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Chapter 1
Logic

TO BE WRITTEN.

1.1 Problems

1.2 Quantifier notation

Quantifier notation: V - “universal quantifier,” 3 - “existential quatifier.”
(Vzx) is read as “for all 2”
(Jx) is read as “there exists x such that”
(Vz, statement(z)) is read as “for all x such that statement(z) holds,...”

Ezample. (Vx # 0)(Jy)(zy = 1) says that every x other than zero has a multiplicative inverse.
The validity of this statement depends on the universe over which the variables range. The
statement holds (is true) over R (real numbers) and Q (rational numbers) but does not hold
over Z (integers) or N (nonnegative integers). It holds over Z,, (the set of residue classes
modulo m) if m is prime but not if m is composite. (Why?)

1.3 Problems

Several of the problems below will refer to the divisibility relation between integers.

Definition 1.3.1. Let a, b be integers. We say that a | b (“a divides b”) if (3x)(ax = b). (The
universe of the quantifiers is Z, the set of integers (positive, negative, zero).)

1



2 CHAPTER 1. LOGIC

From this definition we see that 7 | 21 (because x = 3 satisfies 7Tz = 21); 5 | —5 (because
x = —1 satisfies 5z = —5); 0 | 0 (because x = 17 (or any other x) satisfies 0z = 0).

Does our conclusion 0 | 0 violate the prohibition agains division by zero? By no means;
division by zero continues to be a no-no. But read the definition of divisibility: it involves
multiplication, not division. Nothing can stop us from multiplying a number by zero.

Remark. Most (but not all) Discrete Mathematics texts deliberately misstate the definition of
divisibility to exclude 0 | 0 from the definition. This abomination stems from many textbook
authors’ contempt for their readers’ intellect; the result is a multitude of unnecessary case
distinctions, destroying a fundamental element of mathematical aesthetics. (To these authors,
for instance, = | x does not hold for all z; there is an exception: = 0. And then, to them,
x — y does not always divide 22 — y?; to them, the cases when x = y are exceptions.) We do
not follow this deplorable textbook trend; to us (as well as to any mathematician), (Vz)(z | z)
and (Vz)(Yy)(z —y | 2* — y*).

Exercise 1.3.2. Restate the following statements in plain English and prove them. The
universe is Z.

(a) (Vz)(z | z). In particular, 0 | 0.
(b) (V2)(Vy)(z —y | 2* — ¢?).

(c) (Va)(1]x).

(d) (Vz)(z | 0).

(e) (Va)( if (Vy)(z | y) then z = +1).
(f) (V2)(if (Vy)(y | z) then z = 0).

Definition 1.3.3. (Congruence) Let a, b, m be integers. We say that a = b (mod m) (“a is
congruent to b modulo m”) if m | a —b.

Ezamples: 11 = —10 (mod — 7) because —7 | 11 — (—10) = 21. Two integers are congruent
modulo 2 exactly if they have the same parity (both are even or both are odd).

Exercise 1.3.4. Prove the following statements. The universe is Z.
(a) (Vz)((Vy)(Vz)(y = 2z (mod x)) <= = = £1).
(b) (Vz)(Vy)(z =y (mod 0) <= =z =y).
(¢) (Vo # +1)(¥y)(32)(y £ = (mod ),

Last update: October 12, 2004



1.3. PROBLEMS 3

Exercise 1.3.5. Decide whether each of the following statements is true or false. State
and prove your answers. In these statements, the universe for the variables z, y, k is Z,
the set of integers. Warning: in interpreting the formulas, the order of the quantifiers mat-
ters! (Vz)(Yy)(P(z,y)) is the same as (Vy)(Vx)(P(x,y)); (3x)(Jy)(P(x,y)) is the same as
(Jy)(3z)(P(x,y)); but (Vz)(3y)(P(x,y)) is NOT the same as (Jy)(Vz)(P(z,y))!

(a) (Vo)(Vy)(z +y|2* —y?)

(b) (Vz)(Yy)(z +y | 2* +y?)

(c) (F)(vy)(x +y | 2 +y?)

(d) (V2)(Ey)(@? + 9 =1 (mod 7 +)).

(e) (V)(Vy)(Vk) (if k > 1 then 2 = y* (mod z — y)).
(f) (v2)(Ty)(z £y and o | y and = = y (mod 7).

(8) (Fy)(Vz)(z #y and z |y and z =y (mod 7)).

(h) (Vz)(Vy)(if 2 |y and o # y then z < y).

Exercise 1.3.6. True or false (prove your answer):

(V) (Fy)(V2)((z — By)z # 1 (mod 17)).

(The universe of the variables is the set of integers.)

Negation of quantified formulas. If A is a statement then —=A denotes its negation; so =4
is true if and only if A is false. < denotes logical equivalence (“if and only if”).

Exercise 1.3.7. Let P(z) be a statement in variable x.

(a) Prove: =(Vx)(P(z)) < (3z)(—P(z)).
(b) Prove: =(3z)(P(x)) & (Vz)(—P(x)).
(c) Let Q(z,y) be astatement in two variables. Prove: —(Vz)(3y)(Q(z,y)) < (Fz)(Vy)(—Q(z,y)).

Exercise 1.3.8. Let P(z,y) be a statement about the variables z and y. Consider the following
two statements: A := (Vz)(3y)(P(z,y)) and B := (3y)(Vz)(P(x,y)). The universe is the set
of integers.

(a) Prove: (VP)(B = A) (“B always implies A,” i.e., for all P, if B is true then A is true).

(b) Prove: =(VP)(A = B) (i.e., A does not necessarily imply B). In other words, (3P)(A #
B). To prove this, you need to construct a counterexample, i. e., a statement P(x,y) such
that the corresponding statement A is true but B is false. Make P(z,y) as simple as
possible. Hint. Three symbols suffice. These include z and y.

Copyright (©) 2003 by Laszl6 Babai. All rights reserved.



4 CHAPTER 1. LOGIC

Quantifier alternation and games.

Exercise 1.3.9. Digest and generalize the following. Consider a chess-puzzle which says “white
moves and wins in 2 moves.” Let W(z) denote the statement that the move x is available to
White; and B(z,y) that the move y is available to Black after White’s move x; and W (x, y, z)
the statement that move z is avaliable to White after White moved = and Black moved y.
Let C(x,y, z) denote the statement that after moves x, y, z, Black is checkmated. Now the
puzzle’s claim can be formalized in the following quantified formula:

(Fz, W (2))(Vy, B(z,y))(Fz, W (2,9, 2))(C(2,y, 2)).

Last update: October 12, 2004



1.4. NOTATION. FLOOR, CEILING )

1.4 Notation. Floor, ceiling

Notation: exp(x) = e*.

In combinatorial contexts, the symbol [n] will be used to denote {1,2,...,n}. This is not
be confused with the floor and ceiling notations: if x is a real number, the floor of x, denoted
by |z, is the greatest integer < z. For instance, |5.7| =5, |=5.7| = —6, |5] = 5. The ceiling
of z, denoted by [z], is the smallest integer > x. So [5.7] =6, [-5.7| = =5, [5] = 5.

Exercise 1.4.1. |[z] — |z]| < 1.

Exercise 1.4.2. Prove: |z] + |y] < |z + y|. When is the left-hand side strctly less than the
right-hand side?

Exercise 1.4.3. (a) Prove: if k is a positive integer then

V J _ | =]
El | k|
(b) Show that this statement becomes false if k is not an integer: for every k > 0 that is not

an integer, find x such that the two sides are not equal.

Exercise 1.4.4. Let p be a prime and p*® be the largest power of p which divides n!. Prove:

1.5 Limit of sequence
Definition 1.5.1 (finite limit of a sequence). Let {a,} be a sequence of real or complex
numbers. We write lim,,_, a, = ¢ (or simply a,, — ¢) if

(Ve > 0)(Ing € N)(Vn > ng)(lan, — c| < e).

We say that a sequence converges if it has a finite limit.

Definition 1.5.2 (infinite limit of a sequence). Let a, be a sequence of real or complex
numbers. We write lim,,_.~ a, = oo (or simply a,, — 00) if

(VL)(Inp € N)(Vn > ng)(an > L).
Exercise 1.5.3. Prove: (Vo € R) (limy,—oo(1 + 2/n)" = €%).

Exercise 1.5.4. (a) Consider the sequence {a,} defined by the recurrence a,y; = V2
with the initial condition ag = 1. Prove that lim,,_. a, exists; find the limit.

(b) Prove that the previous statement becomes false if we replace /2 by 1.5. What is the
largest number (in place of v/2) for which the sequence converges?

Copyright (©) 2003 by Laszl6 Babai. All rights reserved.



6 CHAPTER 1. LOGIC
1.6 Asymptotic Equality and Inequality

Often, we are interested in comparing the rate of growth of two functions, as inputs increase
in length. Asymptotic equality is one formalization of the idea of two functions having the
“same rate of growth.”

Definition 1.6.1. We say a,, is asymptotically equal to by, (denoted a,, ~ by,) if lim,, o ay, /by, =
1. For the purposes of this definition only, we set 0/0 = 1.

Observation. If ¢ # 0 is a constant then the statement a,, ~ ¢ (where ¢ means the sequence
¢, ¢, ... ) is equivalent to a,, — ¢ (where ¢ means the number c).

