cardinality.

This is an immediate corollary to the First Miracle.

The following theorem is essentially a restatement of the First Miracle of Linear Algebra.

Theorem 15.4.4.

(a) Use the First Miracle to derive the fact that $\text{rk}(v_1, \ldots, v_k) = \dim(\text{span}(v_1, \ldots, v_k))$.

(b) Derive the First Miracle from the statement that $\text{rk}(v_1, \ldots, v_k) = \dim(\text{span}(v_1, \ldots, v_k))$. \lozenge

Exercise 15.4.5. Let V be a vector space of dimension n, and let $v_1, \ldots, v_n \in V$. The following are equivalent:

(a) (v_1, \ldots, v_n) is a basis of V

(b) v_1, \ldots, v_n are linearly independent

(c) $V = \text{span}(v_1, \ldots, v_n)$

Exercise 15.4.6. Show that $\dim(\mathbb{F}^n) = n$.

Exercise 15.4.7. Show that $\dim(\mathbb{F}^{kn}) = kn$.
Exercise 15.4.8. Show that \(\dim(P_k) = k + 1 \), where \(P_k \) is the space of polynomials of degree at most \(k \).

Exercise 15.4.9. What is the dimension of the subspace of \(\mathbb{R}[t] \) consisting of polynomials \(f \) of degree at most \(n \) such that \(f(\sqrt{-1}) = 0 \)?

Exercise 15.4.10. Show that, if \(f \) is a polynomial of degree \(n \), then \((f(t), f(t+1), \ldots, f(t+n-1))\) is a basis of \(P_n[\mathbb{F}] \).

Exercise 15.4.11. Show that any list of polynomials, one of each degree 0, \(\ldots \), \(n \), forms a basis of \(P_n[\mathbb{F}] \).

Proposition 15.4.12. Let \(V \) be an \(n \)-dimensional vector space with subspaces \(U_1, U_2 \) such that \(U_1 \cap U_2 = \{0\} \). Then
\[
\dim U_1 + \dim U_2 \leq n .
\] (15.3)

Proposition 15.4.13 (Modular equation). Let \(V \) be a vector space, and let \(U_1, U_2 \leq V \). Then
\[
\dim(U_1 + U_2) + \dim(U_1 \cap U_2) = \dim U_1 + \dim U_2 .
\] (15.4)

Exercise 15.4.14. Let \(A = (\alpha_{ij}) \in \mathbb{R}^{n \times n} \), and assume the columns of \(A \) are linearly independent. Prove that it is always possible to change the value of an entry in the first row so that the columns of \(A \) become linearly dependent.

Exercise 15.4.15. Call a sequence \((a_0, a_1, a_2, \ldots)\) “Fibonacci-like” if for all \(n \), \(a_{n+2} = a_{n+1} + a_n \).

(a) Prove that Fibonacci-like sequences form a 2-dimensional vector space.

(b) Find a basis for the space of Fibonacci-like sequences.

(c) Express the Fibonacci sequence \((0, 1, 1, 2, 5, 8, \ldots)\) as a linear combination of these basis vectors.

\(\heartsuit \) Exercise 15.4.16. Let \(f \) be a polynomial. Prove that \(f \) has a multiple \(g = f \cdot h \neq 0 \) in which every exponent is prime, i.e.,
\[
g = \sum_{p \text{ prime}} \alpha_p x^p
\] (15.5)

for some coefficients \(\alpha_p \).

Definition 15.4.17 (Elementary operation). For a list of vectors \((\mathbf{v}_1, \ldots, \mathbf{v}_k)\), the elementary operation denoted by \((i, j, \lambda)\) is the operation which replaces \(\mathbf{v}_i \) by \(\mathbf{v}_i - \lambda \mathbf{v}_j \) \((i \neq j) \).

Proposition 15.4.18. Performing elementary operations does not change the rank of a set of vectors.
15.5 Direct sums

Definition 15.5.1 (Direct sum). Let \(V \) be a vector space and let \(U_1, U_2 \leq V \). Define \(W = U_1 + U_2 \). Then \(W \) is the *direct sum* of \(U_1 \) and \(U_2 \) if \(U_1 \cap U_2 = \{0\} \). More generally, if \(W = U_1 + \cdots + U_k \), then \(W \) is the direct sum of \(U_1, \ldots, U_k \) (\(W = U_1 \oplus \cdots \oplus U_k \)) if for all \(i \),

\[
U_i \cap \left(\sum_{j \neq i} U_j \right) = \{0\}.
\]

Proposition 15.5.2. Let \(V \) be a vector space and let \(U_1, \ldots, U_k \leq V \). Then

\[
\dim(U_1 \oplus \cdots \oplus U_k) = \sum_{i=1}^k \dim U_i.
\]

The following exercise shows that this could actually be used as the definition of the direct sum in finite-dimensional spaces, but that statement in fact holds in infinite-dimensional spaces as well.

Proposition 15.5.3. Let \(V \) be a finite-dimensional vector space, and let \(U_1, \ldots, U_k \leq V \), with

\[
\dim \left(\sum_{i=1}^k U_i \right) = \sum_{i=1}^k \dim U_i.
\]

Then

\[
\sum_{i=1}^k U_i = \bigoplus_{i=1}^k U_i.
\]

Proposition 15.5.4. Let \(V \) be a vector space and let \(U_1, \ldots, U_k \leq V \). Then \(W = \sum_{i=1}^k U_i \) is a direct sum if and only if for every choice of \(k \) vectors \(u_i (i = 1, \ldots, k) \) where \(u_i \in U_i \setminus \{0\}, \) the vectors \(u_1, \ldots, u_k \) are linearly independent.

We note that the notion of direct sum extends the notion of linear independence to subspaces.

Proposition 15.5.5. The vectors \(v_1, \ldots, v_k \) are linearly independent if and only if

\[
\sum_{i=1}^k \text{span}(v_i) = \bigoplus_{i=1}^k \text{span}(v_i).
\]

(15.8)
Chapter 16
Linear Maps

16.1 Linear map basics

Definition 16.1.1 (Linear map). Let V and W be vector spaces over the same field F. A function $\varphi : V \to W$ is called a linear map or homomorphism if for all $v, w \in V$ and $\alpha \in F$:

(a) $\varphi(\alpha v) = \alpha \varphi(v)$

(b) $\varphi(v + w) = \varphi(v) + \varphi(w)$

Exercise 16.1.2. Show that if $\varphi : V \to W$ is a linear map, then $\varphi(0_V) = 0_W$

Proposition 16.1.3. Linear maps preserve linear combinations, i.e.,

$$\varphi \left(\sum_{i=1}^{k} \alpha_i v_i \right) = \sum_{i=1}^{k} \alpha_i \varphi(v_i)$$ \hspace{1cm} (16.1)

Exercise 16.1.4. True or false?

(a) If the vectors v_1, \ldots, v_k are linearly independent, then $\varphi(v_1), \ldots, \varphi(v_k)$ are linearly independent.

(b) If the vectors v_1, \ldots, v_k are linearly dependent, then $\varphi(v_1), \ldots, \varphi(v_k)$ are linearly dependent.

Example 16.1.5. Our prime examples of linear maps are those defined by matrix multiplication. Every matrix $A \in F^{k \times n}$ defines a linear map $\varphi_A : F^n \to F^k$ by $x \mapsto Ax$.

Babai: Discover Linear Algebra.
© 2016 László Babai.
Example 16.1.6. The projection of \mathbb{R}^3 onto \mathbb{R}^2 defined by
\[
\begin{pmatrix}
\alpha_1 \\
\alpha_2 \\
\alpha_3
\end{pmatrix} \mapsto \begin{pmatrix}
\alpha_1 \\
\alpha_2
\end{pmatrix}
\] (16.2)
is a linear map (verify!).

Example 16.1.7. The map $f \mapsto \int_0^1 f(t) dt$ is a linear map from $C[0, 1] \to \mathbb{R}$ (verify!).

Example 16.1.8. Differentiation $\frac{d}{dt}$ is a linear map $\frac{d}{dt} : P_n(\mathbb{F}) \to P_{n-1}(\mathbb{F})$ (verify!).

Example 16.1.9. The map $\varphi : P_n(\mathbb{R}) \to \mathbb{R}^k$ defined by
\[
f \mapsto \begin{pmatrix}
f(\alpha_1) \\
f(\alpha_2) \\
\vdots \\
f(\alpha_k)
\end{pmatrix}
\] (16.3)
where $\alpha_1 < \alpha_2 < \cdots < \alpha_n$ is a linear map (verify!).

Example 16.1.10. Interpolation is the map $f \mapsto L(f) \in P_n(\mathbb{R})$ where $L(f) = p$ is the unique polynomial with the property that $p(\alpha_i) = f(\alpha_i)$ ($i = 0, \ldots, n$) for some fixed $\alpha_0, \ldots, \alpha_n$. This is a linear map from $C[0, 1] \to P_n(\mathbb{R})$ (verify!).

Example 16.1.11. The map $\varphi : P_n(\mathbb{R}) \to T_n = \text{span}\{1, \cos t, \ldots, \cos nt\}$ defined by
\[
\varphi(\alpha_0 + \alpha_1 t + \cdots + \alpha_n t^n)
= \alpha_0 + \alpha_1 \cos t + \cdots + \alpha_n \cos^n t
\] (16.4)
is a linear map (verify!).

Notation 16.1.12. The set of linear maps $\varphi : V \to W$ is denoted by $\text{Hom}(V,W)$.

Fact 16.1.13. $\text{Hom}(V,W)$ is a subspace of the function space W^V.
Definition 16.1.14 (Composition of linear maps). Let U, V, and W be vector spaces, and let $\varphi : U \to V$ and $\psi : V \to W$ be linear maps. Then the composition of ψ with φ, denoted by $\psi \circ \varphi$ or $\psi \varphi$, is the map $\eta : U \to W$ defined by

$$\eta(v) := \psi(\varphi(v)) \quad (16.5)$$

FIGURE: $U \xrightarrow{\varphi} V \xrightarrow{\psi} W$

Proposition 16.1.15. Let U, V, and W be vector spaces and let $\varphi : U \to V$ and $\psi : V \to W$ be linear maps. Then $\varphi \circ \psi$ is a linear map.

Linear maps are uniquely determined by their action on a basis, and we are free to choose this action arbitrarily. This is more formally expressed in the following theorem.

Theorem 16.1.16 (Degree of freedom of linear maps). Let V and W be vector spaces with $e = (e_1, \ldots, e_k)$ a basis of V, and w_1, \ldots, w_k arbitrary vectors in W. Then there exists a unique linear map $\varphi : V \to W$ such that $\varphi(v_i) = w_i$ for $1 \leq i \leq k$.

Exercise 16.1.17. Show that $\dim(\text{Hom}(V,W)) = \dim(V) \cdot \dim(W)$.

In Section 15.3 we represented vectors by the column vectors of their coordinates with respect to a given basis. As the next step in translating geometric objects to tables of numbers, we assign matrices to linear maps relative to given bases in the domain and the target space. Our key tool for this endeavor is Theorem 16.1.16.

16.2 Isomorphisms

Let V and W be vector spaces over the same field.

Definition 16.2.1 (Isomorphism). A linear map $\varphi \in \text{Hom}(V,W)$ is said to be an isomorphism if it is a bijection. If there exists an isomorphism between V and W, then V and W are said to be isomorphic. "V is isomorphic to W" is denoted $V \cong W$.

Fact 16.2.2. The inverse of an isomorphism is an isomorphism.

Fact 16.2.3. Isomorphisms preserve linear independence and, moreover, map bases to bases.
16.3. THE RANK-NULLITY THEOREM

Fact 16.2.4. Let \(V \) and \(W \) be vector spaces, let \(\varphi : V \to W \) be an isomorphism, and let \(v_1, \ldots, v_k \in V \). Then
\[
rk(v_1, \ldots, v_k) = rk(\varphi(v_1), \ldots, \varphi(v_k))
\]

Exercise 16.2.5. Show that \(\cong \) is an equivalence relation, that is, for vector spaces \(U, V, \) and \(W \):
(a) \(V \cong V \) (reflexive)
(b) If \(V \cong W \) then \(W \cong V \) (symmetric)
(c) If \(U \cong V \) and \(V \cong W \) then \(U \cong W \) (transitive)

Exercise 16.2.6. Let \(V \) be an \(n \)-dimensional vector space over \(\mathbb{F} \). Show that \(V \cong \mathbb{F}^n \).

Proposition 16.2.7. Two vector spaces over the same field are isomorphic if and only if they have the same dimension.

16.3 The Rank-Nullity Theorem

Definition 16.3.1 (Image). The image of a linear map \(\varphi \), denoted \(\text{im}(\varphi) \), is
\[
\text{im}(\varphi) := \{ \varphi(v) \mid v \in V \}
\]
(16.6)

Definition 16.3.2 (Kernel). The kernel of a linear map \(\varphi \), denoted \(\text{ker}(\varphi) \), is
\[
\text{ker}(\varphi) := \{ v \in V \mid \varphi(v) = 0_W \} = \varphi^{-1}(0_W)
\]
(16.7)

Proposition 16.3.3. Let \(\varphi : V \to W \) be a linear map. Then \(\text{im}(\varphi) \leq W \) and \(\text{ker}(\varphi) \leq V \).

Definition 16.3.4 (Rank of a linear map). The rank of a linear map \(\varphi \) is defined as
\[
\text{rk}(\varphi) := \dim(\text{im}(\varphi))
\]

Definition 16.3.5 (Nullity). The nullity of a linear map \(\varphi \) is defined as
\[
\text{nullity}(\varphi) := \dim(\text{ker}(\varphi))
\]

Exercise 16.3.6. Let \(\varphi : V \to W \) be a linear map.
(a) Show that \(\dim(\text{im} \, \varphi) \leq \dim V \).

(b) Use this to reprove \(\text{rk}(AB) \leq \min\{\text{rk}(A), \text{rk}(B)\} \).

Theorem 16.3.7 (Rank-Nullity Theorem). Let \(\varphi : V \to W \) be a linear map. Then
\[
\text{rk}(\varphi) + \text{nullity}(\varphi) = \dim(V).
\] (16.8)

Exercise 16.3.8. Let \(n = k + \ell \). Find a linear map \(\varphi : \mathbb{R}^n \to \mathbb{R}^n \) which has rank \(k \), and therefore has nullity \(\ell \).

Examples 16.3.9. Find the rank and nullity of each of the linear maps in Examples \(\underline{16.1.6-16.1.11} \).

16.4 Linear transformations

Let \(V \) be a vector space over the field \(\mathbb{F} \).

In Section \(\underline{16.1} \) we defined the notion of a linear map. We now restrict ourselves to those maps which map a vector space into itself.

Definition 16.4.1 (Linear transformation). If \(\varphi : V \to V \) is a linear map, then \(\varphi \) is said to be a **linear transformation** or a **linear operator**.

Definition 16.4.2 (Identity transformation). For any vector space \(V \), **identity transformation** is the transformation \(\text{id} : V \to V \) defined by \(\text{id}(v) = v \) for all \(v \in V \).

Definition 16.4.3 (Scalar transformation). For any vector space \(V \) over \(\mathbb{F} \), the **scalar transformations** of \(V \) are the transformations of the form \(\alpha \text{id} \) for \(\alpha \in \mathbb{F} \).

Examples 16.4.4. The following are linear transformations of the 2-dimensional geometric space \(G_2 \) (verify!).

(a) Rotation about the origin by an angle \(\theta \)

(b) Reflection about any line passing through the origin

(c) Shearing parallel to a line (tilting the deck)

(d) Scaling by \(\alpha \) in one direction
Examples 16.4.5. The following are linear transformations of the 3-dimensional geometric space G_3 (verify!).

(a) Rotation by θ about any line
(b) Projection into any plane
(c) Reflection through any plane passing through the origin
(d) Central reflection

Example 16.4.6. Let $S_\alpha : \mathbb{R}^n \to \mathbb{R}^n$ be the left shift by α operator, defined by $S_\alpha(f) = g$ where

$$g(t) := f(t + \alpha).$$

S_α is a linear transformation (verify!).

Examples 16.4.7. The following are linear transformations of $P_n[\mathbb{F}]$ (verify!).

(a) Differentiation $\frac{d}{dt}$
(b) Left shift by α, $f \mapsto S_\alpha(f)$
(c) Multiplication by t, followed by differentiation, i.e., the map $f \mapsto (tf)'$

Examples 16.4.8. The following are linear transformations of \mathbb{R}^N (verify!).

(a) Left shift,

$$(\alpha_0, \alpha_1, \alpha_2, \ldots) \mapsto (\alpha_1, \alpha_2, \alpha_3, \ldots)$$

(b) Difference, $(\alpha_0, \alpha_1, \alpha_2, \ldots) \mapsto (\alpha_1 - \alpha_0, \alpha_2 - \alpha_1, \alpha_3 - \alpha_2, \ldots)$

Example 16.4.9. Let $V = \text{span}(\sin t, \cos t)$. Differentiation is a linear transformation of V (verify!).
Exercise 16.4.10. The *difference operator* $\Delta : P_k[\mathbb{F}] \to P_k[\mathbb{F}]$, defined by

$$\Delta f := S_\alpha(f) - f$$

is linear, and $\deg(\Delta f) = \deg(f) - 1$ if $\deg(f) \geq 2$.

In Chapter 8, we discussed the notion of eigenvectors and eigenvalues of square matrices. This is easily generalized to eigenvectors and eigenvalues of linear transformations.

Definition 16.4.11 (Eigenvector). Let $\varphi : V \to V$ be a linear transformation. Then $v \in V$ is an *eigenvector* of φ if $v \neq 0$ and there exists $\lambda \in \mathbb{F}$ such that $\varphi(v) = \lambda v$.

Definition 16.4.12 (Eigenvalue). Let $\varphi : V \to V$ be a linear transformation. Then $\lambda \in \mathbb{F}$ is an *eigenvalue* of φ if there exists a nonzero vector $v \in V$ such that $\varphi(v) = \lambda v$.

It is easy to see that eigenvectors and eigenvalues as we defined them for square matrices are just a special case of these definitions; in particular, if A is a square matrix, then its eigenvectors and eigenvalues are the same as those of φ_A (Example 16.1.5), the map which takes the column vector x to Ax.

Proposition 16.4.13. Let $\varphi : V \to V$ be a linear transformation and let v_1, \ldots, v_k be eigenvectors to distinct eigenvalues. Then the v_i are linearly independent.

Proposition 16.4.14. Let $\varphi : V \to V$ be a linear transformation and let v_1 and v_2 be eigenvectors to distinct eigenvalues. Then $v_1 + v_2$ is not an eigenvector.

Proposition 16.4.15. Let $\varphi : V \to V$ be a linear transformation to which every nonzero vector is an eigenvector. Then φ is a scalar transformation.

Definition 16.4.16 (Eigenspace). Let V be a vector space and let $\varphi : V \to V$ be a linear transformation. We denote by U_λ the set

$$U_\lambda := \{v \in V \mid \varphi(v) = \lambda v\} \, .$$

This set is called the *eigenspace* corresponding to the eigenvalue λ.

Exercise 16.4.17. Let V be a vector space over \mathbb{F} and let $\varphi : V \to V$ be a linear transformation. Show that, for all $\lambda \in \mathbb{F}$, U_λ is a subspace of V.
Proposition 16.4.18. Let \(\varphi : V \to V \) be a linear transformation. Then
\[
\sum_{\lambda} U_{\lambda} = \bigoplus_{\lambda} U_{\lambda}.
\]
where \(\bigoplus \) represents the direct sum (Def. 15.5.1).

Examples 16.4.19. Determine the rank, nullity, eigenvalues (and their geometric multiplicities), and eigenvectors of each of the transformations in Examples 16.4.4-16.4.10.

Definition 16.4.20 (Eigenbasis). Let \(\varphi : V \to V \) be a linear transformation. An eigenbasis of \(\varphi \) is a basis of \(V \) consisting of eigenvectors of \(\varphi \).

16.4.1 Invariant subspaces

Definition 16.4.21 (Invariant subspace). Let \(\varphi : V \to V \) and let \(W \leq V \). Then \(W \) is a \(\varphi \)-invariant subspace of \(V \) if, for all \(w \in W \), we have \(\varphi(w) \in W \). For any linear transformation \(\varphi \), the trivial invariant subspace is the subspace \(\{0\} \).

Exercise 16.4.22. Let \(\varphi : G_3 \to G_3 \) be a rotation about the vertical axis through the origin. What are the \(\varphi \)-invariant subspaces?

Exercise 16.4.23. Let \(\pi : G_3 \to G_3 \) be the projection onto the horizontal plane. What are the \(\pi \)-invariant subspaces?

Exercise 16.4.24.

(a) What are the invariant subspaces of \(\text{id} \)?

(b) What are the invariant subspaces of the 0 transformation?

Exercise 16.4.25. Let \(\varphi : V \to V \) be a linear transformation and let \(\lambda \) be an eigenvalue of \(\varphi \). What are the invariant subspaces of \(\varphi + \lambda \text{id} \)?

Exercise 16.4.26. Over every field \(\mathbb{F} \), find an infinite-dimensional vector space \(V \) and linear transformation \(\varphi : V \to V \) that has no finite-dimensional invariant subspaces other than \(\{0\} \).

Proposition 16.4.27. Let \(\varphi : V \to V \) be a linear transformation. Then \(\ker \varphi \) and \(\text{im} \varphi \) are invariant subspaces.
Proposition 16.4.28. Let \(\varphi : V \to V \) be a linear transformations and let \(W_1, W_2 \leq V \) be \(\varphi \)-invariant subspaces. Then

(a) \(W_1 + W_2 \) is a \(\varphi \)-invariant subspace;

(b) \(W_1 \cap W_2 \) is a \(\varphi \)-invariant subspace.

Definition 16.4.29 (Restriction to a subspace). Let \(\varphi : V \to V \) be a linear map and let \(W \leq V \) be a \(\varphi \)-invariant subspace of \(V \). The restriction of \(\varphi \) to \(W \), denoted \(\varphi_W \), is the linear map \(\varphi_W : W \to W \) defined by \(\varphi_W(w) = \varphi(w) \) for all \(w \in W \).

Proposition 16.4.30. Let \(\varphi : V \to V \) be a linear transformation and let \(W \leq V \) be a \(\varphi \)-invariant subspace. Let \(f \in \mathbb{F}[t] \). Then

\[
(16.12) \quad f(\varphi_W) = f(\varphi)_W.
\]

Proposition 16.4.31. Let \(\varphi : V \to V \) be a linear transformation. The following are equivalent.

(a) \(\varphi \) is a scalar transformation;

(b) all subspaces of \(V \) are \(\varphi \)-invariant;

(c) all 1-dimensional subspaces of \(V \) are \(\varphi \)-invariant;

(d) all hyperplanes (Def. 5.2.1) are \(\varphi \)-invariant.

Exercise 16.4.32. Let \(S \) be the shift operator (Example 16.4.8 (a)) on the space \(\mathbb{R}^N \) of sequences of real numbers, defined by

\[
(16.13) \quad S(\alpha_0, \alpha_1, \alpha_2, \ldots) := (\alpha_1, \alpha_2, \alpha_3, \ldots).
\]

(a) In Ex. 15.4.15 we defined the space of Fibonacci-like sequences. Show that this is an \(S \)-invariant subspace of \(\mathbb{R}^N \).

(b) Find an eigenbasis of \(S \) in this subspace.

(c) Use the result of part (b) to find an explicit formula for the \(n \)-th Fibonacci number.

Definition 16.4.33 (Minimal invariant subspace). Let \(\varphi : V \to V \) be a linear transformation. Then \(U \leq V \) is a minimal invariant subspace of \(\varphi \) if the only invariant subspace properly contained in \(U \) is \(\{0\} \).
Exercise 16.4.34. Let \(\rho = \begin{pmatrix} 0 & 0 & \cdots & 0 & 1 \\ 1 & 0 & \cdots & 0 & 0 \\ 0 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & 0 \end{pmatrix} \) be an \(n \times n \) matrix.

(a) Count the invariant subspaces of \(\rho \) over \(\mathbb{C} \).

(b) Find a 2-dimensional minimal invariant subspace of \(\rho \) over \(\mathbb{R} \).

(c) Count the invariant subspaces of \(\rho \) over \(\mathbb{Q} \) if \(n \) is prime.

Definition 16.4.35. Let \(\varphi : V \to V \) be a linear transformation. Then the \(n \)-th power of \(\varphi \) is defined as
\[
\varphi^n := \underbrace{\varphi \circ \cdots \circ \varphi}_{\text{n times}}.
\] (16.14)

Definition 16.4.36. Let \(\varphi : V \to V \) be a linear transformation and let \(f \in \mathbb{F}[t] \), say
\[
f = \alpha_0 + \alpha_1 t + \cdots + \alpha_n t^n.
\]
Then we define \(f(\varphi) \) by
\[
f(\varphi) := \alpha_0 \text{id} + \alpha_1 \varphi + \cdots + \alpha_n \varphi^n.
\] (16.15)
In particular,
\[
f(\varphi)(v) = \alpha_0 v + \alpha_1 \varphi(v) + \cdots + \alpha_n \varphi^n(v).
\] (16.16)

Exercise 16.4.37. Let \(\varphi : V \to V \) be a linear transformation and let \(f \in \mathbb{F}[t] \). Verify that \(f(\varphi) \) is a linear transformation of \(V \).

Definition 16.4.38 (Chain of invariant subspaces). Let \(\varphi : V \to V \) be a linear transformation, and let \(U_1, \ldots, U_k \leq V \) be \(\varphi \)-invariant subspaces. We say that the \(U_i \) form a chain if whenever \(i \neq j \), either \(U_i \leq U_j \) or \(U_j \leq U_i \).

Definition 16.4.39 (Maximal chain). Let \(\varphi : V \to V \) be a linear transformation and let \(U_1, \ldots, U_k \leq V \) be a chain of \(\varphi \)-invariant subspaces. We say that this chain is maximal if, for all \(W \leq V \) (\(W \neq U_i \) for all \(i \)), the \(U_i \) together with \(W \) do not form a chain.

Exercise 16.4.40. Let \(\frac{d}{dt} : P_n(\mathbb{R}) \to P_n(\mathbb{R}) \) be the derivative linear transformation (\(\mathbb{R} \) Def. 14.4.68) of the space of real polynomials of degree at most \(n \).
(a) Prove that the number of $\frac{d}{dt}$-invariant subspaces is $n + 2$;
(b) give a very simple description of each;
(c) prove that they form a maximal chain.

♥ Exercise 16.4.41. Let $V = \mathbb{F}_p^\mathbb{F}_p$, and let φ be the shift-by-1 operator, i.e., $\varphi(f)(t) = f(t + 1)$. What are the invariant subspaces of φ? Prove that they form a maximal chain.

Proposition 16.4.42. Let $\varphi : V \rightarrow V$ be a linear transformation, and let $f \in \mathbb{F}[t]$. Then $\ker f(\varphi)$ and $\text{im} f(\varphi)$ are invariant subspaces.

The next exercise shows that invariant subspaces generalize the notion of eigenvectors.

Exercise 16.4.43. Let $v \in V$ be a nonzero vector and let $\varphi : V \rightarrow V$ be a linear transformation. Then v is an eigenvector of φ if and only if $\text{span}(v)$ is φ-invariant.

Proposition 16.4.44. Let V be a vector space over \mathbb{R} and let $\varphi : V \rightarrow V$ be a linear transformation. Then φ has an invariant subspace of dimension at most 2.

Proposition 16.4.45. Let V be an n-dimensional vector space and let $\varphi : V \rightarrow V$ be a linear transformation. The following are equivalent.

(a) There exists a maximal chain of subspaces, all of which are invariant.
(b) There is a basis b of V such that $[\varphi]_b$ is triangular.

Proposition 16.4.46. Let V be a finite-dimensional vector space with basis b and let $\varphi : V \rightarrow V$ be a linear transformation.

(a) Let b a basis of V. Then $[\varphi]_b$ is triangular if and only if every initial segment of b spans a φ-invariant subspace of V.
(b) If such a basis exists, then such an orthonormal basis exists.

Proposition 16.4.47. Let V be a finite-dimensional vector space with basis b and let $\varphi : V \rightarrow V$ be a linear transformation. Then $[\varphi]_b$ is diagonal if and only if b is an eigenbasis of φ.

Exercise 16.4.48. Infer Schur’s Theorem (Theorem 12.4.9) and the real version of Schur’s Theorem (Theorem 12.4.18) from the preceding exercise.
16.5 Coordinatization

In Section 15.3, we defined coordinatization of a vector with respect to some basis (Def. 15.3.34). We now extend this to the notion of coordinatization of linear maps.

Definition 16.5.1 (Coordinatization). Let V be an n-dimensional vector space with basis $e = (e_1, \ldots, e_n)$, and let W be an m-dimensional vector space with basis $f = (f_1, \ldots, f_m)$. Let α_{ij} \((1 \leq i \leq m, 1 \leq j \leq n)\) be coefficients such that $\varphi(e_j) = \sum_{i=1}^{m} \alpha_{ij} f_i$. Then the **matrix representation** or coordinatization of φ with respect to the bases e and f is the $m \times n$ matrix

$$[\varphi]_{e,f} := \begin{pmatrix} \alpha_{11} & \cdots & \alpha_{1n} \\
\vdots & \ddots & \vdots \\
\alpha_{m1} & \cdots & \alpha_{mn} \end{pmatrix} \quad (16.17)$$

If $\varphi : V \to V$ is a linear transformation, then we write $[\varphi]_e$ instead of $[\varphi]_{e,e}$.

So the j-th column of $[\varphi]_{e,f}$ is $[\varphi(e_j)]_f$, the coordinate vector of the image of the j-th basis vector of V in the basis f of W.

Example 16.5.2. Write the matrix representation of each of the linear transformations in Ex. 16.4.4 in a basis consisting of perpendicular unit vectors.

Example 16.5.3.

(a) Compute the matrix of the “rotation by θ” transformation with respect to the basis of two unit vectors at an angle θ.

(b) Compare the trace and determinant (Def. 6.2.1) of the matrix corresponding to the same linear transformation in the basis of the preceding.

Example 16.5.4. Write the matrix representation of each of the linear transformations in Ex. 16.4.5 in the basis consisting of three mutually perpendicular unit vectors.

Example 16.5.5. Write the matrix representation of each of the linear transformations in Ex. 16.4.7 in the basis $(1, t, t^2, \ldots, t^n)$ of the polynomial space $P_n(\mathbb{F})$.

The next exercise demonstrates that under our rules of coordinatization, the action of a linear map corresponds to multiplying a column vector by a matrix.
Proposition 16.5.6. For any \(v \in V \), if \(\varphi : V \to W \) is a linear map, then
\[
[\varphi(v)]_{f} = [\varphi]_{e \to f}[v]_{e}
\]
Moreover, coordinatization treats eigenvectors the way we would expect.

Proposition 16.5.7. Let \(V \) be a vector space with basis \(b \) and let \(\varphi : V \to V \) be a linear transformation. Write \(A = [\varphi]_{b} \). Then

(a) \(A \) and \(\varphi \) have the same eigenvalues

(b) \(v \in V \) is an eigenvector of \(\varphi \) with eigenvalue \(\lambda \) if and only if \([v]_{b} \) is an eigenvector of \(A \) with eigenvalue \(\lambda \)

The next exercise shows that under our coordinatization, composition of linear maps (Def. 16.1.14) corresponds to matrix multiplication. This gives a natural explanation of why we multiply matrices the way we do, and why this operation is associative.

Proposition 16.5.8. Let \(U, V, \) and \(W \) be vector spaces with bases \(e, f, \) and \(g \), respectively, and let \(\varphi : U \to V \) and \(\psi : V \to W \) be linear maps. Then
\[
[\psi \varphi]_{e \to g} = [\psi]_{f \to g}[\varphi]_{e \to f}
\]
(16.18)

Exercise 16.5.9. Explain the comment before the preceding exercise.

Exercise 16.5.10. Let \(V \) and \(W \) be vector spaces, with \(\dim V = n \) and \(\dim W = k \). Infer from Prop. 16.5.8 that coordinatization is an isomorphism between \(\text{Hom}(V, W) \) and \(\mathbb{F}^{k \times n} \).

Exercise 16.5.11. Let \(\rho_{\theta} \) be the “rotation by \(\theta \)” linear map in \(G_{2} \).

(a) Show that, for \(\alpha, \beta \in \mathbb{R} \), \(\rho_{\alpha + \beta} = \rho_{\alpha} \circ \rho_{\beta} \).

(b) Use matrix multiplication to derive the addition formulas for \(\sin \) and \(\cos \).

Example 16.5.12. Let \(V \) be an \(n \)-dimensional vector space with basis \(b \), and let \(A \in \mathbb{F}^{k \times n} \). Define \(\varphi : V \to \mathbb{F}^{k} \) by \(x \mapsto A[x]_{b} \).

(a) Show that \(\varphi \) is a linear map.

(b) Show that \(\text{rk } \varphi_{A} = \text{rk } A \)
Definition 16.5.13. Let V be a finite-dimensional vector space over \mathbb{R} and let \mathcal{B} be a basis of V. Let $\varphi : V \to V$ be a nonsingular linear transformation. We say that φ is sense-preserving if $\det[\varphi]_\mathcal{B} > 0$ and φ is sense-reversing if $\det[\varphi]_\mathcal{B} < 0$.

Proposition 16.5.14.

(a) The sense-preserving linear transformations of the plane are rotations.

(b) The sense-reversing transformations of the plane are reflections about a line through the origin.

Exercise 16.5.15. What linear transformations of G_2 fix the origin?

Definition 16.5.16 (Rotational reflection). A rotational reflection of G_3 is a rotation followed by a central reflection.

Proposition 16.5.17.

(a) The sense-preserving linear transformations of 3-dimensional space are rotations about an axis.

(b) The sense-reversing linear transformations of 3-dimensional space are rotational reflections.

16.6 Change of basis

We now have the equipment necessary to discuss change of basis transformations and the result of change of basis on the matrix representation of linear maps.

Definition 16.6.1 (Change of basis transformation). Let V be a vector space with bases $\mathcal{E} = (e_1, \ldots, e_n)$ and $\mathcal{E}' = (e'_1, \ldots, e'_n)$. Then the change of basis transformation (from \mathcal{E} to \mathcal{E}') is the linear transformation $\sigma : V \to V$ given by $\sigma(e_i) = e'_i$, for $1 \leq i \leq n$.

Proposition 16.6.2. Let V be a vector space with bases \mathcal{E} and \mathcal{E}', and let $\sigma : V \to V$ be the change of basis transformation from \mathcal{E} to \mathcal{E}'. Then $[\sigma]_\mathcal{E} = [\sigma]_\mathcal{E}'$.

For this reason, we often denote the matrix representation of the change of basis transformation σ by $[\sigma]$ rather than by, e.g., $[\sigma]_\mathcal{E}$.

Fact 16.6.3. Let $\sigma : V \to V$ be a change of basis transformation. Then $[\sigma]$ is invertible.
CHAPTER 16. LINEAR MAPS

Notation 16.6.4. Let V be a vector space with bases e and e'. When changing basis from e to e', we sometimes refer to e as the “old” basis and e' as the “new” basis. So if $v \in V$ is a vector, we often write $[v]_{\text{old}}$ in place of ve and $[v]_{\text{new}}$ in place of ve'. Likewise, if W is a vector space with bases f and f' and we change bases from f to f', we consider f the “old” basis and f' the “new” basis. So if $\varphi : V \rightarrow W$ is a linear map, we write $[\varphi]_{\text{old}}$ in place of φe_f and $[\varphi]_{\text{new}}$ in place of $\varphi e'_{f'}$.