Exercise 1.6.2. Prove: a, ~ 0 if and only if (3ng)(Vn > ng)(a, = 0), i.e., a, = 0 for all
sufficiently large n.

Exercise 1.6.3. (a) Let a,, — co. Prove: a, ~ |ay].
(b) Let a,, — ¢ be a finite limit. True or false:

(i) If ¢ is not an integer then a, # |a,].
(ii) If ¢ = 0 then ay, % |an].

(iii) If ¢ is a positive integer then a, ~ |an].

Exercise 1.6.4. Let S denote the set of sequences of real or complex numbers. Prove that ~
is an equivalence relation on S, i.e., the relation “~” is

(a) reflexive: ap ~ ap;
(b) symmetric: if a,, ~ by, then b, ~ a,; and
(¢c) transitive: if a,, ~ b, and b, ~ ¢, then a, ~ c,.

Exercise 1.6.5. Prove: if a,, ~ b, and ¢, ~ d,, then a,c, ~ b,d,. If, moreover, c,d, # 0 for
all sufficiently large n then a,/c, ~ b,/d,. (Note that a finite number of undefined terms do
not invalidate a limit relation.)

Exercise 1.6.6. Consider the following statement.

If a,, ~ b, and ¢, ~ d,, then a,, + ¢, ~ b, + d,,. (1.1)

1. Prove that (L.1]) is false.

2. Prove: if a,c, > 0 then (1.1) is true. Hint. Prove: if a,b,¢,d > 0 and a/b < ¢/d then
a/b< (a+c)/(b+d) < c/d.

Last update: October 12, 2004



1.6. ASYMPTOTIC EQUALITY AND INEQUALITY 7

Exercise 1.6.7. 1. If f(z) and g(x) are polynomials with respective leading terms az™ and
bx™ then f(n)/g(n) ~ (a/b)x™ ™.
2. sin(1/n) ~ 1/n.
3. In(1+1/n) ~1/n.
4. Vn2+1—-n~1/2n.

5. If f is a function, differentiable at zero, f(0) = 0, and f’(0) # 0, then f(1/n) ~ f'(0)/n.
See that items 2—4 in this exercise follow from this.

Exercise 1.6.8. Find two sequences of positive real numbers, {a,} and {b,}, such that a,, ~ b,
but aj 4 by..

Next we state some of the most important asymptotic relations in mathematics.

Theorem 1.6.9 (Stirling’s Formula).

n! ~ <E> 2mn.
e

47’L
VT

Exercise 1.6.11. Give a very simple proof, without using Stirling’s formula, that In(n!) ~
nlnn.

2
Exercise 1.6.10. Prove: ( n) ~
n

Hint. It is obvious that In(n!) < nlnn (why?). According to the definition of limits, we need
to prove that (Ve > 0)(Ing € N)(Vn > ng)(In(n!) > (1 — e)nlnn. For § > 0, let N(n,0) =
[T{k|n'=% <k <n}. Observe that n! > N(n,8) > n(*=9% where s = n — [n'~9].

Theorem 1.6.12 (The Prime Number Theorem). Let w(x) be the number of primes less

than or equal to x.
(2) ~
m(x) ~ —,
Inx

where In denotes the natural logarithm function.

Exercise 1.6.13. Let p,, be the n-th prime number. Prove, using the Prime Number Theorem,
that p, ~ nlnn.

Exercise 1.6.14. Feasibility of generating random prime numbers. Estimate, how many ran-
dom < 100-digit integers should we expect to pick before we encounter a prime number? (We
generate our numbers by choosing the 100 digits independently at random (initial zeros are
permitted), so each of the 101%° numbers has the same probability to be chosen.) Interpret this
question as asking the reciprocal of the probability that a randomly chosen integer is prime.

Copyright (© 2003 by Laszl6 Babai. All rights reserved.



8 CHAPTER 1. LOGIC

Definition 1.6.15. A partition of a positive integer n is a representation of n as a sum of
positive integers: n = x1 + -+ + x where x; < .-+ < x. Let p(n) denote the number of
partitions of n.

Examples: p(1) = 1, p(2) = 2, p(3) = 3, p(4) = 5. The 5 representations of 4 are 4 = 4;
4=14+3;4=2+2,4=1414+2;4=1+1+1+1. One of the most amazing asymptotic
formulas in discrete mathematics gives the growth of p(n).

Theorem 1.6.16 (Hardy-Ramanujan Formula).

)~ e (j%ﬁ) | (1.2)

Definition 1.6.17. Let {a,} and {b,} be sequences of real numbers. We say that a,, is greater
than or asymptotically equal to by, denoted as a,, 2 by, if a, ~ max{ay,,by,}.

Exercise 1.6.18. Prove: a, 2> b, if and only if b, ~ min{a,, b, }.

~

Exercise 1.6.19. Prove: if a,, ~ b,, then a,, = b,,.

~

Exercise 1.6.20. Prove: if a,, 2 b, and b, = a,, then a, ~ b,.

~

Exercise 1.6.21. Prove: if a,, 2 b, and b, = ¢, then a, = c,.

Exercise 1.6.22. Conclude from the preceding exercises that the “>” relation is a partial
order on the set of asymptotic equivalence classes of sequences of real numbers.

Exercise 1.6.23. Prove: a, 2 0 if and only if (3ng)(VYn > ng)(a, > 0), i.e., a, > 0 for all
sufficiently large n.
> by, +d,,.

Exercise 1.6.24. Prove: if a, 2 b, > 0 and ¢, 2 d,, > 0 then a, + ¢, =
Exercise 1.6.25. (a) Let an,b, > 0. Prove that a, 2 b, if and only if (Ve > 0)(3ng)(Vn >
no)(an > by(1 —€)).

(b) Show that the same formula does not define the relation “a, 2 b,” if we omit the
condition a,, b, > 0.

Exercise 1.6.26. Assume b, — oo and a, > b% Inb,. Prove: b, < cy/an/Inay,, where ¢
is a constant. Determine the smallest value of ¢ for which this statement follows from the
assumptions.

1.7 Little-oh notation

Definition 1.7.1. We say that a,, = o(by,) (“ay, is little oh of b,”) if

ey, =

For the purposes of this definition only, we set 0/0 = 0, so if a, = b, = 0 then a,, = o(b,) as
well as a,, ~ by,.

Last update: October 12, 2004



1.8. BIG-OH, OMEGA, THETA NOTATION (O, €, ©) 9

Exercise 1.7.2. Prove: if a,, = o(b,) and a,, ~ b, then for all sufficiently large n we must
have a,, = b, = 0.

Observation. a, = o(1) means lim,,_,o a, = 0.

Exercise 1.7.3. Prove: a,, = o(by,) if and only if there exists a sequence ¢, such that |¢,| — 0o
and a, = b, /cy.

Exercise 1.7.4. Show: if a,, = o(c,) and b, = o(¢;,) then a, + b, = o(cy,).
Exercise 1.7.5. Consider the following statement:
If a,, = o(by,) and ¢, = o(d,) then a, + ¢, = o(by, + dp). (1.3)
1. Show that statement (1.3) is false.
2. Prove that statement (1.3)) becomes true if we assume b, d,, > 0.

Exercise 1.7.6. Show that a,, ~ b, <= a,, = b, (1 + o(1)).

Exercise 1.7.7. Use the preceding exercise to give a second proof of (1.1)) when ay,, by, ¢, d,, >
0.

Exercise 1.7.8. Construct sequences a,, b, > 1 such that a,, = o(b,) and Ina,, ~ Inb,.

Exercise 1.7.9. Let a,,b, > 1. (a) Prove that the relation a, = o(b,) does NOT follow
from the relation Ina,, = o(Inb,,).  (b) If we additionally assume that b,, — oo then a,, = o(b,,)
DOES follow from Ina,, = o(Inby,).

1.8 Big-Oh, Omega, Theta notation (O, 2, ©)
Definition 1.8.1. We say that

1. an = O(by,) (ay is “big oh” of by,) if |a,/b,| is bounded (0/0 counts as “bounded”), i.e.,

(3C > 0,n € N)(Vn > ng)(Jan| < C|by)).

2. ap = Q(by) if b, = O(ay), i.e., if |b,/ay| is bounded (Je > 0,19 € N)(Vn > ng)(|an| >
clbnl)

3. ap = O(by) if a, = O(by) and a, = Q(by), i.e.,
(3C,c > 0,n9 € N)(Vn > ng)(c|bn| < |an| < C|by)).

Exercise 1.8.2. Suppose the finite or infinite limit lim, .~ |ay/by| = L exists. Then

Copyright (©) 2003 by Laszl6 Babai. All rights reserved.



10 CHAPTER 1. LOGIC

(a) by, = o(ay) if and only if L = oo;
(b) an = o(by) if and only if L = 0; and
(¢) ap =©O(by) if and only if 0 < L < co.

Exercise 1.8.3. Construct sequences a,, b, > 0 such that a,, = ©(b,) but the limit lim a, /b,

n—oo
does not exist.

Exercise 1.8.4. Let ay,, b, > 0. Show: a, = ©(b,) <= Ina, =1Inb, + O(1).
Exercise 1.8.5. Show: if a,, = O(¢,) and b, = O(¢y,) then a, + b, = O(cy).