Proposition 16.6.5. Let $v \in V$ and let e and e' be bases of V. Let σ be the change of basis transformation from e to e'. Then

$$[v]_{\text{new}} = [\sigma]^{-1}[v]_{\text{old}} \quad (16.19)$$

Numerical exercise 16.6.6. For each of the following vector spaces V, compute the change of basis matrix from e to e'. Self-check: pick some $v \in V$, determine $[v]_e$ and $[v]_e'$, and verify that Equation (16.19) holds.

(a) $V = G_2$, $e = (e_1, e_2)$ is two perpendicular unit vectors, and $e' = (e_1, e'_2)$, where e'_2 is e_1 rotated by θ

(b) $V = P_2[\mathbb{F}]$, $e = (1, t, t^2)$, $e' = (t^2, (t + 1)^2, (t + 2)^2)$

(c) $V = \mathbb{F}^3$, $e = \left(\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 2 \\ 0 \\ -1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix}\right)$, $e' = \left(\begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}, \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}\right)$

Just as coordinates change with respect to different bases, so do the matrix representations of linear maps.

Proposition 16.6.7. Let V and W be finite dimensional vector spaces, let e and e' be bases of V, let f and f' be bases of W, and let $\varphi : V \rightarrow W$ be a linear map. Then

$$[\varphi]_{\text{new}} = T^{-1}[\varphi]_{\text{old}}S \quad (16.20)$$

where S is the change of basis matrix from e to e' and T is the change of basis matrix from f to f'.

Proposition 16.6.8. Let N be a nilpotent matrix. Then the linear transformation defined by $x \mapsto Nx$ has a chain of invariant subspaces.

Proposition 16.6.9. Every matrix $A \in M_n(\mathbb{C})$ is similar to a triangular matrix.
Chapter 17

(\mathbb{F}) Block Matrices (optional)

17.1 Block matrix basics

Definition 17.1.1 (Block matrix). We sometimes write matrices as block matrices, where each entry actually represents a matrix.

Example 17.1.2. The matrix

$$ A = \begin{pmatrix} 1 & 2 & -3 & 4 \\ 2 & 1 & 6 & -1 \\ 0 & -3 & -1 & 2 \end{pmatrix} $$

may be symbolically written as the block matrix

$$ A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} $$

where $A_{11} = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$, $A_{12} = \begin{pmatrix} -3 \\ 6 \\ -1 \end{pmatrix}$, $A_{21} = (0, -3)$, and $A_{22} = (-1, 2)$.

Definition 17.1.3 (Block-diagonal matrix). A square matrix A is said to be a block-diagonal matrix if it can be written in the form

$$ A = \begin{pmatrix} A_1 & 0 & \cdots & 0 \\ 0 & A_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & A_k \end{pmatrix} $$

where the diagonal blocks A_i are square matrices. In this case, we say that A is the diagonal sum of the matrices A_1, \ldots, A_k.
Example 17.1.4. The matrix

\[
A = \begin{pmatrix}
1 & 2 & 0 & 0 & 0 & 0 \\
-3 & 7 & 0 & 0 & 0 & 0 \\
0 & 0 & 6 & 0 & 0 & 0 \\
0 & 0 & 0 & 4 & 6 & 0 \\
0 & 0 & 0 & 2 & -1 & 3 \\
0 & 0 & 0 & 3 & 2 & 5
\end{pmatrix}
\]

is a block-diagonal matrix. We may write \(A = \begin{pmatrix} A_1 & 0 & 0 \\ 0 & A_2 & 0 \\ 0 & 0 & A_3 \end{pmatrix} \) where \(A_1 = \begin{pmatrix} 1 & 2 \\ -3 & 7 \end{pmatrix} \), \(A_2 = (6) \), and \(A_3 = \begin{pmatrix} 4 & 6 & 0 \\ 2 & -1 & 3 \\ 3 & 2 & 5 \end{pmatrix} \).

Note that the blocks need not be of the same size.

Definition 17.1.5 (Block-triangular matrix). A square matrix \(A \) is said to be a **block-triangular matrix** if it can be written in the form

\[
A = \begin{pmatrix} A_{11} & A_{12} & \cdots & A_{1k} \\ A_{21} & A_{22} & \cdots & A_{2k} \\ \vdots & \vdots & \ddots & \vdots \\ A_{k1} & A_{k2} & \cdots & A_{kk} \end{pmatrix}
\]

for blocks \(A_{ij} \), where the diagonal blocks \(A_{ii} \) are square matrices.

Exercise 17.1.6. Show that block matrices multiply in the same way as matrices. More precisely, suppose that \(A = (A_{ij}) \) and \(B = (B_{jk}) \) are block matrices where \(A_{ij} \in \mathbb{F}^{r_i \times s_j} \) and \(B_{jk} \in \mathbb{F}^{s_j \times t_k} \). Let \(C = AB \) (why is this product defined?). Show that \(C = (C_{ik}) \) where \(C_{ik} \in \mathbb{F}^{r_i \times t_k} \) and

\[
C_{jk} = \sum_j A_{ij} B_{jk} \tag{17.1}
\]
17.2 Arithmetic of block-diagonal and block-triangular matrices

Proposition 17.2.1. Let $A = \text{diag}(A_1, \ldots, A_n)$ and $B = \text{diag}(B_1, \ldots, B_n)$ be block-diagonal matrices with blocks of the same size and let $\lambda \in \mathbb{F}$. Then

\[
A + B = \text{diag}(A_1 + B_1, \ldots, A_n + B_n) \quad (17.2)
\]
\[
\lambda A = \text{diag}(\lambda A_1, \ldots, \lambda A_n) \quad (17.3)
\]
\[
AB = \text{diag}(A_1 B_1, \ldots, A_n B_n) . \quad (17.4)
\]

Proposition 17.2.2. Let $A = \text{diag}(A_1, \ldots, A_n)$ be a block-diagonal matrix. Then $A^k = \text{diag} \left(A_1^k, \ldots, A_n^k \right)$ for all k.

Proposition 17.2.3. Let $f \in \mathbb{F}[t]$ be a polynomial and let $A = \text{diag}(A_1, \ldots, A_n)$ be a block-diagonal matrix. Then

\[
f(A) = \text{diag}(f(A_1), \ldots, f(A_n)) . \quad (17.5)
\]

In our discussion of the arithmetic block-triangular matrices, we are interested only in the block-diagonal entries.

Proposition 17.2.4. Let

\[
A = \begin{pmatrix}
A_1 & & \\
& A_2 & \\
& & & \ddots \\
& & & & A_n \\
\end{pmatrix}
\]

and

\[
B = \begin{pmatrix}
B_1 & & \\
& B_2 & \\
& & & \ddots \\
& & & & B_n \\
\end{pmatrix}
\]
be block-upper triangular matrices with blocks of the same size and let $\lambda \in \mathbb{F}$. Then

$$A + B = \begin{pmatrix} A_1 + B_1 & * \\ A_2 + B_2 & \cdots \\ 0 & \cdots & A_n + B_n \end{pmatrix}$$ (17.6)

$$\lambda A = \begin{pmatrix} \lambda A_1 & * \\ \lambda A_2 & \cdots \\ 0 & \cdots & \lambda A_n \end{pmatrix}$$ (17.7)

$$AB = \begin{pmatrix} A_1 B_1 & * \\ A_2 B_2 & \cdots \\ 0 & \cdots & A_n B_n \end{pmatrix}$$ (17.8)

Proposition 17.2.5. Let A be as in Prop. 17.2.4. Then

$$A^k = \begin{pmatrix} A_1^k & * \\ A_2^k & \cdots \\ 0 & \cdots & A_n^k \end{pmatrix}$$ (17.9)

for all k.

Proposition 17.2.6. Let $f \in \mathbb{F}[t]$ be a polynomial and let A be as in Prop. 17.2.4. Then

$$f(A) = \begin{pmatrix} f(A_1) & * \\ f(A_2) & \cdots \\ 0 & \cdots & f(A_n) \end{pmatrix}$$ (17.10)
Chapter 18

(\(\mathbb{F}\)) Minimal Polynomials of Matrices and Linear Transformations (optional)

18.1 The minimal polynomial

All matrices in this section are square.

In Section 8.5 we defined what it means to plug a matrix into a polynomial (\(\mathbb{F}\) Def. 2.3.3).

Definition 18.1.1 (Annihilation). Let \(f \in \mathbb{F}[t]\). We say that \(f\) annihilates the matrix \(A \in M_n(\mathbb{F})\) if \(f(A) = 0\).

Exercise 18.1.2. Let \(A\) be a matrix. Prove, without using the Cayley-Hamilton Theorem, that for every matrix there is a nonzero polynomial that annihilates it, i.e., for every matrix \(A\) there is a nonzero polynomial \(f\) such that \(f(A) = 0\). Show such a polynomial of degree at most \(n^2\) exists.

Definition 18.1.3 (Minimal polynomial). Let \(A \in M_n(\mathbb{F})\). The polynomial \(f \in \mathbb{F}[t]\) is a minimal polynomial of \(A\) if \(f\) is a nonzero polynomial of lowest degree that annihilates \(A\).

Example 18.1.4. The polynomial \(t - 1\) is a minimal polynomial of the \(n \times n\) identity matrix.

Exercise 18.1.5. Let \(A\) be the diagonal matrix \(\text{diag}(3, 3, 7, 7, 7)\), i.e.,

\[
A = \begin{pmatrix}
3 & 0 & & & \\
3 & 7 & & & \\
0 & 7 & & & \\
& & & & \\
& & & &
\end{pmatrix}.
\]
Find a minimal polynomial for A. Compare your answer to the characteristic polynomial f_A. Recall (Prop. 2.3.4) that for all $f \in \mathbb{F}[t]$, we have

$$f(\text{diag}(\lambda_1, \ldots, \lambda_n)) = \text{diag}(f(\lambda_1), \ldots, f(\lambda_n)).$$

Proposition 18.1.6. Let $A \in M_n(\mathbb{F})$ and let m be a minimal polynomial of A. Then for all $g \in \mathbb{F}[t]$, we have $g(A) = 0$ if and only if $m | g$.

Corollary 18.1.7. Let $A \in M_n(\mathbb{F})$. Then the minimal polynomial of A is unique up to nonzero scalar factors.

Convention 18.1.8. When discussing “the” minimal polynomial of a matrix, we refer to the unique monic minimal polynomial, denoted m_A.

Corollary 18.1.9 (Cayley-Hamilton restated). The minimal polynomial of a matrix divides its characteristic polynomial.

Corollary 18.1.10. Let $A \in M_n(\mathbb{F})$. Then $\deg m_A \leq n$.

Example 18.1.11. $m_I = t - 1$.

Exercise 18.1.12. Let $A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$. Prove $m_A = (t - 1)^2$.

Exercise 18.1.13. Find two 2×2 matrices with the same characteristic polynomial but different minimal polynomials.

Exercise 18.1.14. Let

$$A = \text{diag}(\lambda_1, \ldots, \lambda_1, \lambda_2, \ldots, \lambda_2, \ldots, \lambda_k, \ldots, \lambda_k)$$

where the λ_i are distinct. Prove that

$$m_A = \prod_{i=1}^{k} (t - \lambda_i).$$ \hspace{1cm} \text{(18.1)}$$

Exercise 18.1.15. Let A be a block-diagonal matrix, say $A = \begin{pmatrix} A_1 & 0 \\ 0 & A_2 \\ & \ddots \\ & & \ddots \\ & & & A_k \end{pmatrix}$. Give a simple expression of m_A in terms of the m_{A_i}. $m_A = \text{lcm} m_{A_i}$.
Proposition 18.1.16. Let \(A \in M_n(\mathbb{F}) \). Then \(\lambda \) is an eigenvalue of \(A \) if and only if \(m_A(\lambda) = 0 \).

Exercise 18.1.17. Prove: similar matrices have the same minimal polynomial, i.e., if \(A \sim B \) then \(m_A = m_B \).

Proposition 18.1.18. Let \(A \in M_n(\mathbb{C}) \). If \(m_A \) does not have multiple roots then \(A \) is diagonalizable.

In fact, this condition is necessary and sufficient (Theorem 18.2.20).

18.2 Minimal polynomials of linear transformations

In this section, \(V \) is an \(n \)-dimensional vector space over \(\mathbb{F} \).

In Section 16.4.1 we defined what it means to plug a linear transformation into a polynomial (Def. 16.4.36).

Exercise 18.2.1. Define what it means for the polynomial \(f \in \mathbb{F}[t] \) to annihilate the linear transformation \(\varphi : V \to V \).

Exercise 18.2.2. Let \(\varphi : V \to V \) be a linear transformation. Prove that there is a nonzero polynomial that annihilates \(\varphi \).

Exercise 18.2.3. Define a minimal polynomial of a linear transformation \(\varphi : V \to V \).

Example 18.2.4. The polynomial \(t - 1 \) is a minimal polynomial of the identity transformation.

Proposition 18.2.5. Let \(\varphi : V \to V \) be a linear transformation and let \(m \) be a minimal polynomial of \(\varphi \). Then for all \(g \in \mathbb{F}[t] \), we have \(g(\varphi) = 0 \) if and only if \(m \mid g \).

Corollary 18.2.6. Let \(\varphi : V \to V \) be a linear transformation. Then the minimal polynomial of \(\varphi \) is unique up to nonzero scalar factors.

Convention 18.2.7. When discussing “the” minimal polynomial of a linear transformation, we shall refer to the unique monic minimal polynomial, denoted \(m_\varphi \).

Proposition 18.2.8. Let \(\varphi : V \to V \) be a linear transformation. Then \(\deg m_\varphi \leq n \).

Example 18.2.9. \(m_{\text{id}} = t - 1 \).
Exercise 18.2.10. Let \(\varphi : V \rightarrow V \) be a linear transformation with an eigenbasis. Prove: all roots of \(m_\varphi \) belong to \(\mathbb{F} \) and \(m_\varphi \) has no multiple roots. Let \(b_1, \ldots, b_n \) be an eigenbasis, and let \(\varphi(b_i) = \lambda_i b_i \) for each \(i \). Find \(m_\varphi \) in terms of the \(\lambda_i \).

Proposition 18.2.11. Let \(\varphi : V \rightarrow V \) be a linear transformation. Then \(\lambda \) is an eigenvalue of \(\varphi \) if and only if \(m_\varphi(\lambda) = 0 \).

Exercise 18.2.12 (Consistency of translation).

(a) Let \(b \) be a basis of \(V \) and let \(\varphi : V \rightarrow V \) be a linear transformation. Let \(A = [\varphi]_b \). Show that \(m_\varphi = m_A \).

(b) Use this to give a second proof of Ex. 18.1.17 (similar matrices have the same minimal polynomial).

Recall the definition of an invariant subspace of the linear transformation \(\varphi \) ([16.4.21]).

Definition 18.2.13 (Minimal invariant subspace). Let \(\varphi : V \rightarrow V \) and let \(W \leq V \). We say that \(W \) is a minimal \(\varphi \)-invariant subspace if \(W \) is a \(\varphi \)-invariant subspace, \(W \neq \{0\} \), and the only \(\varphi \)-invariant subspaces of \(W \) are \(W \) and \(\{0\} \).

Lemma 18.2.14. Let \(\varphi : V \rightarrow V \) be a linear transformation and let \(W \leq V \) be a \(\varphi \)-invariant subspace. Let \(\varphi_W \) denote the restriction of \(\varphi \) to \(W \). Then \(m_{\varphi_W} | m_\varphi \).

Proposition 18.2.15. Let \(V = W_1 \oplus \cdots \oplus W_k \) where the \(W_i \) are \(\varphi \)-invariant subspaces and \(\oplus \) denotes their direct sum ([15.5.1]). If \(m_i \) denotes the minimal polynomial of \(\varphi_{W_i} \) then

\[
m_\varphi = \text{lcm}_i m_i .
\]

(a) Prove this without using Ex. 18.1.15, i.e., without translating the problem to matrices.

(b) Prove this using Ex. 18.1.15.

Theorem 18.2.16. Let \(V \) be a finite-dimensional vector space and let \(\varphi : V \rightarrow V \) be a linear transformation. If \(m_\varphi \) has an irreducible factor \(f \) of degree \(d \), then there is a \(d \)-dimensional minimal invariant subspace \(W \) such that

\[
m_{\varphi_W} = f_{\varphi_W} = f .
\]

\[\Box\]
Corollary 18.2.17. Let V be a finite-dimensional vector space over \mathbb{R} and let $\varphi : V \to V$ be a linear transformation. Then V has a φ-invariant subspace of dimension 1 or 2.

Proposition 18.2.18. Let $\varphi : V \to V$ be a linear transformation. Let $f | m_\varphi$ and let $W = \ker f(\varphi)$. Then

(a) $m_{\varphi W} | f$;

(b) if $\gcd \left(f, \frac{m_\varphi}{f} \right) = 1$, then $m_{\varphi W} = f$.

(a) $f(\varphi W) = f(\varphi)_W = 0$.

(b) $m_\varphi = \operatorname{lcm}(m_{\varphi W}, m_{\varphi W'})$ where $W' = \ker \frac{m_\varphi}{f}(\varphi)$, i.e., $V = W \oplus W'$.

Proposition 18.2.19. Let $\varphi : V \to V$ be a linear transformation and let $f, g \in \mathbb{F}[t]$ with $m_\varphi = f \cdot g$ and $\gcd(f, g) = 1$. Then

$$\mathbb{F}^n = (\ker f(\varphi)) \oplus (\ker g(\varphi))$$

(18.4)

Theorem 18.2.20. Let $A \in M_n(\mathbb{C})$. Then A is diagonalizable if and only if m_A does not have multiple roots over \mathbb{C}.

◊

Theorem 18.2.21. Let $\mathbb{F} = \mathbb{C}$ and let $\varphi : V \to V$ be a linear transformation. Then φ has an eigenbasis if and only if m_φ does not have multiple roots.

◊

The next theorem represents a step toward canonical forms of matrices.

Theorem 18.2.22. Let $A \in M_n(\mathbb{F})$. Then there is a matrix $B \in M_n(\mathbb{F})$ such that $A \sim B$ and B is the diagonal sum of matrices whose minimal polynomials are powers of irreducible polynomials.

◊
Chapter 19

Euclidean Spaces

19.1 Inner products

Let V be a vector space over \mathbb{R}.

In Section 1.4, we introduced the standard dot product of \mathbb{R}^n (Def. 1.4.1). We now generalize this to the notion of an inner product over a real vector space V.

Definition 19.1.1 (Euclidean space). A Euclidean space V is a vector space over \mathbb{R} endowed with an inner product $\langle \cdot, \cdot \rangle : V \times V \rightarrow \mathbb{R}$ which is positive definite, symmetric, and bilinear. That is, for all $u, v, w \in V$ and $\alpha \in \mathbb{R}$, we have

(a) $\langle v, v \rangle \geq 0$, with equality holding if and only if $v = 0$ (positive definite)

(b) $\langle v, w \rangle = \langle w, v \rangle$ (symmetric)

(c) $\langle v, w + \alpha u \rangle = \langle v, w \rangle + \alpha \langle v, u \rangle$ and $\langle v + \alpha u, w \rangle = \langle v, w \rangle + \alpha \langle u, w \rangle$ (bilinear)

Observe that the standard dot product of \mathbb{R}^n that was introduced in Section 1.4 has all of these properties and, in particular, the vector space \mathbb{R}^n endowed with this inner product is a Euclidean space.

Exercise 19.1.2. Let V be a Euclidean space with inner product $\langle \cdot, \cdot \rangle$. Show that for all $v \in V$, we have

$$\langle v, 0 \rangle = \langle 0, v \rangle = 0.$$ (19.1)
Examples 19.1.3. The following vector spaces together with the specified inner products are Euclidean spaces (verify this).

(a) \(V = \mathbb{R}[t], \langle f, g \rangle = \int_{-\infty}^{\infty} f(t)g(t)dt \) where \(\rho(t) \) is a nonnegative continuous function which is not identically 0 and has the property that \(\int_{-\infty}^{\infty} \rho(t)t^{2n}dt < \infty \) for all nonnegative integers \(n \). (such a function \(\rho \) is called a weight function)

(b) \(V = C[0,1] \) (the space of continuous functions \(f : [0,1] \to \mathbb{R} \)) with \(\langle f, g \rangle = \int_0^1 f(t)g(t)dt \)

(c) \(V = \mathbb{R}^{k \times n} \), \(\langle A, B \rangle = \text{Tr} (AB^T) \)

(d) \(V = \mathbb{R}^n \), and \(\langle x, y \rangle = x^T Ay \) where \(A \in M_n(\mathbb{R}) \) is a symmetric positive definite (Def. 10.2.3) \(n \times n \) real matrix

Notice that the same vector space can be endowed with different inner products (for example, different weight functions for the inner product on \(\mathbb{R}[t] \)), so that there are many Euclidean spaces with the same underlying vector space.

Because they have inner products, Euclidean spaces carry with them the notion of distance (“norm”) and the notion of two vectors being perpendicular (“orthogonality”). Just as inner products generalize the standard dot product in \(\mathbb{R}^n \), these concepts generalize the definitions of norm and orthogonality presented for \(\mathbb{R}^n \) (with respect to the standard dot product) in Section 1.4.

Definition 19.1.4 (Norm). Let \(V \) be a Euclidean space, and let \(v \in V \). Then the norm of \(v \), denoted \(\|v\| \), is

\[
\|v\| := \sqrt{\langle v, v \rangle}.
\]

The notion of a norm allows us to easily define the distance between two vectors.

Definition 19.1.5. Let \(V \) be a Euclidean space, and let \(v, w \in V \). Then the distance between the vectors \(v \) and \(w \), denoted \(d(v, w) \), is

\[
d(v, w) := \|v - w\|.
\]

The following two theorems show that distance in Euclidean spaces behaves the way we are used to it behaving in \(\mathbb{R}^n \).

Theorem 19.1.6 (Cauchy-Schwarz inequality). Let \(V \) be a Euclidean space, and let \(v, w \in V \). Then

\[
|\langle v, w \rangle| \leq \|v\| \cdot \|w\|.
\]

\(\diamond \)
Theorem 19.1.7 (Triangle inequality). Let V be a Euclidean space, and let $v, w \in V$. Then

$$\|v + w\| \leq \|v\| + \|w\|.$$ \hfill (19.5)

Exercise 19.1.8. Show that the triangle inequality is equivalent to the Cauchy-Schwarz inequality.

Definition 19.1.9 (Angle between vectors). Let V be a Euclidean space, and let $v, w \in V$. The angle θ between v and w is defined by

$$\theta := \arccos \frac{\langle v, w \rangle}{\|v\| \|w\|}. \hfill (19.6)$$

Observe that from the Cauchy-Schwarz inequality, we have (for $v, w \neq 0$) that

$$-1 \leq \frac{\langle v, w \rangle}{\|v\| \|w\|} \leq 1$$ \hfill (19.7)

so this definition is valid, as this term is always in the domain of arccos.

Definition 19.1.10 (Orthogonality). Let V be a Euclidean space, and let $v, w \in V$. Then v and w are orthogonal (denoted $v \perp w$) if $\langle v, w \rangle = 0$. A set of vectors $S = \{v_1, \ldots, v_n\}$ is said to be orthogonal if $v_i \perp v_j$ whenever $i \neq j$.

Observe that two vectors are orthogonal when the angle between them is $\pi/2$. This agrees with the notion of orthogonality being a generalization of perpendicularity.

Exercise 19.1.11. Let V be a Euclidean space. What vectors are orthogonal to every vector?

Exercise 19.1.12. Let $V = C[0, 2\pi]$ be the space of continuous functions $f : [0, 2\pi] \to \mathbb{R}$, endowed with the inner product

$$\langle f, g \rangle = \int_0^{2\pi} f(t)g(t)dt. \hfill (19.8)$$

Show that the set $\{1, \cos t, \sin t, \cos(2t), \sin(2t), \cos(3t), \ldots\}$ is an orthogonal set in this Euclidean space.

Definition 19.1.13 (Orthogonal system). An orthogonal system in a Euclidean space V is a list of (pairwise) orthogonal nonzero vectors in V.
Proposition 19.1.14. Every orthogonal system in a Euclidean space is linearly independent.

Definition 19.1.15 (Gram matrix). Let V be a Euclidean space, and let $v_1, \ldots, v_k \in V$. The Gram matrix of v_1, \ldots, v_k is the $k \times k$ matrix whose (i, j) entry is $\langle v_i, v_j \rangle$, that is,

$$G = G(v_1, \ldots, v_k) := \left(\langle v_i, v_j \rangle \right)_{i,j=1}^k .$$

(19.9)

Exercise 19.1.16. Let V be a Euclidean space. Show that the vectors $v_1, \ldots, v_k \in V$ are linearly independent if and only if $\det G(v_1, \ldots, v_k) \neq 0$.

Exercise 19.1.17. Let V be a Euclidean space and let $v_1, \ldots, v_k \in V$. Show

$$\text{rk}(v_1, \ldots, v_k) = \text{rk}(G(v_1, \ldots, v_k)) .$$

(19.10)

Definition 19.1.18 (Orthonormal system). An orthonormal system in a Euclidean space V is a list of (pairwise) orthogonal vectors in V, all of which have unit norm. So (v_1, v_2, \ldots) is an orthonormal system if $\langle v_i, v_j \rangle = \delta_{ij}$ for all i, j.

In the case of finite-dimensional Euclidean spaces, we are particularly interested in orthonormal bases.

Definition 19.1.19 (Orthonormal basis). Let V be a Euclidean space. A list (v_1, \ldots, v_n) is an orthonormal basis (ONB) of V if it is a basis and $\{v_1, \ldots, v_n\}$ is an orthonormal set.

In the next section, not only will we show that every finite-dimensional Euclidean space has an orthonormal basis, but we will, moreover, demonstrate an algorithm for transforming any basis into an orthonormal basis.

Proposition 19.1.20. Let V be a Euclidean space with orthonormal basis b. Then for all $v, w \in V$,

$$\langle v, w \rangle = [v]^T_b [w]^T_b .$$

(19.11)

Proposition 19.1.21. Let V be a Euclidean space. Every linear form $f : V \to \mathbb{R}$ (Def. 15.1.6) can be written as

$$f(x) = \langle a, x \rangle$$

(19.12)

for a unique $a \in V$.

19.2 Gram-Schmidt orthogonalization

The main result of this section is the following theorem.

Theorem 19.2.1. Every finite-dimensional Euclidean space has an orthonormal basis. In fact, every orthonormal system extends to an orthonormal basis.

Before we prove this theorem, we will first develop *Gram-Schmidt orthogonalization*, an online procedure that takes a list of vectors as input and produces a list of orthogonal vectors satisfying certain conditions. We formalize this below.

Theorem 19.2.2 (Gram-Schmidt orthogonalization). Let V be a Euclidean space and let $v_1, \ldots, v_k \in V$. For $i = 1, \ldots, k$, let $U_i = \text{span}(v_1, \ldots, v_i)$. Then there exist vectors e_1, \ldots, e_k such that

(a) For all $j \geq 1$, we have $v_j - e_j \in U_{j-1}$

(b) The e_j are pairwise orthogonal

Moreover, the e_j are uniquely determined.

Note that $U_0 = \text{span}(\emptyset) = \{0\}$.

Let $GS(k)$ denote the statement of Theorem 19.2.2 for a particular value of k. We prove the Theorem 19.2.2 by induction on k. The inductive step is based on the following lemma.

Lemma 19.2.3. Assume $GS(k)$ holds. Then, for all $j \leq k$, we have $\text{span}(e_1, \ldots, e_j) = U_j$.

Exercise 19.2.4. Prove $GS(1)$.

Exercise 19.2.5. Let $k \geq 2$ and assume $GS(k - 1)$ is true. Look for e_k in the form

$$e_k = v_k - \sum_{i=1}^{k-1} \alpha_i e_i$$ \hspace{1cm} (19.13)

Prove that the only possible vector e_k satisfying the conditions of $GS(k)$ is the e_k for which

$$\alpha_i = \frac{\langle v_i, e_i \rangle}{\|e_i\|^2}$$ \hspace{1cm} (19.14)

except in the case where $e_i = 0$ (in that case, α_i can be chosen arbitrarily).
19.3. ISOMETRIES AND ORTHOGONALITY

Exercise 19.2.6. Prove that e_k as constructed in the previous exercise satisfies GS(k).

This completes the proof of Theorem 19.2.2.

Proposition 19.2.7. $e_i = 0$ if and only if $v_i \in \text{span}(v_1, \ldots, v_{i-1})$.

Proposition 19.2.8. The Gram-Schmidt procedure preserves linear independence.

Proposition 19.2.9. If (v_1, \ldots, v_k) is a basis of V, then so is (e_1, \ldots, e_k).

Exercise 19.2.10. Let $e = (e_1, \ldots, e_n)$ be an orthogonal basis of V. From e, construct an orthonormal basis $e' = (e'_1, \ldots, e'_n)$ of V.

Exercise 19.2.11. Conclude that every finite-dimensional Euclidean space has an orthonormal basis.

Numerical exercise 19.2.12. Apply the Gram-Schmidt procedure to find an orthonormal basis for each of the following Euclidean spaces V from the basis b. Self-check: once you have applied Gram-Schmidt, verify that you have obtained an orthonormal set of vectors.

(a) $V = \mathbb{R}^3$ with the standard dot product, $b = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$

(b) $V = P_2[\mathbb{R}]$, with $\langle f, g \rangle = \int_{-\infty}^{\infty} e^{-t^2/2} f(t)g(t)dt$, and $b = (1, t, t^2)$ (Hermite polynomials)

(c) $V = P_2[\mathbb{R}]$, with $\langle f, g \rangle = \int_{-\infty}^{\infty} \frac{1}{\sqrt{1-t^2}} f(t)g(t)dt$, and $b = (1, t, t^2)$ (Chebyshev polynomials of the first kind)

(d) $V = P_2[\mathbb{R}]$, with $\langle f, g \rangle = \int_{-\infty}^{\infty} \sqrt{1-t^2} f(t)g(t)dt$, and $b = (1, t, t^2)$ (Chebyshev polynomials of the second kind)

19.3 Isometries and orthogonality

Definition 19.3.1 (Isometry). Let V and W be Euclidean spaces. Then an isometry $f : V \rightarrow W$ is a bijection that preserves inner product, i.e., for all $v_1, v_2 \in V$, we have

$$\langle v_1, v_2 \rangle_V = \langle f(v_1), f(v_2) \rangle_W$$

(19.15)

The Euclidean spaces V and W are isometric if there is an isometry between them.
Theorem 19.3.2. If V and W are finite dimensional Euclidean spaces, then they are isometric if and only if $\dim V = \dim W$.

Proposition 19.3.3. Let V and W be Euclidean spaces. Then $\varphi : V \to W$ is an isometry if and only if it maps an orthonormal basis of V to an orthonormal basis of W.

Proposition 19.3.4. Let $\varphi : V \to W$ be an isomorphism that preserves orthogonality (so $v \perp w$ if and only if $\varphi(v) \perp \varphi(w)$). Show that there is an isometry ψ and a nonzero scalar λ such that $\varphi = \lambda \psi$.

The geometric notion of congruence is captured by the concept of orthogonal transformations.

Definition 19.3.5 (Orthogonal transformation). Let V be a Euclidean space. A linear transformation $\varphi : V \to V$ is called an orthogonal transformation if it is an isometry. The set of orthogonal transformations of V is denoted by $O(V)$, and is called the orthogonal group of V.

Proposition 19.3.6. The set $O(V)$ is a group (IIV Def. 14.2.1) under composition.

Exercise 19.3.7. The linear transformation $\varphi : V \to V$ is orthogonal if and only if φ preserves the norm, i.e., for all $v \in \mathbb{C}^n$, we have $\|\varphi v\| = \|v\|$.

Theorem 19.3.8. Let $\varphi \in O(V)$. Then all eigenvalues of φ are ± 1.

Proposition 19.3.9. Let V be a Euclidean space and let $e = (e_1, \ldots, e_n)$ be an orthonormal basis of V. Then $\varphi : V \to V$ is an orthogonal transformation if and only if $(\varphi(e_1), \ldots, \varphi(e_n))$ is an orthonormal basis.

Proposition 19.3.10 (Consistency of translation). Let V be a Euclidean space with orthonormal basis b, and let $\varphi : V \to V$ be a linear transformation. Then φ is orthogonal if and only if $[\varphi]_b$ is an orthogonal matrix (IIV Def. 9.1.1).

Definition 19.3.11. Let V be a Euclidean space and let $S, T \subseteq V$. For $v \in V$, we say that v is orthogonal to S (notation: $v \perp S$) if for all $s \in S$, we have $v \perp s$. Moreover, we say that S is orthogonal to T (notation: $S \perp T$) if $s \perp t$ for all $s \in S$ and $t \in T$.

Definition 19.3.12. Let V be a Euclidean space and let $S \subseteq V$. Then S^\perp ("S perp") is the set of vectors orthogonal to S, i.e., $S^\perp := \{v \in V \mid v \perp S\}$. (19.16)

Proposition 19.3.13. For all subsets $S \subseteq V$, we have $S^\perp \subseteq V$.

Proposition 19.3.14. Let \(S \subseteq V \). Then \(S \subseteq (S^\perp)^\perp \).

Exercise 19.3.15. Verify

(a) \(\{0\}^\perp = V \)

(b) \(\emptyset^\perp = V \)

(c) \(V^\perp = \{0\} \)

The next theorem says that the direct sum (Def. 15.5.1) of a subspace and its perp is the entire space.

Theorem 19.3.16. If \(\dim V < \infty \) and \(W \leq V \), then \(V = W \oplus W^\perp \). ♦

The proof of this theorem requires the following lemma.

Lemma 19.3.17. Let \(V \) be a vector space with \(\dim V = n \), and let \(W \leq V \). Then

\[
\dim W^\perp = n - \dim W .
\] (19.17) ♦

Proposition 19.3.18. Let \(V \) be a finite-dimensional Euclidean space and let \(S \subseteq V \). Then

\[
(S^\perp)^\perp = \text{span}(S) .
\] (19.18)

Proposition 19.3.19. Let \(U_1, \ldots, U_k \) be pairwise orthogonal subspaces (i.e., \(U_i \perp U_j \) whenever \(i \neq j \)). Then

\[
\sum_{i=1}^{k} U_i = \bigoplus_{i=1}^{k} U_i .
\]

We now study the linear map analogue of the transpose of a matrix, known as the \textit{adjoint} of the linear map.

Theorem 19.3.20. Let \(V \) and \(W \) be Euclidean spaces, and let \(\varphi : V \to W \) be a linear map. Then there exists a unique linear map \(\psi : W \to V \) such that for all \(v \in V \) and \(w \in W \), we have

\[
\langle \varphi v, w \rangle = \langle v, \psi w \rangle .
\] (19.19) ♦
Chapter 19. Euclidean Spaces

Note that the inner product above refers to inner products in two different spaces. To be more specific, we should have written

$$\langle \varphi v, w \rangle_W = \langle v, \psi w \rangle_V .$$

(19.20)

Definition 19.3.21. The linear map ψ whose existence is guaranteed by Theorem [19.3.20] is called the adjoint of φ and is denoted φ^*. So for all $v \in V$ and $w \in W$, we have

$$\langle \varphi v, w \rangle = \langle v, \varphi^* w \rangle .$$

(19.21)

The next exercise shows the relationship between the coordinatization of φ and of φ^*. The reason we denote the adjoint of the linear map φ by φ^* rather than by φ^T will become clear in Section [20.4].