Exercise 1.8.6. Consider the statement “if a,, = Q(cy) and b, = Q(c¢;,) then a,, + b, = Q(cy).
(a) Show that this statement is false.  (b) Show that if we additionally assume a,b, > 0
then the statement becomes true.

Exercise 1.8.7. Let ay,, b, > 1. Suppose a,, = ©(b,,). Does it follow that Ina, ~ Inb,?

1. Show that even Ina, = Q(lnb,) does not follow.
2. Show that if a,, — oo then Ina, ~ Inb, follows.

Exercise 1.8.8. Let a,,b, > 1. Suppose a,, = Q(by,). Does it follow that Ina, = Inb,?

1. Show that even Ina, = Q(Inb,) does not follow.

2. Show that if a,, — oo then Ina,, = Inb,, follows.

Exercise 1.8.9. Let a,, b, > 0. Consider the relations
(A) a,=0(2") and (B) a, =290,
(a) Prove: the relation (B) does NOT follow from (A).
(b) Prove: if a,, > 0.01 and b,, > 0.01 then (B) DOES follow from (A).

Note. a, = 2°(n) means that a, = 2° where ¢, = O(by,).

Exercise 1.8.10. Prove: if a,, = Q(by,) and a,, = Q(cy,) then a, = Q(by, + cp).

Note. We say that the “statement A implies statement B” if B follows from A.

Exercise 1.8.11. (a) Prove that the relations a,, = O(b,) and a,, = O(c,) do NOT imply
an = O(by + cp).

(b) Prove that if an,b, > 0 then the relations a, = O(b,) and a, = O(c,) DO imply
an = O(by + ¢p)-

Exercise 1.8.12. Prove: Y I ; 1/i =Inn+ O(1).
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1.9 Prime Numbers

Exercise™ 1.9.1. Let P(z) denote the product of all prime numbers < x. Consider the
following statement: In P(z) ~ x. Prove that this statement is equivalent to the Prime Number
Theorem.

Exercise™ 1.9.2. Prove, without using the Prime Number Theorem, that

In P(x) = O(x).

Hint. For the easy upper bound, observe that the binomial coefficient (2n) is divisible by

n

the integer P(2n)/P(n). This observation yields P(x) < 4*. For the lower bound, prove that
if a prime power p! divides the binomial coefficient (Z) then p! < n. From this it follows that
(2:) divides the product P(2n)P((2n)/2)P((2n)Y/?)P((2n)'/*).... Use the upper bound to
estimate all but the first term in this product.

1.10 Partitions

Exercise 1.10.1. Let p(n, k) denote the number of those partitions of n which have at most k
terms. Let g(n, k) denote the number of those partitions in which every term is < k. Observe
that p(n,1) = ¢(n,1) = 1 and p(n,n) = q(n,n) = p(n). (Do!) Let p(n) = >_7" ;p(¢) and let
ﬁ(na k) = Z?:O p(i7 k)

1. Prove: p(n,k) = q(n, k).

2. Compute p(n,2). Give a very simple formula.

3. Compute p(n,3). Give a simple formula.

4. Prove: p(n) < p(n, k)2, where k = |\/n]. Hint. Use part 1 of this exercise.

Exercise 1.10.2. Using the notation proved in Exercise [1.10.1] prove the following.

~ k
(a) B(n,k) < ("{")
(b) logp(n) = O(y/nlogn). Hint. Use (a) and part [4] of Exercise [1.10.1
Exercise™ 1.10.3. Prove, without using the Hardy—Ramanujan formula, that
Inp(n) = O(V).

Hint. lnp(n) = Q(y/n) is easy (2 lines). The upper bound is harder. Use the preceding
exercise, especially item {4l When estimating p(n,/n), split the terms of your partition into

sets {z; < /n}, {Vn <z <2¢n}, {2v/n <z; <4y/n}, {4/n < x; < 8y/n}, ete.
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12 CHAPTER 1. LOGIC

Exercise™ 1.10.4. Let p’(n) denote the number of partitions of n such that all terms are
primes or 1. Example: 16 =1+1+1+ 3+ 3+ 7. Prove:

Inp'(n) =© < m”ﬂ) .

Exercise 1.10.5. Let r(n) denote the number of different integers of the form []z;! where
x; > 1 and Y x; = n. (The z; are integers.) Prove:

p'(n) <r(n) < pn).

OPEN QUESTIONS. Is logr(n) = ©(y/n)? Or perhaps, logr(n) = ©(y/n/logn)? Or
maybe log r(n) lies somewhere between these bounds?

1.11 Problems
Exercise 1.11.1. 1. (1 point) Describe in words what it means for a sequence a, that
an = O(1) (big-Oh of 1).

2. (2 points) Suppose a,, = O(1). Does it follow that the sequence a,, has a limit? (Prove
your answer.)

3. (2 points) Suppose the sequence a, has a finite limit. Does it follow that a, = O(1)?
Prove your answer.

Exercise 1.11.2. Let ap,b, > 1. True or false: if a, ~ b, then a = ©(b}). Prove your
answer.

Exercise 1.11.3. Prove: if a,, by, ¢y, d, > 0 and a, = O(b,,) and ¢, = O(d,,) then a, + ¢, =
O(b,+dy,). State the constant implicit in the conclusion as a function of the constants implicit
in the conditions.

Exercise 1.11.4. Using the fact that Inz = o(z), prove that (Iny)' = o(,/7). (z,y — .)
Do not use calculus.

Exercise 1.11.5. True or false (prove your answer):
2(3) ~ 9n*/2,

Exercise 1.11.6. Construct two sequences, {a,} and {b,} such that a, > 1, b, > 1, a,, ~ by,
and al! = o(b]}).

Exercise 1.11.7. Let {a,} and {b,} be sequences of positive numbers. Prove: if a,, — co and
an = O(by,) then In(a,) ~ In(by,).
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1.11. PROBLEMS 13

Exercise 1.11.8. Recall that a sequence {a,} is polynomially bounded if (3C)(a, = O(n%)).
Decide whether or not each of the following sequences is polynomialy bounded. Prove your
answers.

1. n®In(n® +5)
2. pinn
3. [Inn]!

Exercise 1.11.9. Construct two sequences, {a,} and {b,} such that a,, > 1, b, > 1, a,, ~ by,
and a]! = o(b]}).

Exercise 1.11.10. Let f, = (1 + 1/y/n)" and g, = V™. Prove: f, = O(g,) but f,, % gn.
Show that in fact lim, e fn/gn = 1//e.

Exercise 1.11.11. Consider the statement
limzY = 1 is “almost always true” as x,y — 07.

Give a definition of “almost always” in this context, then prove the statement.

Exercise 1.11.12. Let {a,} be a sequence of positive integers, and assume a, — oo. Let

a
b, = < 3”). Prove that a,, ~ ¢ - bg for some constants ¢, d. Determine the values of ¢ and d.
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(xX)f

c=Xa+ (1—=X)b

Figure 1.1: Definition of convexity

Definition 1.1.1. Let f(x) be a real function defined over a finite or infinite interval. We say
that f(z) is a conver function if for all a, b in its domain and all real numbers A in the interval
0 < A <1, the inequality

fAa+(1=X2)b) < Af(a) + (1 - A)f(b)

holds. The function g(x) is concave if —g(z) is convex. See Figure [1.11]

Exercise 1.1.2. Prove the following sufficient condition of convexity: If f(x) is twice differ-
entiable and its second derivative is always > 0 then f(z) is convex.

Exercise 1.1.3. Prove the following sufficient condition of convexity: If f(x) is continuous

10 ¢ Flo) £
2 2

and the inequality f < holds for all a, b in its domain then f(z) is convex.

Exercise 1.1.4. (a) The functions 2, (:26), e” are convex. (b) The functions /z, Inx are

concave. (c¢) The function sinz is concave over the interval [0, 7] and convex over the interval
[, 27].

Exercise 1.1.5. (a) A continuous convex function is unimodal: it decreases to its minimum
and then it increases. (b) If a continuous convex function is invertible then it is monotone
(increasing or decreasing). (c¢) The inverse of a monotone increasing continuous convex function
is concave. (d) The inverse of a monotone decreasing convex function is convex.

Theorem 1.1.6 (Jensen’s Inequality). If f(x) is a convex function then for any choice of
real numbers x1,...,xx from the domain of f,

f (Z?l xz) < Zf:1 f(z;)

k - k
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1.11. PROBLEMS 15

Exercise 1.1.7. Prove Jensen’s Ineqality. Hint. Induction on k.
Exercise 1.1.8. Prove the inequality between the arithmetic and quadratic means: for
all real x1,...,x,

m1+-~-+xk< x%+---+x%
k - k ’

Hint 1. Use the convexity of f(x) = 22 and Jensen’s Inequality.
Hint 2. Give a 1-line proof using the Cauchy—Schwarz Inequality.
Hint 3. Give a simple direct proof (do not use either Jensen’s Inequality or Cauchy—Schwarz).

Exercise 1.1.9. In the proof of the Kévari-S6s—Turan theorem (Exercise [3.1.27)), we applied
x

Jensen’s Inequality to f(z) = (5) = z(z — 1)/2. Modify the proof so that Jensen’s Inequality
is avoided and the inequality between the arithmetic and quadratic means is used instead.