Proposition 19.3.22. Let V, W, and φ be as in the statement of Theorem [19.3.20]. Let b_1 be an orthonormal basis of V and let b_2 be an orthonormal basis of W. Then

$$[\varphi^*]_{b_2, b_1} = [\varphi]^T_{b_1, b_2} .$$

(19.22)

19.4 First proof of the Spectral Theorem

We first stated the Spectral Theorem for real symmetric matrices in Chapter [10]. We now restate the theorem in the context of Euclidean spaces and break its proof into a series of exercises.

Let V be a Euclidean space.

Definition 19.4.1 (Symmetric linear transformation). Let $\varphi : V \to V$ be a linear transformation. Then φ is symmetric if, for all $v, w \in V$, we have

$$\langle v, \varphi(w) \rangle = \langle \varphi(v), w \rangle .$$

(19.23)

Proposition 19.4.2. Let $\varphi : V \to V$ be a symmetric transformation, and let v_1, \ldots, v_k be eigenvectors of φ with distinct eigenvalues. Then $v_i \perp v_j$ whenever $i \neq j$.

Proposition 19.4.3. Let b be an orthonormal basis of the finite-dimensional Euclidean space V, and let $\varphi : V \to V$ be a linear transformation. Then φ is symmetric if and only if the matrix $[\varphi]_b$ is symmetric.

In particular, this proposition establishes the equivalence of Theorem [10.1.1] and Theorem [19.4.4]. The main theorem of this section is the Spectral Theorem.
Theorem 19.4.4 (Spectral Theorem). Let V be a finite-dimensional Euclidean space and let $\varphi : V \rightarrow V$ be a symmetric linear transformation. Then φ has an orthonormal eigenbasis. ♦

Proposition 19.4.5. Let φ be a symmetric linear transformation of the Euclidean space V, and let $W \leq V$. If W is φ-invariant (Def. 16.4.21) then W^\perp is φ-invariant.

Lemma 19.4.6. Let $\varphi : V \rightarrow V$ be a symmetric linear transformation and let W be a φ-invariant subspace of V. Then the restriction of φ to W is also symmetric. ♦

The heart of the proof of the Spectral Theorem is the following lemma.

Main Lemma 19.4.7. Let φ be a symmetric linear transformation of a Euclidean space of degree ≥ 1. Then φ has an eigenvector. ☐

Exercise 19.4.8. Assuming Lemma 19.4.7, prove the Spectral Theorem by induction on $\dim V$.

Before proving the Main Lemma, we digress briefly into analysis.

Definition 19.4.9 (Convergence). Let V be a Euclidean space and let $v = (v_1, v_2, v_3, \ldots)$ be a sequence of vectors in V. We say that the sequence v converges to the vector v if $\lim_{i \rightarrow \infty} \|v_i - v\| = 0$, that is, if for all $\varepsilon > 0$ there exists $N \in \mathbb{Z}$ such that $\|v_i - v\| < \varepsilon$ for all $i > N$.

Definition 19.4.10 (Open set). Let $S \subseteq \mathbb{R}^n$. We say that S is open if, for every $v \in S$, there exists $\varepsilon > 0$ such that the set $\{w \in \mathbb{R}^n \mid \|v - w\| < \varepsilon\}$ is a subset of S.

Definition 19.4.11 (Closed set). A set $S \subseteq V$ is closed if, whenever there is a sequence of vectors $v_1, v_2, v_3, \cdots \in S$ that converges to a vector $v \in V$, we have $v \in S$.

Definition 19.4.12 (Bounded set). A set $S \subseteq V$ is bounded if there is some $v \in V$ and $r \in \mathbb{R}$ such that for all $w \in V$, we have $d(v, w) < r$ (Def. 19.1.5 $d(v, w) = \|v - w\|$).

Definition 19.4.13 (Compactness). Let V be a finite-dimensional Euclidean space, and let $S \subseteq V$. Then S is compact if it is closed and bounded.

The reader familiar with topology may recognize this not as the standard definition of compactness in a general metric space, but rather as an equivalent definition for finite-dimensional Euclidean spaces that arises as a consequence of the Heine–Borel Theorem.
CHAPTER 19. EUCLIDEAN SPACES

Theorem 19.4.15. Let V be a Euclidean space and let $S \subseteq V$ be a compact and nonempty subset. If $f : S \to \mathbb{R}$ is continuous, then f attains its maximum and its minimum. ♦

Definition 19.4.16 (Rayleigh quotient for symmetric linear transformations). Let $\varphi : V \to V$ be a symmetric linear transformation. Then the Rayleigh quotient of φ is the function $R_\varphi : V \setminus \{0\} \to \mathbb{R}$ defined by

$$ R_\varphi(v) := \frac{\langle v, \varphi(v) \rangle}{\|v\|^2}. $$

(19.24)

Exercise 19.4.17. Let $\varphi : V \to V$ be a symmetric linear transformation, and let $v \in V$ and $\lambda \in \mathbb{R}^\times$. Verify that $R_\varphi(\lambda v) = R_\varphi(v)$.

Proposition 19.4.18. For all linear transformations $\varphi : V \to V$, the Rayleigh quotient R_φ attains its maximum and its minimum.

Exercise 19.4.19. Consider the real function

$$ f(t) = \frac{\alpha + \beta t + \gamma t^2}{\delta + \varepsilon t^2} $$

where $\alpha, \beta, \gamma, \delta, \varepsilon \in \mathbb{R}$ and $\delta^2 + \varepsilon^2 \neq 0$. Suppose that for all $t \in \mathbb{R}$, we have $f(0) \geq f(t)$. Show that $\beta = 0$.

Definition 19.4.20 (arg max). Let S be a set and let $f : S \to \mathbb{R}$ be a function which attains its maximum. Then $\text{arg max } f := \{s_0 \in S \mid f(s_0) \geq f(s) \text{ for all } s \in S\}$.

Convention 19.4.21. Let S be a set and let $f : S \to \mathbb{R}$ be a function which attains its maximum. We often write $\text{arg max } f$ to refer to any (arbitrarily chosen) element of the set $\text{arg max } f$, rather than the set itself.

Proposition 19.4.22. Let φ be a symmetric linear transformation of the Euclidean space V, and let $v_0 = \text{arg max } R_\varphi(v)$. Then v_0 is an eigenvector of φ.

Prop. 19.4.22 completes the proof of the Main Lemma and thereby the proof of the Spectral Theorem.

Proposition 19.4.23. If two symmetric matrices are similar then they are orthogonally similar.
Chapter 20

Hermitian Spaces

In Chapter 19, we discussed Euclidean spaces, whose underlying vector spaces were real. We now generalize this to the notion of Hermitian spaces, whose underlying vector spaces are complex.

20.1 Hermitian spaces

Definition 20.1.1 (Sesquilinear forms). Let V be a vector space over \mathbb{C}. The function $f : V \times V \to \mathbb{C}$ is a sesquilinear form if the following four conditions are met.

(a) $f(v, w_1 + w_2) = f(v, w_1) + f(v, w_2)$ for all $v, w_1, w_2 \in V$,

(b) $f(v_1 + v_2, w) = f(v_1, w) + f(v_2, w)$ for all $v_1, v_2, w \in V$,

(c) $f(v, \lambda w) = \lambda f(v, w)$ for all $v, w \in V$ and $\lambda \in \mathbb{C}$,

(d) $f(\lambda v, w) = \overline{\lambda} f(v, w)$ for all $v, w \in V$ and $\lambda \in \mathbb{C}$, where $\overline{\lambda}$ is the complex conjugate of λ.

Examples 20.1.2. The function $f(v, w) = v^* w$ is a sesquilinear form over \mathbb{C}^n. More generally, for any $A \in M_n(\mathbb{C})$,

$$f(v, w) = v^* Aw \quad (20.1)$$

is sesquilinear.

Exercise 20.1.3. Let V be a vector space over \mathbb{C} and let $f : V \times V \to \mathbb{C}$ be a sesquilinear form. Show that for all $v \in V$, we have

$$f(v, 0) = f(0, v) = 0 \quad . \quad (20.2)$$
Definition 20.1.4 (Hermitian form). Let \(V \) be a complex vector space. The function \(f : V \times V \to \mathbb{C} \) is Hermitian if for all \(v, w \in V \),
\[
f(v, w) = \overline{f(w, v)}.
\] (20.3)
A sesquilinear form that is Hermitian is called a Hermitian form.

Exercise 20.1.5. For what matrices \(A \in M_n(\mathbb{C}) \) is the sesquilinear form \(f(v, w) = v^* A w \) Hermitian?

Exercise 20.1.6. Show that for Hermitian forms, (b) follows from (a) and (d) follows from (c) in Def. 20.1.1.

Fact 20.1.7. Let \(V \) be a vector space over \(\mathbb{C} \) and let \(f : V \times V \to \mathbb{C} \) be a Hermitian form. Then \(f(v, v) \in \mathbb{R} \) for all \(v \in V \).

Definition 20.1.8. Let \(V \) be a vector space over \(\mathbb{C} \), and let \(f : V \times V \to \mathbb{C} \) be a Hermitian form.

(a) If \(f(v, v) > 0 \) for all \(v \neq 0 \), then \(f \) is positive definite.
(b) If \(f(v, v) \geq 0 \) for all \(v \in V \), then \(f \) is positive semidefinite.
(c) If \(f(v, v) < 0 \) for all \(v \neq 0 \), then \(f \) is negative definite.
(d) If \(f(v, v) \leq 0 \) for all \(v \in V \), then \(f \) is negative semidefinite.
(e) If there exists \(v, w \in V \) such that \(f(v, v) > 0 \) and \(f(w, w) < 0 \), then \(f \) is indefinite.

Exercise 20.1.9. For what \(A \in M_n(\mathbb{C}) \) is \(v^* A w \) positive definite, positive semidefinite, etc.?

Exercise 20.1.10. Let \(V \) be the space of continuous functions \(f : [0, 1] \to \mathbb{C} \), and let \(\rho : [0, 1] \to \mathbb{C} \) be a continuous “weight function.” Define
\[
F(f, g) := \int_0^1 \overline{f(t)} g(t) \rho(t) dt .
\] (20.4)
(a) Show that \(F \) is a sesquilinear form.
(b) Under what conditions on \(\rho \) is \(F \) Hermitian?
(c) Under what conditions on \(\rho \) is \(F \) Hermitian and positive definite?
Exercise 20.1.11. Let \(\mathbf{r} = (\rho_0, \rho_1, \ldots) \) be an infinite sequence of complex numbers. Consider the space \(V \) of infinite sequences \((\alpha_0, \alpha_1, \ldots)\) of complex numbers such that
\[
\sum_{i=0}^{\infty} |\alpha_i|^2 |\rho_i| < \infty. \quad (20.5)
\]
For \(\mathbf{a} = (\alpha_0, \alpha_1, \ldots) \) and \(\mathbf{b} = (\beta_0, \beta_1, \ldots) \), define
\[
F(\mathbf{a}, \mathbf{b}) := \sum_{i=0}^{\infty} \overline{\alpha_i} \beta_i \rho_i. \quad (20.6)
\]
(a) Show that \(F \) is a sesquilinear form.
(b) Under what conditions on \(\mathbf{r} \) is \(F \) Hermitian?
(c) Under what conditions on \(\mathbf{r} \) is \(F \) Hermitian and positive definite?

Definition 20.1.12 (Hermitian space). A Hermitian space is a vector space \(V \) over \(\mathbb{C} \) endowed with a positive definite, Hermitian, sesquilinear inner product \(\langle \cdot, \cdot \rangle : V \times V \to \mathbb{C} \).

Example 20.1.13. The standard example of a (complex) Hermitian space is \(\mathbb{C}^n \) endowed with the standard Hermitian dot product \(\mathbf{v}^\ast \mathbf{w} \) (Def. 12.2.5), that is, \(\langle \mathbf{v}, \mathbf{w} \rangle := \mathbf{v}^\ast \mathbf{w} \).

Note that the standard Hermitian dot product is sesquilinear and positive definite.

Example 20.1.14. Let \(V \) be the space of continuous functions \(f : [0, 1] \to \mathbb{C} \), and define the inner product
\[
\langle f, g \rangle = \int_0^1 \overline{f(t)} g(t) dt.
\]
Then \(V \) endowed with this inner product is a Hermitian space.

Example 20.1.15. The space \(\ell^2(\mathbb{C}) \) of sequences \((\alpha_0, \alpha_1, \ldots)\) of complex numbers such that
\[
\sum_{i=0}^{\infty} |\alpha_i|^2 < \infty \quad (20.7)
\]
endowed with the inner product
\[
\langle \mathbf{a}, \mathbf{b} \rangle = \sum_{i=0}^{\infty} \overline{\alpha_i} \beta_i \quad (20.8)
\]
where \(\underline{a} = (\alpha_0, \alpha_1, \ldots) \) and \(\underline{b} = (\beta_0, \beta_1, \ldots) \) is a Hermitian space. This is one of the standard representations of the complex "separable Hilbert space."

Euclidean spaces generalize the geometric concepts of distance and perpendicularly via the notions of norm and orthogonality, respectively; these are easily extended to complex Hermitian spaces.

Definition 20.1.16 (Norm). Let \(V \) be a Hermitian space, and let \(\mathbf{v} \in V \). Then the norm of \(\mathbf{v} \), denoted \(\| \mathbf{v} \| \), is defined to be

\[
\| \mathbf{v} \| := \sqrt{\langle \mathbf{v}, \mathbf{v} \rangle} .
\]

(20.9)

Just as in Euclidean spaces, the notion of a norm allows us to define the distance between two vectors in a Hermitian space.

Definition 20.1.17. Let \(V \) be a Hermitian space, and let \(\mathbf{v}, \mathbf{w} \in V \). Then the distance between the vectors \(\mathbf{v} \) and \(\mathbf{w} \), denoted \(d(\mathbf{v}, \mathbf{w}) \), is

\[
d(\mathbf{v}, \mathbf{w}) := \| \mathbf{v} - \mathbf{w} \| .
\]

(20.10)

Distance in Hermitian spaces obeys the same properties that we are used to in Euclidean spaces.

Theorem 20.1.18 (Cauchy-Schwarz inequality). Let \(V \) be a Hermitian space, and let \(\mathbf{v}, \mathbf{w} \in V \). Then

\[
|\langle \mathbf{v}, \mathbf{w} \rangle| \leq \| \mathbf{v} \| \cdot \| \mathbf{w} \| .
\]

(20.11)

\(\Box \)

Theorem 20.1.19 (Triangle inequality). Let \(V \) be a Hermitian space, and let \(\mathbf{v}, \mathbf{w} \in V \). Then

\[
\| \mathbf{v} + \mathbf{w} \| \leq \| \mathbf{v} \| + \| \mathbf{w} \| .
\]

(20.12)

\(\Box \)

Again, like in Euclidean spaces, norms carry with them the notion of angle; however, because \(\langle \mathbf{v}, \mathbf{w} \rangle \) is not necessarily real, our definition of angle is not identical to the definition of angle presented in Section [19.1].

Definition 20.1.20 (Orthogonality). Let \(V \) be a Hermitian space. Then we say that \(\mathbf{v}, \mathbf{w} \in V \) are orthogonal (notation: \(\mathbf{v} \perp \mathbf{w} \)) if \(\langle \mathbf{v}, \mathbf{w} \rangle = 0 \).

Exercise 20.1.21. Let \(V \) be a Hermitian space. What vectors are orthogonal to every vector?
Definition 20.1.22 (Orthogonal system). An orthogonal system in a Hermitian space V is a list of (pairwise) orthogonal nonzero vectors in V.

Proposition 20.1.23. Every orthogonal system in a Hermitian space is linearly independent.

Definition 20.1.24 (Gram matrix). Let V be a Hermitian space, and let $v_1, \ldots, v_k \in V$. The Gram matrix of v_1, \ldots, v_k is the $k \times k$ matrix whose (i,j) entry is $\langle v_i, v_j \rangle$, that is,

\[
G = G(v_1, \ldots, v_k) := (\langle v_i, v_j \rangle)_{i,j=1}^k. \tag{20.13}
\]

Exercise 20.1.25. Let V be a Hermitian space. Show that the vectors $v_1, \ldots, v_k \in V$ are linearly independent if and only if $\det G(v_1, \ldots, v_k) \neq 0$.

Exercise 20.1.26. Let V be a Hermitian space and let $v_1, \ldots, v_k \in V$. Show

\[
\text{rk}(v_1, \ldots, v_k) = \text{rk}(G(v_1, \ldots, v_k)). \tag{20.14}
\]

Definition 20.1.27 (Orthonormal system). An orthonormal system in a Hermitian space V is a list of (pairwise) orthogonal vectors in V, all of which have unit norm. So (v_1, v_2, \ldots) is an orthonormal system if $\langle v_i, v_j \rangle = \delta_{ij}$ for all i, j.

In the case of finite-dimensional Hermitian spaces, we are particularly interested in orthonormal bases, just as we were interested in orthonormal bases for finite-dimensional Euclidean spaces.

Definition 20.1.28 (Orthonormal basis). Let V be a Hermitian space. An orthonormal basis of V is an orthonormal system that is a basis of V.

Exercise 20.1.29. Generalize the Gram-Schmidt orthogonalization procedure (Section 19.2) to complex Hermitian spaces. Theorem 19.2.2 will hold verbatim, replacing the word “Euclidean” by “Hermitian.”

Proposition 20.1.30. Every finite-dimensional Hermitian space has an orthonormal basis. In fact, every orthonormal list of vectors can be extended to an orthonormal basis.

Proposition 20.1.31. Let V be a Hermitian space with orthonormal basis \mathcal{B}. Then for all $v, w \in V$,

\[
\langle v, w \rangle = [v]_\mathcal{B}^* [w]_\mathcal{B}. \tag{20.15}
\]

Proposition 20.1.32. Let V be a Hermitian space. Every linear form $f : V \to \mathbb{C}$ (Def. 15.1.6) can be written as

\[
f(x) = \langle a, x \rangle \tag{20.16}
\]

for a unique $a \in V$.

20.2 Hermitian transformations

Definition 20.2.1 (Hermitian linear transformation). Let V be a Hermitian space. Then the linear transformation $\varphi : V \to V$ is Hermitian if for all $v, w \in V$, we have

$$\langle \varphi v, w \rangle = \langle v, \varphi w \rangle.$$ \hspace{1cm} (20.17)

Theorem 20.2.2. All eigenvalues of a Hermitian linear transformation are real. ♦

Proposition 20.2.3. Let $\varphi : V \to V$ be a Hermitian linear transformation, and let v_1, \ldots, v_k be eigenvectors of φ with distinct eigenvalues. Then $v_i \perp v_j$ whenever $i \neq j$.

Proposition 20.2.4. Let b be an orthonormal basis of the Hermitian space V, and let $\varphi : V \to V$ be a linear transformation. Then the transformation φ is Hermitian if and only if the matrix $[\varphi]_b$ is Hermitian.

Observe that the definition of a Hermitian linear transformation is analogous to that of a symmetric linear transformation of a Euclidean space (Ref. Def. 19.4.1), but they are not fully analogous. In particular, while a linear transformation of a Euclidean space that has an orthonormal eigenbasis is necessarily symmetric, the analogous statement in complex spaces involves “normal transformations” (Ref. Def. 20.5.1), as opposed to Hermitian transformations.

Exercise 20.2.5. Find a linear transformation of \mathbb{C}^n that has an orthonormal eigenbasis but is not Hermitian.

However, the Spectral Theorem does extend to Hermitian linear transformations.

Theorem 20.2.6 (Spectral Theorem for Hermitian transformations). Let V be a Hermitian space and let $\varphi : V \to V$ be a Hermitian linear transformation. Then

(a) φ has an orthonormal eigenbasis;

(b) all eigenvalues of φ are real.

Exercise 20.2.7. Prove the converse of the Spectral Theorem for Hermitian transformations: If $\varphi : V \to V$ satisfies (a) and (b) then φ is Hermitian.

In Section 20.6, we shall see a more general form of the Spectral Theorem which extends part (a) to normal transformations (Ref. Theorem 20.6.1).
20.3 Unitary transformations

In Section 19.3 we introduced orthogonal transformations (Def. 19.3.5), which captured the geometric notion of congruence in Euclidean spaces. The complex analogues of real orthogonal transformations are called unitary transformations.

Definition 20.3.1 (Unitary transformation). Let V be a Hermitian space. Then the transformation $\varphi : V \rightarrow V$ is unitary if it preserves the inner product, i.e.,

$$\langle \varphi v, \varphi w \rangle = \langle v, w \rangle \quad (20.18)$$

for all $v, w \in V$. The set of unitary transformations $\varphi : V \rightarrow V$ is denoted by $U(V)$.

Proposition 20.3.2. The set $U(V)$ is a group (Def. 14.2.1) under composition.

Exercise 20.3.3. The linear transformation $\varphi : V \rightarrow V$ is unitary if and only if φ preserves the norm, i.e., for all $v \in \mathbb{C}^n$, we have $\|\varphi v\| = \|v\|$.

Warning. The proof of this is trickier than in the real case (Ex. 19.3.7).

Theorem 20.3.4. Let $\varphi \in U(V)$. Then all eigenvalues of φ have absolute value 1. ◊

Proposition 20.3.5 (Consistency of translation). Let b be an orthonormal basis of the Hermitian space V, and let $\varphi : V \rightarrow V$ be a linear transformation. Then the transformation φ is unitary if and only if the matrix $[\varphi]_b$ is unitary.

Theorem 20.3.6 (Spectral Theorem for unitary transformations). Let V be a Hermitian space and let $\varphi : V \rightarrow V$ be a unitary transformation. Then

(a) φ has an orthonormal eigenbasis;

(b) all eigenvalues of φ have unit absolute value.

◊

Exercise 20.3.7. Prove the converse of the Spectral Theorem for unitary transformations: If $\varphi : V \rightarrow V$ satisfies (a) and (b) then φ is unitary.
20.4 Adjoint transformations in Hermitian spaces

We now study the linear map analogue of the conjugate-transpose of a matrix, known as the Hermitian adjoint.

Theorem 20.4.1. Let V and W be Hermitian spaces, and let $\varphi : V \to W$ be a linear map. Then there exists a unique linear map $\psi : W \to V$ such that for all $v \in V$ and $w \in W$, we have

\[
\langle \varphi v, w \rangle = \langle v, \psi w \rangle.
\] (20.19)

Note that the inner product above refers to inner products in two different spaces. To be more specific, we should have written

\[
\langle \varphi v, w \rangle_W = \langle v, \psi w \rangle_V.
\] (20.20)

Definition 20.4.2. The linear map ψ whose existence is guaranteed by Theorem 20.4.1 is called the adjoint of φ and is denoted φ^*. So for all $v \in V$ and $w \in W$, we have

\[
\langle \varphi v, w \rangle = \langle v, \varphi^* w \rangle.
\] (20.21)

Proposition 20.4.3 (Consistency of translation). Let V, W, and φ be as in the statement of Theorem 20.4.1. Let b_1 be an orthonormal basis of V and let b_2 be an orthonormal basis of W. Then

\[
[\varphi^*]_{b_2,b_1} = [\varphi]_{b_1,b_2}^*.
\] (20.22)

TO BE WRITTEN.

20.5 Normal transformations

Definition 20.5.1 (Normal transformation). Let V be a Hermitian space. The transformation $\varphi : V \to V$ is normal if it commutes with its adjoint, i.e., $\varphi^* \varphi = \varphi \varphi^*$.

TO BE WRITTEN.
The main result of this section is the generalization of the Spectral Theorem to normal transformations.

Theorem 20.6.1 (Complex Spectral Theorem). Let $\varphi : V \to V$ be a linear transformation. Then φ has an orthonormal eigenbasis if and only if φ is normal.
Chapter 21

\((\mathbb{R}, \mathbb{C})\) The Singular Value Decomposition

In this chapter, we discuss matrices over \(\mathbb{C}\), but every statement of this chapter holds over \(\mathbb{R}\) as well, if we replace matrix adjoints by transposes and the word “unitary” by “orthogonal.”

21.1 The Singular Value Decomposition

In this chapter we study the “Singular Value Decomposition,” an important tool in many areas of math and computer science.

Notation 21.1.1. For \(r \leq \min\{k, n\}\), the matrix \(\text{diag}_{k \times n}(\sigma_1, \ldots, \sigma_r)\) is the \(k \times n\) matrix with \(\sigma_i\) (\(1 \leq i \leq r\)) in the \((i, i)\) entry and 0 everywhere else, i.e., the matrix

\[
\begin{pmatrix}
\sigma_1 & 0 & \cdots & 0 \\
0 & \sigma_2 & \cdots & 0 \\
\vdots & \ddots & \ddots & \vdots \\
0 & \cdots & 0 & \sigma_r
\end{pmatrix}
\]

Note that such a matrix is a “diagonal” matrix which is not necessarily square.
21.2. LOW-RANK APPROXIMATION

Theorem 21.1.2 (Singular Value Decomposition). Let \(A \in \mathbb{C}^{k \times n} \). Then there exist unitary matrices \(S \in U(k) \) and \(T \in U(n) \) such that

\[
S^*AT = \text{diag}_{k \times n}(\sigma_1, \ldots, \sigma_r)
\]

where each “singular value” \(\sigma_i \) is real, \(\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_r > 0 \), and \(r = \text{rk} A \). If \(A \in \mathbb{R}^{k \times n} \), then we can let \(S \) and \(T \) be real, i.e., \(S \in O(k) \) and \(T \in O(n) \).

Theorem 21.1.3. The singular values of \(A \) are the square roots of the nonzero eigenvalues of \(A^*A \).

The remainder of this section is dedicated to proving the following restatement of Theorem 21.1.2.

Theorem 21.1.4 (Singular Value Decomposition, restated). Let \(V \) and \(W \) be Hermitian spaces with \(\dim V = n \) and \(\dim W = k \). Let \(\varphi : V \to W \) be a linear map of rank \(r \). Then there exist orthonormal bases \(\xi \) and \(f \) of \(V \) and \(W \), respectively, and real numbers \(\sigma_1 \geq \cdots \geq \sigma_r > 0 \) such that \(\varphi \xi_i = \sigma_i f_i \) and \(\varphi^* f_i = \sigma_i \xi_i \) for \(i = 1, \ldots, r \), and \(\varphi \xi_j = 0 = \varphi^* f_j \) for \(j > r \).

Exercise 21.1.5. Show that Theorem 21.1.4 is equivalent to Theorem 21.1.2.

Exercise 21.1.6. Let \(V \) and \(W \) be Hermitian spaces and let \(\varphi : V \to W \) be a linear map of rank \(r \). Let \(\xi = (\xi_1, \ldots, \xi_r, \ldots, \xi_n) \) be an orthonormal eigenbasis of \(\varphi^*\varphi \) (why does such a basis exist?) with corresponding eigenvalues \(\lambda_1 \geq \cdots \geq \lambda_r > 0 = \lambda_{r+1} = \cdots = \lambda_n \). Let \(\sigma_i = \sqrt{\lambda_i} \) for \(u = 1, \ldots, r \). Let \(f_i = \frac{1}{\sigma_i} \xi_i \) for \(i = 1, \ldots, r \). Then for \(1 \leq i \leq r \),

(a) \(\varphi \xi_i = \sigma_i f_i \);

(b) \(\varphi^* f_i = \sigma_i \xi_i \).

Exercise 21.1.7. The \(f_i \) of the preceding exercise are orthonormal.

Exercise 21.1.8. Complete the proof of Theorem 21.1.4 and hence of Theorem 21.1.2.

21.2 Low-rank approximation

In this section, we use the Singular Value Decomposition to find low-rank approximations to matrices, that is, the matrix of a given rank which is “closest” to a specified matrix under the operator norm (Def. 13.1.1).
CHAPTER 21. THE SINGULAR VALUE DECOMPOSITION

Definition 21.2.1 (Truncated matrix). Let \(D = \text{diag}_{k \times n}(\sigma_1, \ldots, \sigma_r) \) be a rank-\(r \) matrix (so \(\sigma_1, \ldots, \sigma_r \neq 0 \)). The rank-\(\ell \) truncation (\(\ell \leq r \)) of \(D \), denoted \(D_\ell \), is the \(k \times n \) matrix \(D_\ell = \text{diag}_{k \times n}(\sigma_1, \ldots, \sigma_\ell) \).

The next theorem explains how the Singular Value Decomposition helps us find low-rank approximations to matrices.

Theorem 21.2.2 (Nearest low-rank matrix). Let \(A \in \mathbb{C}^{k \times n} \) be a matrix of rank \(r \) with singular values \(\sigma_1 \geq \cdots \geq \sigma_r > 0 \). Define \(S, T, \) and \(D \) as guaranteed by the Singular Value Decomposition Theorem so that

\[
S^*AT = \text{diag}_{k \times n}(\sigma_1, \ldots, \sigma_r) = D. \tag{21.2}
\]

Given \(\ell \leq r \), let

\[
D_\ell = \text{diag}_{k \times n}(\sigma_1, \ldots, \sigma_\ell) \tag{21.3}
\]

and define \(B_\ell = SD_\ell T^* \). Then \(B_\ell \) is the matrix of rank at most \(\ell \) which is nearest to \(A \) under the operator norm, i.e., \(\text{rk} B_\ell = \ell \) and for all \(B \in \mathbb{C}^{k \times n} \), if \(\text{rk} B \leq \ell \), then \(\| A - B_\ell \| \leq \| A - B \| \).

Exercise 21.2.3. Let \(A, B_\ell, D, \) and \(D_\ell \) be as in the statement of Theorem 21.2.2. Show

(a) \(\| A - B_\ell \| = \| D - D_\ell \| \);

(b) \(\| D - D_\ell \| = \sigma_{\ell+1} \).

As with the proof of the Singular Value Decomposition Theorem, Theorem 21.2.2 is easier to prove in terms of linear maps. We restate the theorem as follows.

Theorem 21.2.4. Let \(V \) and \(W \) be Hermitian spaces with orthonormal bases \(e \) and \(f \), respectively, and let \(\varphi : V \to W \) be a linear map such that \(\varphi e_i = \sigma_i f_i \) for \(i = 1, \ldots, r \). Define the truncated map \(\varphi_\ell : V \to V \) by

\[
\varphi_\ell e_i = \begin{cases}
\sigma_i f_i & 1 \leq i \leq \ell \\
0 & \text{otherwise}
\end{cases} \tag{21.4}
\]

Then whenever \(\psi : V \to W \) is a linear map of rank \(\leq \ell \), we have \(\| \varphi - \varphi_\ell \| \leq \| \varphi - \psi \| \).

Exercise 21.2.5. Show that Theorem 21.2.4 is equivalent to Theorem 21.2.2.

Exercise 21.2.6. Let \(\varphi \) and \(\varphi_\ell \) be as in the statement of the preceding theorem. Show \(\| \varphi - \varphi_\ell \| = \sigma_{\ell+1} \).
It follows that in order to prove Theorem 21.2.4, it suffices to show that for all linear maps \(\psi : V \to W \) of rank \(\leq \ell \), we have \(\| \varphi - \psi \| \geq \sigma_{\ell+1} \).

Exercise 21.2.7. Let \(\psi : V \to W \) be a linear map of rank \(\leq \ell \). Show that there exists \(v \in \ker \psi \) such that
\[
\frac{\| (\varphi - \psi)v \|}{\| v \|} \geq \sigma_{\ell+1}.
\] (21.5)

Exercise 21.2.8. Complete the proof of Theorem 21.2.4 hence of Theorem 21.2.2.

Exercise 21.2.9. Show that the matrix \(B_\ell \) whose existence is guaranteed by Theorem 21.2.2 is unique, i.e., if there is a matrix \(B \in \mathbb{C}^{k \times \ell} \) of rank \(\ell \) such that, \(\| A - B' \| \leq \| A - B \| \) for all rank-\(\ell \) matrices \(B' \in \mathbb{C}^{k \times \ell} \), then \(B = B_\ell \).

In fact, the rank-\(\ell \) matrix guaranteed by Theorem 21.2.2 to be nearest to \(A \) under the operator norm is also the rank-\(\ell \) matrix nearest to \(A \) under the Frobenius norm (Def. 13.2.1).

Theorem 21.2.10. The statement of Theorem 21.2.2 holds for the same matrix \(B_\ell \) when the operator norm is replaced by the Frobenius norm. That is, we also have \(\| A - B_\ell \|_F \leq \| A - B \|_F \) for all rank-\(\ell \) matrices \(B \in \mathbb{C}^{k \times n} \).
Chapter 22

(ℝ) Finite Markov Chains

22.1 Stochastic matrices

Definition 22.1.1 (Nonnegative matrix). We say that A is a nonnegative matrix if all entries of A are nonnegative.

Definition 22.1.2 (Stochastic matrix). A square matrix $A = (\alpha_{ij}) \in M_n(ℝ)$ is stochastic if it is nonnegative and the rows of A sum to 1, i.e., $\sum_{j=1}^{n} \alpha_{ij} = 1$ for all i.

Examples 22.1.3. The following matrices are stochastic.

(a) $\frac{1}{n}J_n$

(b) Permutation matrices

(c) $\begin{pmatrix} 0.8 & 0.2 \\ 0.3 & 0.7 \end{pmatrix}$

(d) $\begin{pmatrix} 1 & \vdots & 0 \\ 1 & \vdots & 1 \end{pmatrix}$
Exercise 22.1.4. Let $A \in \mathbb{R}^{k \times n}$ and $B \in \mathbb{R}^{n \times m}$. Prove that if A and B are stochastic matrices then AB is a stochastic matrix.

Exercise 22.1.5.

(a) Let A be a stochastic matrix. Prove that $A1 = 1$.

(b) Show that the converse is false.

(c) Show that A is stochastic if and only if A is nonnegative and $A1 = 1$.

Definition 22.1.6 (Probability distribution). A probability distribution is a list of nonnegative numbers which add to 1.

Fact 22.1.7. Every row of a stochastic matrix is a probability distribution.

22.2 Finite Markov Chains

A finite Markov Chain is a stochastic process defined by a finite number of states and constant transition probabilities. We consider the trajectory of a particle that can move between states at discrete time steps with the given transition probabilities. In this section, we denote by $\Omega = [n]$ the finite set of states.

Definition 22.2.1 (Finite Markov Chain). Let $\Omega = [n]$ be a set of states. We denote by $X_t \in \Omega$ the position of the particle at time t. The transition probability p_{ij} is the probability that the particle moves to state j at time $t + 1$, given that it is in state i at time t, i.e.,

$$p_{ij} = P(X_{t+1} = j \mid X_t = i) .$$

In particular, each $p_{ij} \geq 0$ and $\sum_{j=1}^{n} p_{ij} = 1$ for every i. The infinite sequence (X_0, X_1, X_2, \ldots) is a stochastic process.

Definition 22.2.2 (Transition matrix). The transition matrix corresponding to our finite Markov Chain is the matrix $T = (p_{ij})$.
CHAPTER 22. FINITE MARKOV CHAINS

Fact 22.2.3. The transition matrix T of a finite Markov Chain is a stochastic matrix, and every stochastic matrix is the transition matrix of a finite Markov Chain.