Exercise 1.1.10. Prove the inequality between the arithmetic and geometric means: if

T1,...,TE > 0 then
r1+ -+ g

k
Hint. Use the concavity of the natural logarithm function, In.

> (.1’1.%’2 ce :L‘k)l/k .

Copyright (©) 2003 by Laszl6 Babai. All rights reserved.



16 CHAPTER 1. LOGIC
1.2 Gecd, congruences

Exercise 1.2.1. Prove that the product of n consecutive integers is always divisible by n!.
Hint. One-line proof.

Exercise 1.2.2. (The Divisor Game) Select an integer n > 2. Two players alternate
naming positive divisors of n subject to the following rule: no divisor of any previously named
integer can be named. The first player forced to name “n” loses. Example: if n = 30 then the
following is a possible sequence of moves: 10, 3, 6, 15, at which point it is the first player’s
move; he is forced to say “30” and loses.

1. Find a winning strategy for the first player when n is a prime power; or of the form pg*;
p*q*: pgr; or pgrs, where p,q,r, s are prime and k is a positive integer.

2. Prove: Vn > 2, the first player has a winning strategy. (Hint: prove, in two or three
lines, the existence of a winning strategy.)

Notation 1.2.3. Let Div (n) denote the set of positive divisors of n.

Exercise 1.2.4. Prove, for all a,b € Z,
(Div (a) € Div (b)) <= a]lb.

Exercise® 1.2.5. Prove: (Va,b)(3d)(Div (a) N Div (b) = Div (d)). A nonnegative d satisfying
this statement is called the g.c.d. of a and b. Note that g.c.d. (a,b) =0 <= a = b= 0. Define
l.c.m. analogously. When is l.c.m. (a,b) = 07

Exercise 1.2.6. Prove: g.c.d. (a* — 1,a’ — 1) = a? — 1, where d = g.c.d. (k, £).

Definition 1.2.7. The Fibonacci numbers are defined by the recurrence F,, = F,,_1 + F,,_o,
=0, Fp =1.

Exercise® 1.2.8. Prove: g.c.d. (Fy, Fy) = F,, where d = g.c.d. (k, ).
Exercise 1.2.9. Prove: if a = b (mod m) then g.c.d. (a,m) = g.c.d. (b,m).
Exercise 1.2.10. Prove: if a,b > 0 then g.c.d. (a,b) - l.c.m. (a,b) = ab.

Exercise 1.2.11. Prove: congruence modulo m is an equivalence relation on Z. The equiv-
alence classes are called the residue classes mod m. There are m residue classes modulo m.
Under the natural operations they form the ring Z/mZ. The additive group of this ring is
cyclic.

Exercise 1.2.12. Prove that the sequence of Fibonacci numbers mod m is periodic. The
length of the period is < m? — 1.
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1.2. GCD, CONGRUENCES 17

Exercise 1.2.13. An integer-preserving polynomial is a polynomial f(z) such that (Va €
Z)(f(a) € Z). Prove that f(z) is integer-preserving if and only if it can be written as

f(z) = anai (f) (1.4)

1=0

with suitable integer coefficients a;. Here

() -ttt ()

Exercise 1.2.14. A congruence-preserving polynomial is an integer-preserving polynomial such
that (Va,b,m € Z)(a = b (mod m) = f(a) = f(b) (mod m)). Prove that f(x) is congruence-
preserving if and only if (Vi)(e; | a;) in the expression (1.4), where e¢; = L.c.m. (1,2,...,17).

Exercise 1.2.15. A multiplicative inverse of a modulo m is an integer x such that ax = 1
(mod m); notation: = a~! mod m. Prove: Ja~! mod m <= g.c.d. (a,m) = 1.

Exercise 1.2.16. (Wilson’s theorem) Prove: (p —1)! = —1 (mod p). Hint: match each
number with its multiplicative inverse in the product (p — 1)!

the right hand side with terms on the left hand side so that corresponding terms satisfy j = at
(mod p).

Exercise 1.2.17. Prove: if g.c.d. (a,p) = 1 then H?_lj = Hf:_ll(ai). Hint. Match terms on

Theorem 1.2.18 (Fermat’s little Theorem). If g.c.d. (a,p) = 1 then a?~! =1 (mod p).
Exercise 1.2.19. Infer Fermat’s little Theorem from Exercise [[.2.17

Exercise 1.2.20. Use the same idea to prove the Euler—Fermat theorem: if g.c.d. (a,m) =
1 then a?™ =1 (mod m). (p is Euler’s ¢ function, see Definition [1.3.1)).

Exercise 1.2.21. Prove: if p is a prime and f is a polynomial with integer coefficients then
f(z)? = f(2P) (mod p). Here the congruence of two polynomials means coefficientwise con-
gruence.

The multiplicative group (Z/mZ)* consists of the mod m residue classes relatively prime
to m. Its order is ¢(m). For a review of related concepts in abstract algebra, see Chapter @]

(cf. especially Exercise [6.2.6]).

Exercise™ 1.2.22. Prove: if p is a prime then (Z/pZ)* is cyclic (see Definition [6.1.11)). A
generator of this group is called a primitive root mod p.

Exercise™ 1.2.23. Prove: if p is an odd prime then (Z/p*Z)* is cyclic.

Exercise™ 1.2.24. If k > 2 then the group (Z/2*Z)* is not cyclic but the direct sum of a
cyclic group of order 2 and a cyclic group of order 272,
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1.3 Arithmetic Functions

Definition 1.3.1 (Euler’s Phi Function).
o(n) = ‘{k: e n] : ged. (kn) = 1}‘
= number of positive integers not greater than n which are relatively prime to n

Exercise 1.3.2. Show that the number of complex primitive n-th roots of unity is ¢(n). Show
that if d|n then the number of elements of order d in a cyclic group of order n is ¢(d).

> p(d) =n.

d|n

Exercise 1.3.3. Show

Exercise™ 1.3.4. Let D,, = (d;;) denote the n x n matrix with d;; = g.c.d. (i, 7). Prove:

det Dy = ¢(1)p(2) - - - (n).

(Hint. Let Z = (z;;) be the matrix with z;; = 1 if i|j and z; = 0 otherwise. Consider
the matrix Z7 FZ where F is the diagonal matrix with entries ¢(1),...,¢(n) and ZT is “Z-
transpose” (reflection in the main diagonal).)

Definition 1.3.5 (Number of [positive] divisors).
d(n) :‘{d eN:d|n}

Exercise 1.3.6. Prove: d(n) < 2y/n.

Exercise® 1.3.7. Prove: (Ve > 0)(3ng)(Vn > ng)(d(n) < n¢). (Hint. Use a consequence of
the Prime Number Theorem (Theorem in the next section).) Prove that d(n) < n¢/Innn
for some constant c. The best asymptotic constant is ¢ = In2 + o(1).

Exercise 1.3.8. Prove that for infinitely many values of n the reverse inequality d(n) >
ne/mn holds (with another constant ¢ > 0). (Again, use the PNT.)

Exercise™ 1.3.9. Let D(n) = (1/n) Y1 | d() (the average number of divisors). Prove:

D(n) ~1In(n). (Comment. If we pick an integer ¢ at random between 1 and n then D(n) will
be the expected number of divisors of t. — Make your proof very simple (3 lines). Do not use
the PNT.)

Exerciset 1.3.10. Prove: (1/n)> 1, d(i)* = ©((Inn)?).

Definition 1.3.11 (Sum of [positive] divisors).

o(n)=> d

d|n
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Definition 1.3.12 (Number of [distinct] prime divisors). Let n = p’fl .- p¥ where the p;

are distinct primes and k; > 0. Set v(n) = r (number of distinct prime divisors; so v(1) = 0).
Set v*(n) = k1 + -+ - + k, (total number of prime divisors; so v*(1) = 0).

Exercise™ 1.3.13. Prove that the expected number of distinct prime divisors of a random
integer ¢ € [n] is asymptotically Inlnn :

1 n
— Z v(i) ~ Inlnn.
n -
=1
How much larger is v*? On average, not much. Prove that the average value of v* is also
asymptotic to Inlnn.

Definition 1.3.14. n is square-free if (Vp prime )(p? { n).

Definition 1.3.15 (Md&bius Function).

1 n=1
pn) =< (=1)* n=p;---pp where the p; are distinct (n is square-free)
0 if (Ip)(p* | n)

Exercise 1.3.16. Let 6(n) = 3_,,, 1(d). Evaluate 6(n).

Definition 1.3.17 (Riemann zeta function). For s > 1 define the zeta function ((s) =
— 1

E-
n=1

Exercise 1.3.18. Prove Euler’s identity:

Exercise 1.3.19. Prove:

1 & pln)
@_Z ns :

n=

—

Exercise 1.3.20. Prove:

(2 =3 4

n=1

Exercise 1.3.21. Prove:
o(n)

C)(C(s) 1) =D —=.

ns

n=1

Exercise* 1.3.22. (Euler) Prove: ((2) = 72/6.
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20 CHAPTER 1. LOGIC

Exercise 1.3.23. Give a natural definition which will make following statement sensible and
true: “the probability that a random positive integer n satisfies n = 3 (mod 7) is 1/7.” Our
choice of a “random positive integer” should be “uniform” (obviously impossible).  (Hint.
Consider the integers up to x; then take the limit as z — o0.)