Notation 22.2.4 (r-step transition probability). The r-step transition probability from state i to state j, denoted $p^{(r)}_{ij}$ is defined by

$$p^{(r)}_{ij} = P(X_{t+r} = j \mid X_t = i).$$

Exercise 22.2.5 (Evolution of Markov Chains, I). Let $T = (p_{ij})$ be the transition matrix corresponding to a finite Markov Chain. Show that $T^r = (p^{(r)}_{ij})$ where

Definition 22.2.6. Let $q_{t,i}$ be the probability that the particle is in state i at time t. We define $q_t = (q_{t,1}, \ldots, q_{t,n})$ to be the distribution of the particle at time t.

Fact 22.2.7. For every $t \geq 0$, $\sum_{i=1}^{n} q_{t,i} = 1$.

Exercise 22.2.8 (Evolution of Markov Chains, II). Let T be the transition matrix of a finite Markov Chain. Show that $q_{t+1} = q_t T$ and conclude that $q_t = q_0 T^t$.

Definition 22.2.9 (Stationary distribution). The probability distribution q is a stationary distribution if $q = q T$, i.e., if q is a left eigenvector (Def. 8.1.15) with eigenvalue 1.

Proposition 22.2.10. Let $A \in M_n(\mathbb{R})$ be a stochastic matrix. Show that A has a left eigenvector with eigenvalue 1.

The preceding proposition in conjunction with the next theorem shows that every stochastic matrix has a stationary distribution.

Recall (Def. 22.1.1) that a nonnegative matrix is a matrix whose entries are all nonnegative; a nonnegative vector is defined similarly.

Do not prove the following theorem.

Theorem 22.2.11 (Perron-Frobenius). Every nonnegative square matrix has a nonnegative eigenvector.

Corollary 22.2.12. Every finite Markov Chain has a stationary distribution.

Proposition 22.2.13. If T is the transition matrix of a finite Markov Chain and $\lim_{r \to \infty} T^r = L$ exists, then every row of L is a stationary distribution.

In order to determine which Markov Chains have transition matrices that converge, we study the directed graphs associated with finite Markov Chains.
22.3 Digraphs

TO BE WRITTEN.

22.4 Digraphs and Markov Chains

Every finite Markov Chain has an associated digraph, where \(i \to j \) if and only if \(p_{ij} \neq 0 \).

FIGURE HERE

Definition 22.4.1 (Irreducible Markov Chain). A finite Markov Chain is **irreducible** if its associated digraph is strongly connected.

Proposition 22.4.2. If \(T \) is the transition matrix of an irreducible finite Markov Chain and \(\lim_{r \to \infty} T^r = L \) exists, then all rows of \(L \) are the same, so \(\text{rk} L = 1 \).

Definition 22.4.3 (Ergodic Markov Chain). A finite Markov Chain is **ergodic** if its associated digraph is strongly connected and aperiodic.

The following theorem establishes a sufficient condition under which the probability distribution of a finite Markov Chain converges to the stationary distribution. For irreducible Markov Chains, this is necessary and sufficient.

Theorem 22.4.4. If \(T \) is the transition matrix of an ergodic finite Markov Chain, then \(\lim_{r \to \infty} T^r \) exists.

Proposition 22.4.5. For irreducible Markov Chains, the stationary distribution is unique.

22.5 Finite Markov Chains and undirected graphs

TO BE WRITTEN.
22.6 Additional exercises

Definition 22.6.1 (Doubly stochastic matrix). A matrix $A = (\alpha_{ij})$ is doubly stochastic if both A and A^T are stochastic, i.e., $0 \leq \alpha_{ij} \leq 1$ for all i, j and every row and column sum is equal to 1.

Examples 22.6.2. The following matrices are doubly stochastic.

(a) $\frac{1}{n} J_n$

(b) Permutation matrices

(c) \[
\begin{pmatrix}
0.1 & 0.3 & 0.6 \\
0.2 & 0.5 & 0.3 \\
0.7 & 0.2 & 0.1
\end{pmatrix}
\]

Theorem* 22.6.3 (Birkhoff’s Theorem). The set of doubly stochastic matrices is the convex hull (\textit{Def. 5.3.6}) of the set of permutation matrices (\textit{Def. 2.4.3}). In other words, every doubly stochastic matrix can be expressed as a convex combination (\textit{Def. 5.3.1}) of permutation matrices.

\diamond
Chapter 23
More Chapters

TO BE WRITTEN.
Chapter 24

Hints

24.1 Column Vectors

1.1.17 Exercise Solution
(b) Consider the sums of the entries in each column vector.

1.2.7 Exercise Solution
Show that the sum of two vectors of zero weight has zero weight and that scaling a zero-weight vector produces a zero-weight vector.

1.2.8 Exercise Solution
What are the subspaces of \(\mathbb{R}^n \) which are spanned by one vector?

1.2.9 Exercise Solution
(c) The “if” direction is trivial. For the “only if” direction, begin with vectors \(w_1 \in W_1 \setminus W_2 \) and \(w_2 \in W_2 \setminus W_1 \). Where is \(w_1 + w_2 \)?

1.2.12 Exercise Solution
Prove (a) and (b) together. Prove that the subspace defined by (b) satisfies the definition.

1.2.15 Exercise Solution
1.2.16 Exercise Solution
Show that \(\text{span}(T) \subseteq \text{span}(S) \).

1.2.18 Exercise Solution
It is clear that \(U_1 + U_2 \subseteq \text{span}(U_1 \cup U_2) \). For the reverse inclusion you need to show that a linear combination from \(U_1 \cup U_2 \) can always be written as a sum \(u_1 + u_2 \) for some \(u_1 \in U_1 \) and \(u_2 \in U_2 \).

1.3.9 Exercise Solution
You need to find \(\alpha_1, \alpha_2, \alpha_3 \) such that
\[
\begin{bmatrix}
\alpha_1 & 1 \\
-3 & -3 \\
2 & 2 \\
\end{bmatrix} + \begin{bmatrix}
\alpha_2 & 4 \\
2 & 1 \\
-2 & -8 \\
\end{bmatrix} + \begin{bmatrix}
\alpha_3 & -2 \\
3 & 3 \\
0 & 0 \\
\end{bmatrix} = \begin{bmatrix}
0 \\
0 \\
0 \\
0 \\
\end{bmatrix}.
\]
This gives you a system of linear equations. Find a nonzero solution.

1.3.11 Exercise Solution
Assume \(\sum \alpha_i v_i = 0 \). What condition on \(\alpha_j \) allows you to express \(v_j \) in terms of the other vectors?

1.3.13 Exercise Solution
What does the empty sum evaluate to?

1.3.15 Exercise Solution
Find a nontrivial linear combination of \(v \) and \(v \) that evaluates to \(0 \).

1.3.16 Exercise Solution
The only linear combinations of the list \((v)\) are of the form \(\alpha v \) for \(\alpha \in \mathbb{F} \).

1.3.17 Exercise Solution
Ex. 1.3.13

1.3.21 Exercise Solution
If \(\sum \alpha_i v_i = 0 \) and not all the \(\alpha_i \) are 0, then it must be the case that \(\alpha_{k+1} \neq 0 \) (why?).
1.3.23 Exercise Solution
What is the simplest nontrivial linear combination of such a list which evaluates to zero?

1.3.24 Exercise Solution
Combine Prop. 1.3.15 and Fact 1.3.20

1.3.27 Exercise Solution
Begin with a basis. How can you add one more vector that will satisfy the condition?

1.3.41 Exercise Solution
Suppose not. Use Lemma 1.3.21 to show that span\((w_1, \ldots, w_m)\) \(\leq\) span\((v_2, \ldots, v_k)\) and arrive at a contradiction.

1.3.42 Exercise Solution
Use the Steinitz exchange lemma to replace \(v_1\) by some \(w_{i_1}\), then \(v_2\) by some \(w_{i_2}\), etc. So in the end, \(w_{i_1}, \ldots, w_{i_k}\) are linearly independent.

1.3.45 Exercise Solution
Use the standard basis of \(\mathbb{F}^k\) and the preceding exercise.

1.3.46 Exercise Solution
It is clear that \(\text{rk}(v_1, \ldots, v_k) \leq \dim(\text{span}(v_1, \ldots, v_k))\) (why?). For the other direction, first assume that the \(v_i\) are linearly independent, and show that \(\text{span}(v_1, \ldots, v_k)\) cannot contain a list of more than \(k\) linearly independent vectors.

1.3.51 Exercise Solution
Show that if this list were not linearly independent, then \(U_1 \cap U_2\) would contain a nonzero vector.

1.3.52 Exercise Solution
Ex. 1.3.51

1.3.53 Exercise Solution
Start with a basis of $U_1 \cap U_2$.

1.4.9 Exercise Solution
Only the zero vector. Why?

1.4.10 Exercise Solution
Express $1 \cdot x$ in terms of the entries of x.

1.5.4 Exercise Solution
Begin with a linear combination W of the vectors in S which evaluates to zero. Conclude that all coefficients must be 0 by taking the dot product of W with each member of S.

1.6.4 Exercise Solution
Incidence vectors.

24.2 Matrices

2.2.3 Exercise Solution
Prove only one of these, then infer the other using the transpose (Ex. 2.2.2).

2.2.17 Exercise Solution
(d3) The size is the sum of the squares of the entries. This is the Frobenius norm of the matrix.

2.2.19 Exercise Solution
Show, by induction on k, that the (i, j) entry of A^k is zero whenever $j \leq i + k - 1$.

2.2.27 Exercise Solution
Write B as a sum of matrices of the form $[0 | \cdots | 0 | b_i | 0 | \cdots | 0]$ and then use distributivity.

2.2.28 Exercise Solution
The i-th entry of Ax is the dot product of the i-th row of A with x.

2.2.29 Exercise Solution
Apply the preceding exercise to $B = I$.

2.2.30 **Exercise** **Solution**
Consider $(A - B)x$.

2.2.31 **Exercise** **Solution**
Prop. 2.2.28

2.2.32 **Exercise** **Solution**
Prop. 2.2.29

2.2.33 **Exercise** **Solution**
Prop. 2.2.29

2.2.38 **Exercise** **Solution**
What is the (i, i) entry of AB?

2.2.39 **Exercise** **Solution**
Preceding exercise.

2.2.41 **Exercise** **Solution**
If $\text{Tr}(AB) = 0$ for all A, then $B = 0$.

2.3.2 **Exercise** **Solution**
Induction on k. Use the preceding exercise.

2.3.4 **Exercise** **Solution**
Induction on the degree of f.

2.3.6 **Exercise** **Solution**
Observe that the off-diagonal entries do not affect the diagonal entries.

2.3.7 **Exercise** **Solution**
Induction on k. Use the preceding exercise.

2.5.1 **Exercise** **Solution**
24.3. **MATRIX RANK**

<table>
<thead>
<tr>
<th>Exercise</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5.5</td>
<td></td>
</tr>
<tr>
<td>2.5.6</td>
<td></td>
</tr>
</tbody>
</table>

Multiply by the matrix with a 1 in the \((i,j)\) position and 0 everywhere else.

2.5.7

(a) Trace.

2.5.8

Incidence vectors (Def. 1.6.2).

2.5.13

(b) That particular circulant matrix is the one corresponding to the cyclic permutation of all elements, i.e., the matrix \(C = C(0, 1, 0, 0, \ldots, 0)\).

24.3 Matrix Rank

<table>
<thead>
<tr>
<th>Exercise</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1.5</td>
<td></td>
</tr>
</tbody>
</table>

Consider the matrix \([A \mid B]\) (the \(k \times 2n\) matrix obtained by concatenating the columns of \(B\) onto \(A\)), and compare its column rank to the quantities above.

<table>
<thead>
<tr>
<th>Exercise</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.3.2</td>
<td></td>
</tr>
</tbody>
</table>

Elementary column operations do not change the column space of a matrix.

<table>
<thead>
<tr>
<th>Exercise</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.3.12</td>
<td></td>
</tr>
</tbody>
</table>

Consider the \(k \times r\) submatrix formed by taking \(r\) linearly independent columns.

<table>
<thead>
<tr>
<th>Exercise</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.5.9</td>
<td></td>
</tr>
</tbody>
</table>
Extend a basis of U to a basis of \mathbb{F}^n, and consider the action of the matrix A on this basis.

3.6.7 Exercise Solution Ex. 2.2.19

24.4 Theory of Systems of Linear Equations I: Qualitative Theory

24.5 Affine and Convex Combinations

5.1.14 Exercise Solution
(b) Let $v_0 \in S$ and let $U = \{s - v_0 \mid s \in S\}$. Show that

(i) $U \leq \mathbb{F}^n$;

(ii) S is a translate of U.

For uniqueness, you need to show that if $U + u = V + v = S$, then $U = V$.

24.6 The Determinant

6.2.22 Exercise Solution
Identity matrix.

6.2.23 Exercise Solution
Consider the $n!$ term expansion of the determinant (Eq. (6.20)). What happens with the contributions of σ and σ^{-1}? What if $\sigma = \sigma^{-1}$? What if σ has a fixed point?

(a) Exercise Solution
Elementary column operations.

6.3.7 Exercise Solution
Let f_e_n denote the number of fixed-point-free even permutations and let f_o_n the number of fixed-point-free odd permutations of the set $\{1, \ldots, n\}$. Write $f_o_n - f_e_n$ as the determinant of a familiar matrix.

6.4.6 Exercise Solution
\[\det A = \pm 1. \]

6.4.7 Exercise Solution Ex. 6.2.23

24.7 Theory of Systems of Linear Equations II: Cramer’s Rule

24.8 Eigenvectors and Eigenvalues

8.1.22 Exercise Solution
Use Rank-Nullity.

8.5.6 Exercise Solution Prop. 2.3.4

24.9 Orthogonal Matrices

24.10 The Spectral Theorem

24.11 Bilinear and Quadratic Forms

11.1.5 Exercise Solution
Let e_1, \ldots, e_n be the standard basis of \mathbb{F}^n (Def. 1.3.34). Let $\alpha_i = f(e_i)$. Show that $a = (\alpha_1, \ldots, \alpha_n)^T$ works.

11.1.10 Exercise Solution
Generalize the hint to Theorem 11.1.5

11.1.13 Exercise Solution
(c) Skew symmetric matrices. Ex. 6.2.21

11.3.3 Exercise Solution
Give a very simple expression for B in terms of A.

11.3.9 Exercise Solution
Use the fact that λ is real.

11.3.15 Exercise Solution
Interlacing.

11.3.23 Exercise Solution
(b) Triangular matrices.

24.12 Complex Matrices

12.2.7 Exercise Solution

(a)

(b) Prove that your example must have rank 1.

12.3.16 Exercise Solution
Pick $\lambda_0, \ldots, \lambda_{n-1}$ to be complex numbers with unit absolute value. Let $w = (\lambda_0, \ldots, \lambda_{n-1})^T$. Prove
that the entries of \(\frac{1}{\sqrt{n}} Fw \) generate a unitary circulant matrix, and that all unitary circulant matrices are of this form. The \(\lambda_i \) are the eigenvalues of the resulting circulant matrix.

12.4.9 Exercise Solution
Induction on \(n \).

12.4.15 Exercise Solution
Prop. 12.4.6

12.4.19 Exercise Solution
Theorem 12.4.18

24.13 Matrix Norms

13.1.2 Exercise Solution
Show that \(\max_{x \in \mathbb{R}^n} \frac{\|Ax\|}{\|x\|} \) exists. Why does this suffice?

13.1.13 Exercise Solution
Use the fact that \(f_{AB} = f_{BA} \cdot t^{n-k} \) (Prop. 8.4.16).

24.14 Preliminaries

24.15 Vector Spaces

15.3.14 Exercise Solution
Use the fact that a polynomial of degree \(n \) has at most \(n \) roots.

15.4.9 Exercise Solution
Ex. 14.4.57

15.4.10 Exercise Solution
CHAPTER 24. HINTS

15.4.13 Exercise Solution
Start with a basis of $U_1 \cap U_2$.

15.4.14 Exercise Solution
It is an immediate result of Cor. 15.4.3 that every list of $k + 1$ vectors in \mathbb{R}^k is linearly dependent.

15.4.18 Exercise Solution
Their span is not changed.

24.16 Linear Maps

16.2.6 Exercise Solution
Coordinate vector.

16.3.7 Exercise Solution
Let e_1, \ldots, e_k be a basis of $\ker(\varphi)$. Extend this to a basis e_1, \ldots, e_n of V, and show that $\varphi(e_{k+1}), \ldots, \varphi(e_n)$ is a basis for $\text{im}(\varphi)$.

16.4.31 Exercise Solution

(a)

(b)

(c) Prop. 16.4.15

(d)

16.6.7 Exercise Solution
Write $A = [\varphi]_{\text{old}}$ and $A' = [\varphi]_{\text{new}}$. Show that for all $x \in \mathbb{F}^n$ ($n = \dim V$), we have $A'x = T^{-1}ASx$.
24.17 Minimal Polynomials of Matrices and Linear Transformations

24.18 Euclidean Spaces

19.1.7 Exercise Solution
Derive this from the Cauchy-Schwarz inequality.

19.1.21 Exercise Solution
Theorem 11.1.5

19.3.20 Exercise Solution
Prop. 19.1.21

19.4.19 Exercise Solution
\[f'(0) = 0. \]

19.4.22 Exercise Solution
Define \(U = \{ v_0 \}^\perp \), and for each \(u \in U \setminus \{0\} \), consider the function \(f_u : \mathbb{R} \to \mathbb{R} \) defined by \(f_u(t) = R_\varphi(v_0 + tu) \). Apply the preceding exercise to this function.

24.19 Hermitian Spaces

20.1.19 Exercise Solution
Derive this from the Cauchy-Schwarz inequality.

20.1.32 Exercise Solution
Theorem 11.1.5

20.2.2 Exercise Solution
For an eigenvalue λ, you need to show that $\lambda = \bar{\lambda}$. The proof is just one line. Consider the expression x^*Ax.

20.2.5 Exercise Solution
Which diagonal matrices are Hermitian?

20.4.1 Exercise Solution
Prop. 20.1.32

24.20 The Singular Value Decomposition

21.2.7 Exercise Solution
It suffices to show that there exists $v \in \ker \psi$ such that $\|\varphi v\| \geq \sigma_{\ell+1}\|v\|$ (why?). Pick $v \in \ker \psi \cap \text{span}(e_1, \ldots, e_{\ell+1})$ and show that this works.

24.21 Finite Markov Chains

22.1.5 Exercise Solution
For a general matrix $B \in M_n(\mathbb{R})$, what is the i-th entry of $B1$?

22.2.10 Exercise Solution
Prop. 8.4.15

22.6.3 Exercise Solution
Marriage Theorem.
Chapter 25

Solutions

25.1 Column Vectors

1.1.16 Exercise Hint

\[
\begin{pmatrix}
-5 \\
-1 \\
11
\end{pmatrix} = 2 \begin{pmatrix}
-2 \\
1 \\
7
\end{pmatrix} - \frac{1}{2} \begin{pmatrix}
2 \\
6 \\
6
\end{pmatrix}
\]
25.2 Matrices

25.3 Matrix Rank

25.4 Theory of Systems of Linear Equations I: Qualitative Theory

25.5 Affine and Convex Combinations

25.6 The Determinant

25.7 Theory of Systems of Linear Equations II: Cramer’s Rule

25.8 Eigenvectors and Eigenvalues

8.1.3 Exercise Hint
Every vector in \mathbb{F}^n is an eigenvector of I_n with eigenvalue 1.

8.1.22 Exercise Hint
$\dim U_\lambda = n - \text{rk}(\lambda I - A)$.

25.9 Orthogonal Matrices

25.10 The Spectral Theorem

10.2.2 Exercise Hint
\[\mathbf{v}^T A \mathbf{v} = \left(\sum_{i=1}^{n} \alpha_i \mathbf{b}_i^T \right) A \left(\sum_{i=1}^{n} \alpha_i \mathbf{b}_i \right) \]
\[= \left(\sum_{i=1}^{n} \alpha_i \mathbf{b}_i^T \right) \left(\sum_{i=1}^{n} \alpha_i A \mathbf{b}_i \right) \]
\[= \left(\sum_{i=1}^{n} \alpha_i \mathbf{b}_i^T \right) \left(\sum_{i=1}^{n} \alpha_i \mathbf{b}_i \right) \]
\[= \sum_{i=1}^{n} \sum_{j=1}^{n} \lambda_i \alpha_i \alpha_j \mathbf{b}_j^T \mathbf{b}_i \]
\[= \sum_{i=1}^{n} \sum_{j=1}^{n} \lambda_i \alpha_i \alpha_j (\mathbf{b}_j \cdot \mathbf{b}_i) \]
\[= \sum_{i=1}^{n} \sum_{j=1}^{n} \lambda_i \alpha_i \alpha_j \delta_{ij} \]
\[= \sum_{i=1}^{n} \lambda_i \alpha_i^2 \]

10.2.4 \[\text{Exercise} \]

First suppose \(A \) is positive definite. Let \(\mathbf{v} \) be an eigenvector of \(A \). Then, because \(\mathbf{v} \neq \mathbf{0} \), we have
\[0 < \mathbf{v}^T A \mathbf{v} = \mathbf{v}^T \lambda \mathbf{v} = \lambda \mathbf{v}^T \mathbf{v} = \lambda \| \mathbf{v} \|^2 . \]
Hence \(\lambda > 0 \).

Now suppose \(A \) is symmetric and all of its eigenvalues are positive. By the Spectral Theorem, \(A \) has an orthonormal eigenbasis, say \(\mathbf{b} = (\mathbf{b}_1, \ldots, \mathbf{b}_n) \), with \(A \mathbf{b}_i = \lambda_i \mathbf{b}_i \) for all \(i \). Let \(\mathbf{v} \in \mathbb{F}^k \) be a nonzero vector. Then we can write \(\mathbf{v} = \sum \alpha_i \mathbf{b}_i \) for some scalars \(\alpha_i \). Then
\[\mathbf{v}^T A \mathbf{v} = \sum_{i=1}^{n} \lambda_i \alpha_i^2 > 0 \]
so \(A \) is positive definite.
25.11 Bilinear and Quadratic Forms

11.3.3 Exercise Hint
\[B = \frac{A + A^T}{2} \] Verify that this and only this matrix works.

25.12 Complex Matrices

25.13 Matrix Norms

25.14 Preliminaries

25.15 Vector Spaces

25.16 Linear Maps

25.17 Minimal Polynomials of Matrices and Linear Transformations

18.2.10 Exercise Hint
\[m_A = \prod_{i=1}^n (t - \lambda_i) \] where \(\prod' \) means that we take each factor only once (so eigenvalues \(\lambda_i \) with multiplicity greater than 1 only contribute one factor of \(t - \lambda_i \)).

25.18 Euclidean Spaces

25.19 Hermitian Spaces

25.20 Finite Markov Chains
Index

<table>
<thead>
<tr>
<th>Page</th>
<th>Entries</th>
</tr>
</thead>
<tbody>
<tr>
<td>0, 4</td>
<td>13 17 18</td>
</tr>
<tr>
<td>1, 7</td>
<td>17 28</td>
</tr>
<tr>
<td>Affine basis</td>
<td>56 56</td>
</tr>
<tr>
<td>Affine combination</td>
<td>53 53 58</td>
</tr>
<tr>
<td>Affine hull</td>
<td>54 54 55 58</td>
</tr>
<tr>
<td>Affine independence</td>
<td>56 56</td>
</tr>
<tr>
<td>Affine subspace</td>
<td>51</td>
</tr>
<tr>
<td>Affine subspace of F^k</td>
<td>54 54 57</td>
</tr>
<tr>
<td>Codimension</td>
<td>44</td>
</tr>
<tr>
<td>of an affine subspace</td>
<td>57</td>
</tr>
<tr>
<td>Characteristic polynomial</td>
<td>80 80 82</td>
</tr>
<tr>
<td>Characteristic polynomial of nilpotent matrices</td>
<td>80</td>
</tr>
<tr>
<td>Characteristic polynomial of similar matrices</td>
<td>83</td>
</tr>
<tr>
<td>Cofactor</td>
<td>67</td>
</tr>
<tr>
<td>Cofactor expansion</td>
<td>69 69</td>
</tr>
<tr>
<td>Column space</td>
<td>39 41</td>
</tr>
<tr>
<td>Column vector</td>
<td>3 3 19</td>
</tr>
<tr>
<td>Column vector of C^n</td>
<td>103</td>
</tr>
<tr>
<td>Linear dependence of</td>
<td>11 16 18 28 85 92 93 99</td>
</tr>
<tr>
<td>Linear independence of</td>
<td>15 16 18 28 85 92 93 99</td>
</tr>
<tr>
<td>Linear independence of C^n</td>
<td>41 45 51 67 76</td>
</tr>
</tbody>
</table>
multiplication by a scalar, 6
norm of, 103
orthogonality, 17, 18
orthogonality of, 28
with respect to a bilinear form, 98
parallel, 13
Column-rank, 39, 40
full, 39
Column-space, 39
Companion matrix, 81, 82
Complex conjugate, 101
Complex number, 101, 102
absolute value of, 101
imaginary part of, 101
magnitude of, 101
norm of, 101
real part of, 101
unit norm, 101, 102
Convex combination, 57, 58
Convex hull, 58, 59
Convex set, 58, 59
dimension of, 59
intersection of, 58
Coordinates, 89
Corank
of a matrix, 45
of a set, 44
Courant-Fischer Theorem, 89
Cramer’s Rule, 73, 74
Determinant, 52, 62, 63, 65, 72, 81, 97
corner, 97, 98
multilinearity of, 67
of a matrix product, 67
Diagonalizable matrix, 78, 78

Dimension, 13, 15
of a convex set, 59
of an affine subspace, 59, 55, 56
Discrete Fourier transform, 105
Dot product, 16, 18, 28, 85, 92, 93, 99
Dual space
of \(\mathbb{F}^n \), 91
Eigenbasis
of \(\mathbb{F}^n \), 76, 77
orthonormal, 86, 88, 89, 106
Eigenspace, 76, 77
Eigenvector
interlacing of, 90
dimension of, 59
intersection of, 58
Coordinates, 89

Elementary column operation, 40, 41
Elementary row operation, 40, 41
Empty list, 7
Empty sum, 4
Euclidean norm, 18, 68, 85, 104
complex, 103
\(\mathbb{F}^k \), 4
INDEX

basis of, 15, 51
dimension of, 15
standard basis of, 14, 26, 28
subspace of, 8, 10, 57
codimension of, 44, 44
dimension of, 13, 13–15
disjoint, 15
intersection of, 9
totally isotropic, 99, 99–100
trivial, 9
union of, 9

\[\mathbb{F}^{k \times n}, \mathbb{F}[t], \mathbb{F} \]

Field, 4

of characteristic 2, 68
First Miracle of Linear Algebra, 15
submultiplicativity of, 109
Fundamental Theorem of Algebra, 79

Gaussian elimination, 40
Generalized Fisher Inequality, 19
Group
orthogonal, see Orthogonal group
symmetric, see Symmetric group
unitary, see Unitary group

Hadamard matrix, 86, 86
Hadamard’s Inequality, 68
Half-space, 57, 59
Helly’s Theorem, 57, 59
Hermitian dot product, 102, 102, 104
Hyperplane, 57, 57
intersection of, 57
linear, see Linear hyperplane

I, see Identity matrix
Identity matrix, 26, 26, 42, 75
Incidence vector, 18, 18, 19

\[J \]

Jordan block, 37

\[k \text{-cycle}, \ell^2 \text{ norm}, \ell^2 \text{ norm} \]

Kronecker delta, 26

Linear dependence of column vectors, 67
Linear combination
affine, see Affine combination of column vectors, 6, 6, 8, 10, 16, 29
trivial, 11
Linear dependence of column vectors, 11, 11, 67
Linear form
over \(\mathbb{F}^n \), 91, 91, 95
Linear hyperplane, 57
intersection of, 57
Linear independence
maximal, 14, 14
of column vectors, 11, 11, 13, 15, 18, 37, 41, 45, 51, 67, 76
List, 11
concatenation of, 11
empty, 12
List of generators, 14, 14

\[M_n(\mathbb{F}) \]

Matrix, 20, 20, 37
addition of, 23, 23
adjugate of, 71
augmented, 51
block, 40, 157, 157
 multiplication of, 158
block-diagonal, 157, 158, 159
block-triangular, 158, 159, 160
characteristic polynomial of, 80, 80, 82
circulant, 37, 37, 104, 105
commutator of, 36, 36
conjugate-transpose of, 102, 102
corank of, 45, 45
corner, 97, 97
definiteness of, 96, 96, 97
diagonal, 21, 21, 27, 31, 36, 75, 96, 104
determinant of, 66
diagonalizable, 78, 78, 106
doubly stochastic, 194, 194
determination, 27, 27, 31, 33, 159, 160
Hermitian, 104, 104, 105
Hermitian adjoint of, 104, 102
identity, see Identity matrix
indefinite, 96
integral, 21, 36
inverse, 43, 43, 71
inverse of, 52
invertibility of, 43, 43, 52, 71, 73
kernel of, 44, 44
left inverse of, 42, 42, 43, 51
lower triangular, 22, 22
multiplication, 24, 24, 30
 and the determinant, 67
 associativity of, 24
 distributivity of, 24
multiplication by a scalar, 24, 24
negative definite, 96
negative semidefinite, 96
nilpotent, 28, 28, 77
 characteristic polynomial of, 80
 nonnegative, 190
 nonsingular, 43, 43, 46, 50, 51, 71, 73
 normal, 105, 105, 105, 109
null space of, 44, 44, 44, 49
nullity of, 49
orthogonal, 85, 85, 86, 107, 109
orthogonally similar, 86, 86, 89
permutation, see Permutation matrix
positive definite, 89, 89, 96, 108
positive semidefinite, 96
rank, 44, 41, 47, 103
 full, 44
right inverse of, 43, 42, 43, 51
rotation, see Rotation matrix
scalar, 26, 36, 76
self-adjoint, 104, 104, 105
similarity of, 77, 77, 78, 82
skew-symmetric, 68
square, 21, 23, 42
stochastic, 106, 190, 190, 191
strictly lower triangular, 22, 22
strictly upper triangular, 22, 22, 28
symmetric, 23, 23, 36, 80, 88, 89, 108, 109
trace of, 29, 29, 30
transpose, 22, 23, 24, 36
 determinant of, 66
unitary, 104, 104, 105
unitary similarity of, 105, 105, 106
upper triangular, 23, 22, 32, 33, 40
 determinant of, 66
Vandermonde, 105
zero, see Zero matrix

Modular equation, 15
 for codimension, 44

Monomial
 multivariate, 93
 degree of, 93
 monic, 94
 monic part of, 94

Multilinearity, 66
 of the determinant, 67

Norm
 of column vectors, 18, 68, 85, 103, 104

Null space
 of a matrix, 44
 49

Nullity
 of a matrix, 49

Operator norm
 of a matrix, 107, 107, 109
 submultiplicativity of, 107

Orthogonal group, 85

Orthogonal matrix
 eigenvalues of, 85

Orthogonal system, 18, 103

Orthogonality
 of column vectors, 17, 17, 18, 28, 76, 103
 with respect to a bilinear form, 98

Orthogonally similar matrices, 86, 86, 89, 98

Orthonormal basis
 of a subspace of \mathbb{R}^n, 78
 of \mathbb{C}^n, 103, 104
 of \mathbb{R}^n, 85, 86

Orthonormal system, 18, 85, 103, 104

$P_n(\mathbb{F})$, 79

Parallelepiped, 68

Parallelogram, 68

Permutation, 34
 composition of, 34, 34, 63, 64
 cycle, 64
 65
 decomposition, 65
 disjoint, 64
 even, 63
 fixed point of, 70
 identity, 35
 inverse of, 35
 inversion of, 62
 odd, 63
 parity, 63
 63
 65
 product of, 63
 64
 sign, 63
 64

Permutation matrix, 35

Polynomial, 31, 78
 degree of, 79
 divisibility of, 79
 leading coefficient of, 79
 79
 leading term of, 79
 79
 monic, 79
 multivariate, 93, 93, 95
 degree of, 93
 homogeneous, 94
 94
 standard form, 94
 of a matrix, 37
 of matrices, 37, 31
 33
 82
 82
 83
 159
 160
 root of, 79
 79
 multiplicity, 79
 zero, 79

Quadratic form, 95, 95, 98
definiteness of, \[96, 96, 98\]
indefinite, \[96\]
negative definite, \[96\]
negative semidefinite, \[96\]
positive definite, \[96\]
positive semidefinite, \[96\]
\(\mathbb{R}^n\)
ornonormal basis of, \[85, 86\]
subspace of, \[9\]
Radon’s Lemma, \[59\]
Rank
of a matrix, \[41, 41, 47, 103\]
full, \[41\]
of column vectors, \[13, 13-15\]
Rank-Nullity Theorem
for matrices, \[56\]
Rayleigh quotient, \[89, 95\]
Rayleigh’s Principle, \[86\]
Reflection matrix, \[109\]
Rook arrangement, \[33, 33\]
Rotation matrix, \[26, 26\]
Row space, \[39\]
Row vector, \[21, 21\]
Row-rank, \[39, 42\]
full, \[39, 42\]
\(S_n\), see Symmetric group
Scalar, \[4\]
Schur’s Theorem, \[106\]
real version, \[106\]
Second Miracle of Linear Algebra, \[40, 40\]
Set
affine closed, \[56\]
affine-closed, \[53, 53\]
intersection of, \[54\]
closed, \[59\]
convex, \[58, 58, 59\]
dimension of, \[59\]
intersection of, \[58\]
corank of, \[44\]
open, \[59, 175\]
sum of, \[10, 10, 15\]
translate of, \[51, 51, 54\]
Similar matrices, \[77, 77, 78, 82, 97, 98\]
Skew cofactor expansion, \[71\]
Span
of column vectors, \[9, 9, 10, 13, 51\]
transitivity of, \[10\]
Spectral Theorem
for normal matrices, \[106\]
for real symmetric matrices, \[88, 88, 90\]
applications of, \[89, 90\]
Standard basis of \(\mathbb{F}^k\), \[14, 26, 28\]
Standard unit vector, \[14, 26\]
Steinitz exchange lemma, \[15\]
Straight-line segment, \[58, 58\]
Sublist, \[12, 12\]
Submatrix, \[36, 42, 42\]
Subset
dense, \[106, 106\]
Subspace
affine, see Affine subspace
of \(\mathbb{F}^k\), \[8, 8, 10, 57\]
basis of, \[74, 14, 15\]
codimension of, \[44, 44\]
dimension of, \[13, 13, 15\]
disjoint, \[15\]
intersection of, \[9\]
totally isotropic, 99, 99–100
union of, 9
zero-weight, 9
Symmetric group, 62, 63, 64
System of linear equations, 7, 48–52, 61
 augmented, 51
 homogeneous, 49, 55, 67
 solution space of, 49, 49–50
 trivial solution to, 49
 set of solutions to, 51, 55
 solvable, 49, 51, 52, 73
Third Miracle of Linear Algebra, 85, 104
Trace
 of a matrix, 29, 29, 30, 81
Transposition, 63, 63, 64

neighbor, 64, 64
Triangle inequality, 107, 109
Unitarily similar matrices, 105, 105–106
Unitary group, 104
Unitary matrix
eigenvalues of, 104
Vandermonde determinant, 70
Vandermonde matrix, 36, 37, 70
Vector
 isotropic, 17, 17
Zero matrix, 21, 29, 42
Zero polynomial, 78, 79
Zero vector, see 0