Exercise 1.3.24. Make sense out of the question “What is the probability that two random
positive integers are relatively prime?” Prove that the answer is 6/72. Hint. To prove that
the required limit exists may be somewhat tedious. If you want to see the fun part, assume
the existence of the limit, and prove in just two lines that the limit must be 1/{(2).

Definition 1.3.25. Let F' be a field. f: N — F is called multiplicative if
(Va,b)(g.c.d. (a,b) =1 = f(ab) = f(a)f(b)).
f is called completely multiplicative if
(Va,b)(f(ab) = f(a) f(b))-
f is called additive if
(Va,b)(g.c.d. (a,b) = 1= f(ab) = f(a) + f(b)).

Exercise 1.3.26. Show that

1. ¢,0,d, and p are multiplicative but not completely multiplicative
2. v is additive and v* is completely additive. Log is completely additive.
Exercise 1.3.27. Show

Lo =p"—p"1=(@p-1)p

2.d(pF) =k+1

k—1

p—1
Exercise 1.3.28. Show

190<sz> ﬁ i — py

=1

2. d(le> Hk+1)

i=1

kitl _ q

3.0 (HP, ) lepzfl
i=1
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Exercise 1.3.29. Show

e (1)

pIN
p prime

Let F be a field and f: N — F. Define

o) = 3" 7).
d|n

Exercise 1.3.30 (Mo6bius Inversion Formula). Show
n
f(n) = dlZNgwm (5)-

Exercise 1.3.31. Use the Mobius Inversion Formula together with Exercise [I.3.3]for a second

proof of Exercise [1.3.29

Exercise 1.3.32. Prove that the sum of the complex primitive n-th roots of unity is pu(n).

Definition 1.3.33. The n-th cyclotomic polynomial ®,(z) is defined as

B, (2) = [J(x - w)

w

where the product ranges over all complex primitive n-th roots of unity. Note that the degree of
®, () is p(n). Also note that ®1(z) = x—1, ®o(x) = z+1, ®3(z) = 22+ 2+1, Pyg(x) = 22 +1,
Os(r) =t + a3+ 22+ o+ 1, Pg(x) = 2% — o + 1.

Exercise 1.3.34. Prove that ®,(z) has integer coefficients. What is the coefficient of z#(")~1?
Exercise 1.3.35. Prove: if p is a prime then ®,(z) = 2P~ 1+ 2P 2 + ... 4 2 + 1.

Exercise 1.3.36. Prove:

O () = [ (= — DD,

dln

Exerciset 1.3.37. (Bateman) Let A,, denote the sum of the absolute values of the coef-
ficients of ®,(z). Prove that A, < n™/2 Infer from this that A4, < exp(n®™"") for
some constant ¢. Hint: We say that the power series > 2 a,z" dominates the power series
Yoo bpx™ if (Yn)(|bn| < ay). Prove that the power series

1
Hl—md

dln

dominates ®,(x).
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Note: Erdés proved that this bound is tight, apart from the value of the constant: for
infinitely many values of n, A,, > exp(n®™™") for another constant ¢ > 0.

Exercise™ 1.3.38. (Kronecker) Let f(z) = Y1 ;a;z" be a monic polynomial of degree n
(i.e., a, = 1) with integer coefficients. Suppose all roots of f have unit absolute value. Prove
that all roots of f are roots of unity. (In other words, if all algebraic conjugates of a complex
algebraic number z have unit absolute value then z is a root of unity.)

1.4 Prime Numbers

Exercise 1.4.1. Prove: N

Z% =Inn+O0(1).
=1

1 11
Hl—l/p: i’

p<w

Exercise 1.4.2. Prove:

where the product is over all primes < x and the summation extends over all positive integers ¢
with no prime divisors greater than x. In particular, the sum on the right-hand side converges.
It also follows that the left-hand side is greater than Inx.

Exercise 1.4.3. Prove: > 1/p = oo. (Hint. Use the preceding exercise. Take natural
logarithms; use the power series expansion of In(1 — z). Conclude that > _ 1/p > Inlnz +
O(1). (In other words, >, 1/p — Inlnx is bounded from below.))

p<z

Exercise” 1.4.4. Prove: ) _ 1/p =Inlnz + O(1). (In other words, | > ., 1/p —Inlnz| is
bounded.)

Exerciset 1.4.5. Prove p(n) = 2 ( ) and find the largest implicit asymptotic constant.

Inlnn

Let m(z) the number of primes less than or equal to z.

Theorem 1.4.6 (Prime Number Theorem)(Hadamard and de la Vallée Poussin,

1896).
) x

Exercise 1.4.7. Use the PNT to show that lim Pni1

n—0oo pn

= 1, where p,, is the n-th prime.

Exercise 1.4.8. Use the PNT to prove p, ~n -Inn.

Exercise 1.4.9. Prove H p =exp (z(140(1))). Prove that this result is in fact equivalent

p<z
p prime

to the PNT.
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Exercise 1.4.10. Let e, = Lcm. (1,2,...,n). Prove: e, = exp (n(1+ o(1))). Prove that this
result is in fact equivalent to the PNT.

Exercise 1.4.11. Prove: Y. _ p~ 22/(2Inz). (Use the PNT.)

p<z

Definition 1.4.12. A permutation is a bijection of a set to itself. The permutations of a
set form a group under composition. The symmetric group of degree n is the group of all
permutations of a set of n elements; it has order n!. The exponent of a group is the l.c.m. of
the orders of all elements of the group.

Exercise 1.4.13. Prove: the exponent of S, is e,.

Exercise’ 1.4.14. Let m(n) denote the maximum of the orders of the elements in S,,. Prove:

m(n) = exp(vVnlnn(l+ o(1))).

Exercise* 1.4.15. Let a(n) denote the “typical” order of elements in S,,. Prove that Ina(n) =
O((Inn)?). (“Typical” order means that 99% of the elements has order falling in the stated
range. Here “99” is arbitrarily close to 100.) Hint. Prove that a typical permutation has
O(Inn) cycles.

Erdés and Turdn proved in 1965 that in fact Ina(n) ~ (Inn)?/2.

Exercise 1.4.16. Prove from first principles: H p < 4*. (Hint:ifn < p < 2nthen p| (2:))

p<x
p prime

Exercise 1.4.17. Prove: if p > v/2n then p? ¢ (27?)

Exercise 1.4.18. Prove: if ¢ is a prime power dividing (2:) then ¢ < n. (Hint. Give a
formula for the highest exponent of a prime p which divides (27?) First, find a formula for the
exponent of p in n!.)

Exercise 1.4.19. Prove from first principles: H p > (2+o0(1))*. (Hint. Consider the

p<z
p prime

prime-power decomposition of (332) Show that the contribution of the powers of primes < \/z
is negligible.)

Exercise 1.4.20. Paul Erdés was an undergraduate when he found a simple proof of Cheby-
shev’s theorem based on the prime factors of (2:) Chebyshev’s theorem is a precursor of the

PNT; it says that
T
-6 (%)
m(x) Inz

Following Erdds, prove Chebyshev’s Theorem from first principles. The proof should be only
a few lines, based on Exercises [1.4.16| and [1.4.19]

Exercise 1.4.21. Prove: for all integers x, either 2 = 0 (mod 4) or 22 =1 (mod 4). (Hint.
Distinguish two cases according to the parity of x [parity: even or odd].)
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Exercise 1.4.22. a? +b*> # —1 (mod 4).

Exercise 1.4.23. (a) Make a table of all primes < 100. Next to each prime p write its
expression as the sum of two squares if p can be so represented; otherwise write “NONE”
next to p.

(b) Discover and state a very simple pattern as to which primes can and which primes cannot
be represented as the sum of two squares. Your statement should go like this: “It seems
from the table that a prime p can be represented as the sum of two squares if and only
if either p = 2 or ***” where “***” stands for a very simple rule (less than half a line).

(¢) Give a simple proof that the primes you believe cannot be represented as a sum of two
squares indeed cannot. Hint. Use the previous exercise.

Exercise 1.4.24. Prove: if p is a prime number and p > 5 then p = £1 (mod 6). Hint. There
are only 6 cases to consider. (What are they?)

1.5 Quadratic Residues

Definition 1.5.1. a is a quadratic residue mod p if (p 1 @) and (3b)(a = b? mod p).
Exercise 1.5.2. Prove: a is a quadratic residue mod p <= a®~9/2 =1 (mod p).
Definition 1.5.3. a is a quadratic non-residue mod p if (Vb)(a # b* mod p).
Exercise 1.5.4. Prove: a is a quadratic non-residue mod p < a®=1/2 = _1 (mod p).

Definition 1.5.5 (Legendre Symbol).

a 1 if a is a quadratic residue mod p
() =<¢ —1 if ais a quadratic non-residue mod p
P 0 ifpla

Let F, be a finite field of odd prime power order q.
Definition 1.5.6. a € F, is a quadratic residue if a # 0 and (3b)(a = b?).
Exercise 1.5.7. Prove: a is a quadratic residue in [, <= alae=D/2 =1,
Definition 1.5.8. a € F, is a quadratic non-residue if (Vb)(a # b?).
Exercise 1.5.9. Prove: a is a quadratic non-residue in F, <= alt-D/2 = 1.

Exercise 1.5.10. Prove: in F,, the number of quadratic residues equals the number of
quadratic non-residues; so there are (¢ — 1)/2 of each. (As before, ¢ is an odd prime power.)
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Definition 1.5.11. Let ¢ be an odd prime power. We define the quadratic character
x:F;, —{0,1,-1} C C by

1 if a is a quadratic residue
x(a) =< —1 if a is a non-residue
0 ifa=0

Note that if ¢ = p (i.e. prime and not prime power) then x(a) = <a>.
p

Exercise 1.5.12. Prove x is multiplicative.
Exercise 1.5.13. The Legendre Symbol is completely multiplicative in the numerator.

Exercise 1.5.14. Prove that —1 is a quadratic residue in F, if and only if ¢ = 1 (mod 4).
Hint. Exercise [[L5.7

Exercise 1.5.15. Prove that Eaqu x(a(a — 1)) = —1. Hint. Divide by a?.

Exercise 1.5.16. Prove that each of the four pairs (+1,41) occur a roughly equal number of
times (= ¢/4) as (x(a),x(a — 1)) (a € F;). “Roughly equal” means the difference is bounded
by a small constant. Moral: for a random element a € F,, the values of x(a) and x(a — 1) are
nearly independent.

Exercise 1.5.17. Let f(z) = ax?® + bx + ¢ be a quadratic polynomial over F, (a,b,c € Fy,
a # 0). Prove: if b?> — 4ac # 0 then | >aer, X(f(a))| < 2. What happens if b2 — dac = 0?

1.6 Lattices and diophantine approximation

Definition 1.6.1. An n-dimensional lattice (grid) is the set L of all integer linear combina-
tions > ; a;b; of a basis {bi,...,b,} of R" (a; € Z). The set of real linear combinations
with 0 < a; <1 (a; € R) form a fundamental parallelepiped.

Exercise 1.6.2. The volume of the fundamental parallelepiped of the lattice L is det(L) :=
|det(by,...,by)|.

Exercise* 1.6.3. (Minkowski’s Theorem) Let L be an n-dimensional lattice and let V' be
the volume of its fundamental parallelepiped. Let A C R™ be an n-dimensional convex set,
symmetrical about the origin (i.e., —A = A), with volume greater than 2"V. Then ANL # {0},
i.e., A contains a lattice point other than the origin.

Hint. Linear transformations don’t change the proportion of volumes, and preserve convexity
and central symmetry. So WLOG L = Z" with {b;} the standard basis. The fundamental
parallelepiped is now the unit cube C. Consider the lattice 2L = (2Z)"™. Then the quotient
space R"/(2Z)™ can be identified with the cube 2C which has volume 2". Since A has volume
> 2™ there exist two points u,v € A which are mapped to the same point in 2C, i.e., all
coordinates of u — v are even integers. Show that (v —v)/2 € AN L.
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Exercise 1.6.4. Finding “short” vectors in a lattice is of particular importance. Prove the
following corollary to Minkowski’s Theorem:

(Jv e L) (o < |[v]lss < (det L)l/n) .

Definition 1.6.5. Let a1,...,a, € R. A simultaneous e-approrimation of the «; is a sequence
of fractions p;/q with a common denominator ¢ > 0 such that (Vi)(|ga; — pi| < €).

Exerciset 1.6.6. (Dirichlet) (Vai,...,q, € R)(Ve > 0)(3 an e-approximation with the
denominator satisfying 0 < ¢ < e™").

Hint. Apply the preceding exercise to the (n+ 1)-dimensional lattice L with basis ey, ..., e,, f
where f =" | ae; + e"tle, 1 and {ey,...,e,11} is the standard basis.

The following remarkable result was first stated by Albert Girard (1540-1632) who may
have found it on an empirical basis; there is no evidence that he could prove it. The first person
to claim to have a proof was Pierre de Fermat (1601-1665). Fermat, however, never published
anything mathematical and, while he claimed many discoveries in his correspondence or on
the margins of his copy of Diophantus’ Arithmetic (those marginal notes were later found and
published by his son Samuel), there is no trace of proofs, except for one, in his entire extensive
surviving correspondence. A century later Leonhard Euler (1707-1783) took great pride in
providing proofs of Fermat’s theorems, including this one. We give a more recent, devilishly
clever proof, based on Minkowski’s Theorem and found by Paul Turan (1910-1976).

Exercise* 1.6.7 (Girard-Fermat-Euler). Prove: a prime p can be written as the sum of
two squares if and only if p=2 or p=1 (mod 4).
Hint. Necessity was established in Exercise [1.4.23] For sufficiency, assume p = 1 (mod 4).

-1
Then <) = 1 by Exercise [1.5.14{ and therefore (Ja)(p|a® + 1). Consider the lattice (plane
p

grid) L C Z? consisting of all integral linear combinations of the vectors (a,1) and (p,0).
Observe that if (z,y) € L then p|2%+1y%. Moreover, the area of the fundamental parallelogram
of the lattice is p. Apply Minkowski’s Theorem to this lattice to obtain a nonzero lattice point
(x,y) satisfying 2% + 3% < 2p.

1.7 Introductory Problems: g.c.d., congruences, multiplicative
inverse, Chinese Remainder Theorem, Fermat’s Little The-
orem

Notation: Unless otherwise stated, all variables in this chapter are integers. For n > 0, [n] =
{1,2,...,n}. The formula d|n denotes the relation “d divides n,” i.e., (3k)(n = dk). We
also say “d is a divisor of n” or “n is a multiple of d.” Note that (Va)(a|a), including 0|0
(even though we do not allow division by zero!). In fact 0|n <= n = 0. Note also that
(Vk (n|k)) <= n = +1.
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Notation 1.7.1. Let div (n) denote the set of divisors of n.

Ezamples. div (6) = div (—6) = {£1,£2,4+3,£6}; div (1) = {£1}; div (0) = Z.

Exercise 1.7.2. Prove: a |b <= div(a) C div (b).

Exercise 1.7.3. Prove: div (a) =div(b) <= b= *a.

Congruence notation. We write a = b (mod m) if m | (a — b) (“a is congruent to b modulo
m??).

For instance, 100 = 2 (mod 7) (because 7 | 100 — 2 = 98 = 7 - 14); therefore, if today is
Monday then 100 days from now it will be Wednesday (Monday +2). This example expains
why modular arithemtic (calculations modulo m) are also referred to as “calendar arithmetic.”

Division Theorem. (Va)(Vb > 1)(3¢)(3r)(0 <r <b—1and a =bg+r).

q is called the “integer quotient” and r the “remainder.”

Exercise 1.7.4. Prove: r = a (mod b).

Remainder notation. The remainder r is denoted by the expression (¢ mod b). (Exercise
explains this notation; the congruence relation and the mod function should not be
confused.) Examples: (100 mod 7) = 2; (=100 mod 7) = 5; (98 mod 7) = 0; (0 mod 7) =
0; (& mod 0) is undefined.

Common Divisor. The integer f is a common divisor of the integers a and b if f | a and

flo.

Exercise 1.7.5. Prove: f is a common divisor of a and b <= div (f) C div (a) Ndiv (b).

Greatest Common Divisor. The integer d is a greatest common divisor of the integers a
and b if

e d is a common divisor of a and b;
e every common divisor of a and b divides d.

Exercise 1.7.6. Prove: d is a greatest common divisor of a and b <= div (d) = div (a)Ndiv (b).

The existence of a greatest common divisor is not evident at all; it is an important basic
theorem. Often we need the additional fact that the greatest common divisor can be written
as a linear combination with integer coefficients: d = au + bv.

Exerciset 1.7.7. (Va)(Vb)(Ju)(Fv)(au + bv is a greatest common divisor of a and b).

Exercise 1.7.8. Prove: if d is a greatest common divisor of @ and b then —d is also a greatest
common divisor of ¢ and b and there are no other greatest common divisors.
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G.c.d. notation. g.c.d.(a,b) will denote the (unique) nonnegative greatest common divisor
of the integers a and b.

Exercise 1.7.9. Prove: g.c.d.(0,0) = 0.
Exercise 1.7.10. What are the common divisors of 0 and 0?7 Is 0 the “greatest”?
Exercise 1.7.11. (a) Prove: (Va)(g.c.d.(a,a) = |al).
(b) Prove: (Va)(g.c.d.(a,0) = |al).
Note that each of these statements includes the fact that g.c.d.(0,0) = 0.

The Euclidean algorithm, described in Euclid’s Elements around 350 B.C.E., is an effi-
cient method to calculate the g.c.d. of two positive integers. We describe the algorithm in
pseudocode.

Euclidean Algorithm

INPUT: integers a, b.

OUTPUT: g.c.d.(a,b).

0 Initialize: A := |a|, B := |b|

1 while B > 1 do

2 division: R := (A mod B)
3 A:=B,B:=R

4 end(while)
5 return A

The correctness of the algorithm follows from the following loop invariant:

g.c.d.(A,B) =g.c.d.(a,b).

Exercise 1.7.12. Prove that the statement above is indeed a loop invariant, i.e., prove that
if the statement “g.c.d.(A4, B) =g.c.d.(a,b)” is true before an iteration of the while loop then
it remains true after the execution of the while loop.

In addition, at the end we use the fact that g.c.d.(4,0) = A.

Exercise 1.7.13. The efficiency of the Euclidean the algorithm follows from the observation
that after every two rounds, the value of B is reduced to less than half. Prove this statement.

This implies that the number of rounds is < 2n where n is the number of binary digits of b.
Therefore the total number of bit-operations is O(n?), so this is a polynomial-time algorithm.
(Good job, Euclid!)
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Exercise 1.7.14. Use Euclid’s algorithm to determine the g.c.d. of the following pairs of
integers:

(a) (105; 480)
(b) (72,806; 13,587,574).
Exercise 1.7.15. Let n be a positive integer and let d(n) denote the number of positive divisors

of n. For instance, d(1) =1, d(2) = d(3) = d(5) = 2, d(4) = 3, d(6) = 4. Prove your answers
to the following questions.

(a) For what values of n is d(n) = 27
(b) For what values of n is d(n) = 3?7
(c) Prove: (Vn)(d(n) < 24/n).

Exercise 1.7.16. (a) Let a,b > 0 and let us perform Euclid’s algorithm to find the g.c.d. of
a and b. Let r1,79,... denote the successive remainders; let us use the notation r_1 = a
and ro = b. Prove: (Vi > —1)(ri12 < r;i/2).

(b) Prove: if a has n bits (digits in binary) then the algorithm will terminate in < 2n rounds
(one round being a division to find the next remainder). Hint: use part (a).

Exercise 1.7.17. Recall that the multiplicative inverse of b modulo m, denoted by z = (b1
(mod m)), is an integer = such that bx =1 (mod m). Find each of the following multiplicative
inverses, or prove that the multiplicative inverse does not exist. Among the infinitely many
values of the multiplicative inverse, find the smallest positive integer.

(a) 57! (mod 17)

(b) 3971 (mod 403)

(c) 271 (mod 2k + 1) (where k is a given integer).

(d) k=! (mod 2k + 1). Find the inverse in the range {0,1,...,2k}.

(e) k' (mod 3k + 1). Find the inverse in the range {0,1,...,3k}.
Exercise 1.7.18. Solve the following system of congruences:

7 (mod 16)
3 (mod 15)
1 (mod 11)
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Exercise 1.7.19. Decide whether or not the following system of congruences is solvable. If
your answer is YES, find a solution. If your answer is NO, prove your answer.

= 7 (mod 13)
= 3 (mod 25)
= 20 (mod 39)

Exercise 1.7.20. Prove whether or not the following system of congruences is solvable.

7 (mod 18)
7 (mod 12)
1 (mod 6)

Exercise 1.7.21. Consider the statement “if e =1 (mod 5) and b=1 (mod5) then
g.c.d.(a,b) =1 (mod 5).” Find infinitely many counterexamples.

Exercise 1.7.22. The Fibonacci numbers are defined as follows: Fy = 0, F; = 1, and for
n>2 F,=F, 1+ F, 2 SoFy,=1F3=2F,=3F;,=5,Fs =8, I =13, Fg = 21, etc.
Prove: for all n > 1,

)

b) |F2— Fy_ 1Fpiq| = 1.
)
)

Hint: For parts (a) and (b), use mathematical induction.

Exercise 1.7.23. Calculate (a mod m) where a = 31145 and m = 173. Recall that the
expression (a mod m) denotes the smallest nonnegative remainder of the division of a by m.
Hint. Fermat’s little Theorem (Theorem [1.2.18)).

Exercise 1.7.24. (a) Prove: if m is a prime and 22 = 1 (mod m) then = +1 (mod m)
(i.e., either z =1 (mod m), or x = —1 (mod m)).

(b) Prove that (a) becomes false if we omit the condition that m is a prime. (Give a coun-
terexample.)

(¢) Prove that (a) is false for every m of the form m = pg where p,q are distinct odd
primes. In other words, show that (Vp, ¢)(3z)( if p, q are distinct odd primes then 2% =
(mod pq) but x # +1 (mod pq)). Hint. Observe that a = b (mod pq) < a = b (mod p)
and a = b (mod ¢). Work separately modulo each prime; combine your results using the
Chinese Remainder Theorem.
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Exercise 1.7.25. Prove: Va(2? # —1 (mod 419)).
Hint. Proof by contradiction. Use Fermat’s little Theorem (Theorem|(1.2.18])). (419 is a prime.)

Exercise 1.7.26. (a) Prove: if g.c.d.(a,85) = 1 then a3® = a (mod 85)). Hint. 85 =5-17,
so two numbers are congruent modulo 85 if and only if they are congruent modulo 5 as
well as modulo 17. Prove the stated congruence modulo 5 and modulo 17.

(b) True or false (prove your answer): if 85 does not divide a then a3? =1 (mod 85)).

Exercise 1.7.27. True or False. If False, give a counterexample.
1. If g.c.d. (a,b) =0 then a = b= 0.
2. If l.em. (a,b) =0 then a = b = 0.
3. If a=b (mod 24) then a =b (mod 6) and a = b (mod 4).
4. If a=b (mod 6) and @ = b (mod 4) then a = b (mod 24).

Exercise 1.7.28. Consider the following statement:

Statement. o' is a multiplicative inverse of @ modulo 17.

1. Define what it means that “z is a multiplicative inverse of @ modulo m.”
2. Give infinitely many counterexamples to the statement above.

3. State a very simple necessary and sufficient condition for the statement to be true. Prove
your answer.

Exercise 1.7.29. Prove: (Va)(a®” = a (mod 247)).  Hint. 247 =13 -19.
Exercise 1.7.30. Prove: if a is an odd integer then

a®"=a (mod 12,328).
Hint. 12,328 =8-23-67.

Exercise 1.7.31. Prove: the congruence z2 = —1 (mod 103) has no solution. (103 is a prime
number.) Hint. F{T.

Exercise 1.7.32. Let 1 <a; <--- < apy1 < 2n be n+ 1 distinct integers between 1 and 2n.
Prove:

(a) (34,7)(@ # j and g.c.d.(a;,a;) = 1).

(b) (34,7)(i # j and a;|a;). Hint. Pigeon-hole principle.

Exercise 1.7.33. Let p be a prime number. Find all solutions to the following congruence.
Prove your answer.
2P = 2%  (mod p).

Exercise 1.7.34. In this problem, the universe of the variable x is the set of integers. Prove:

(Vz)(z?' =z (mod 55)).
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Chapter 2

Counting

To Be WRITTEN

2.1 Problems

2.2 Binomial coefficients

Exercise 2.2.1. For n > 5, let S, = (g) + (g) 4+ 4 (g) Prove that

n+1
s ("),

Hint: mathematical induction. Make your proof very simple. You should not need any calcu-
lations, just use what we learned in class about binomial coefficients.

Exercise 2.2.2. Prove: if p is a prime number and 1 < k < p — 1 then p divides the binomial

. p
fficient .
coefficien < k)

Exercise 2.2.3. Give closed form expressions (no product symbols or dot-dot-dots) of the
binomial coefficients below, using “old” binomial coefficients:

@ (¢)
o (77)

where k is a positive integer.

33
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Exercise 2.2.4. Let O,, denote the number of odd subsets of an n-set and E, the number of
even subsets of an n-set. For n > 1, prove that O,, = E,,. Give

(a) a bijective (combinatorial) proof;
(b) an algebraic proof. (Use the Binomial Theorem for the algebraic proof.)

Exercise 2.2.5. Give a closed form expression for

(0)+ G+ () (6)

Exercise™ 2.2.6. Give a closed form expression for

(6)+ () + () + (o) =

Hint. Apply the Binomial Theorem to (1 + x)"; substitute 1,4, —1, —i for x (where i = /—1).

Exercise 2.2.7. Prove: (2:) < 4™ Do NOT use Stirling’s formula. Your proof should be just
one line.

Exercise 2.2.8. Let n > 7. Count those strings of length n over the alphabet {A, B} which
contain at least n — 3 consecutive A’s.
Hint. Inclusion—exclusion.

Exercise 2.2.9. Prove: if 1 < k <n then
n n\k
> (3)
()= G

Your proof should be no more than a couple of lines.

Exercise 2.2.10. Prove: if 1 <k <n then

n\ _ (en)k
k k/) -
Hint. Use the Binomial Theorem and the fact that (Va # 0)(e® > 1+ ). (Note that Stirling’s
formula is of no use; it would only prove things for “large enough n.”)
Exercise™ 2.2.11. Prove: if 1 < k <n then
> (1)< ()
=0 F

Hint. As in the previous exercise.
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[e.o]

Exercise 2.2.12. (a) Evaluate the sum S, = Z <n> 2'. Your answer should be a very
i
=0
simple closed-form expression (no summation symbols or dot-dot-dots).

(b) Let by, be the largest term in the sum S,. Prove: b, = ©(S,/v/n).

Exercise 2.2.13. An airline wishes to operate m routes between a given set of n cities. Count
the number of possibilities. (A “route” is a pair of cities between which the airline will operate
a direct flight. The cities are given, the routes need to be selected. There are no “repeated
routes.”) Your answer should be a very simple formula.

Exercise 2.2.14. Evaluate the following sums. In each case, your answer should be a simple
closed-form expression.

n
1. 24"*1‘
=1
n n
2. ( ,)4’”’

Exercise 2.2.15. Out of n candidates, an association elects a president, two vice presidents,
and a treasurer. Count the number of possible outcomes of the election. (Give a simple
expression. State, do not prove.)

Exercise 2.2.16. State your answers as very simple expressions.

1. Count the strings of length 3 (3-letter “words”) over an alphabet of n characters.

2. What is the answer to the previous question if no repeated letters are allowed?
. ) 0.4 i .
Exercise 2.2.17. Evaluate the expression 5 ) Give your answer as a decimal.

1
Exercise 2.2.18. Pascal’s Identity states that n (" + " ). Give a combina-
kE+1 k k+1

torial proof.

Exercise 2.2.19. We have 5 red beads and 11 blue beads. Count the necklaces that can be
made out of these 16 beads. A “necklace” is an arrangement of the beads in a circle. The
necklace obtained by rotating the circle does not count as a different necklace. Give a simple
expression; do not evaluate.

Exercise 2.2.20. Use the idea of the preceding problem to prove that if a and b are relatively
prime then a + b | (a:b).
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Exercise 2.2.21. Let ay,...,a; be positive integers. Prove: the least common multiple L =
lL.em. (ai,...,a) can be expressed through g.c.d’s of subsets of the a; as follows:

L= H (g.cd.(a; : i€ I))(_l)mH .
IC[K]

Before attempting to solve this problem for all k£, write down the expressions you get for k = 2
and k = 3 (without the product sign).

2.3 Recurrences, generating functions

Exercise 2.3.1. Let F),, denote the n-th Fibonacci number. (Fy = 0,Fy =1, F, = F,_1 +
Fn_g.) Prove: Fo+ Fi1+ - -+ F, = Fpi0 — 1.

Exercise 2.3.2. Let ap = 3, a1 = 1, and a,, = a—1 +an—2 (n > 2) (Fibonacci recurrence with
different initial values).

(a) Give a closed-form expression for the generating function f(z) =Y 07 apz™.
(b) Using the generating function, find a closed-form expression for a,. Show all your work.

Exercise 2.3.3. Let by =1 and b, =3b,—1 — 1 (n > 1).

(a) (4 points) Give a closed-form expression for the generating function g(z) = > 7, bpa”.

(b) (4 points) Using the generating function, find a closed-form expression for b,. Show all
your work.

Exercise 2.3.4. What is the generating function of each of the following sequences? Give a
closed-form expression. Prove your answers.

(2) an=n
(b) bn = (3)
() e = n.
(d) dp = 1/n!
(€) en=1/n

Exercise 2.3.5. If the generating function of the sequence {a,} is f(x), what is the generating
function of the sequence b, = na,? Your answer should be a very simple expression involving
f(x) (less than half a line).
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Exercise 2.3.6. Let mg =1, m; = 2, and m,, = my—1 + my—_2 + 1. Express m,, through the
Fibonacci numbers. Your expression should be very simple, less than half a line. Do not use
generating functions. Hint. Tabulate the sequence. Compare with the Fibonacci numbers.
Observe the pattern, prove by induction. Watch the subscripts.

Exercise 2.3.7. The sequence {ay,} satisfies the recurrence a,, = 5a,,—1 — 6a,—2. Suppose the
limit L = limy,—,00 Gy /an—1 exists. Determine L.

Exercise 2.3.8. Let the sequence {b,} be defined by the recurrence b, = (b,—1 + 1)/n with
initial value by = 0. Let f(z) = >_,2 ,b,z" be the generating function of the sequence. Write
a differential equation for f: express f’(z) in terms of f(x) and x. Your expression should be
very simple and closed-form.

Exercise 2.3.9. Let r,, be the number of strings of length n over the alphabet { A, B} without
consecutive A’s (so rg = 1, 11 = 2, 13 = 3). Prove: 7, ~ ¢y where v = (1 4+ v/5)/2 is the
golden ratio. Determine the constant c. Prove your answers.
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Chapter 3

Graphs and Digraphs

3.1 Graph Theory Terminology

The graph theoretic terminology we use in class differs from that of many texts. Here we make
comparisons with Rosen’s text (used in past years) and Anderson’s (the current text). Please
remember the differences listed below and use the terminology of these lecture notes when it
differs from the text’s. All concepts refer to a (simple) graph G = (V, E).

FEzercises. The unmarked exercises are routine, the exercises marked with a “plus” (+) are
creative, those marked with an asterisk (*) are challenging; those marked with two asterisks
are gems of mathematical ingenuity.

A graph (in Rosen’s text: simple graph) is a pair G = (V, E) where V is the set of vertices
and E is the set of edges. An edge is an unordered pair of vertices. Two vertices joined by an
edge are said to be adjacent. Two vertices are neighbors if they are adjacent. The degree
deg(v) of vertex v is the number of its neighbors. A graph is regular of degree r if all vertices
have degree r. The complement G of the graph G is the graph G = (V, E) where E is the

1% _
complement of F with respect to the set <2> of all pairs of vertices. So G has the same set of

vertices as (; two distinct vertices are adjacent in G if and only if they are not adjacent in G.
An isomorphism between the graphs G = (V, E) and H = (W, F) is a bijection f : V — W
from V to W which preserves adjacency, i.e., (Vz,y € V)(x is adjacent o y in G & f(x) and

f(y) are adjacent in H. Two graphs are isomorphic if there exists an isomorphism between
them.

Exercise 3.1.1. Draw two non-isomorphic regular graphs of the same degree on 6 vertices.
Prove that your graphs are not isomorphic.

Exercise 3.1.2. Prove: > _ deg(v) =2|E|.

veV
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40 CHAPTER 3. GRAPHS AND DIGRAPHS

Figure 3.1: The complete graph K.

The number of vertices will usually be denoted by n.

Exercise 3.1.3. Observe: |E| < (3).

Exercise 3.1.4. Observe: |E(G)| + |E(G)| = (3).

Exercise 3.1.5. A graph is self-complementary if it is isomorphic to its complement. (a)
Construct a self-complementary graph with 4 vertices. (b) Construct a self-complementary
graph with 5 vertices. (c) Prove: if a graph with n vertices is self-complementary then n = 0
or 1 (mod 4).

Exercise 3.1.6. (a) Prove: if b, = 2(3) and ap = b, /n! then logy a, ~ log, by,.

(b) Let G(n) denote the number of non-isomorphic graphs on n vertices. Prove: a,, < G(n) <
by.

(¢)* Prove: G(n) ~ an. Hint. Reduce this question to the following: The expected number
of automorphisms of a random graph in 1+ o(1). (Automorphism = self-isomorphism,
i.e., an adjacency preserving permutation of the set of vertices.)

Complete graphs, complete bipartite graphs, subgraphs

In a complete graph, all pairs of vertices are adjacent. The complete graph on n vertices is
denoted by K,,. It has (3) edges. See Figure

The vertices of a complete bipartite graph are split into two subsets V' = V,UVs; and
E ={{z,y} : x € V1,y € Va} (each vertex in V; is adjacent to every vertex in Va). If k = |V}]
and ¢ = |V| then we obtain the graph K} . This graph has n = k + £ vertices and |E| = k¢
edges. See Figure (3.2

The graph H = (W, F) is a subgraph of G = (V,E) if W CV and FF C E.
H = (W, F) is a spanning subgraph of G if H is a subgraph and V' = W.
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3.1. GRAPH THEORY TERMINOLOGY 41

Figure 3.2: The complete bipartite graph K3 3.

H is an induced subgraph of G if H is a subgraph of G and (Vz,y € W)(z and y are adjacent
in H & z and y are adjacent in G. (So to obtain an induced subgraph, we may delete some
vertices and the edges incident with the deleted vertices but no more edges.)

Exercise 3.1.7. Observe: (a) Every graph on n vertices is a spanning subgraph of K,,. (b)
All induced subgraphs of a complete graph are complete.

Exercise 3.1.8. Let G be a graph with n vertices and m edges. Count the (a) induced sub-
graphs of G; (b) the spanning subgraphs of G. Both answers should be very simple expressions.

Exercise 3.1.9. Count those spanning subgraphs of K,, which have exactly m edges.

Exercise 3.1.10. Prove: if G is a bipartite graph with n vertices and m edges then m <
[n?/4].

Exerciset 3.1.11. (Mandel-Turan) Prove: if G is triangle-free (K3 € G) then |E| <
|n2/4]. Show that this bound is tight for every n. Hint. Use induction from in increments of
2; delete both vertices of an edge for the inductive step.

Walks, paths, cycles, trees

This is the area where our terminology most differs from the texts. Following common
usage in the graph theory literature, we use the two simplest terms, path and cycle, to denote
the two most central concepts (see below). For reasons that boggle the mind, textbook authors
tend to use up these two terms for concepts of lesser importance, and use compound terms
such as “simple path” and “simple cycle,” or, astoundingly, have no term at all, to designate
the two central concepts.

e walk (in both texts: path) of length k: a sequence of k + 1 vertices vy, . .., v; such that
v;—1 and v; are adjacent for all i.

e trail (in Rosen’s text: simple path): a walk without repeated edges.
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42 CHAPTER 3. GRAPHS AND DIGRAPHS

e path: a walk without repeated vertices. Pyy; denotes a path of length k (it has k + 1
vertices). See Figure (This all-important concept has no name in Rosen’s text; it
is called “simple path” in Anderson’s. Note that the term “path” in both texts and
even “simple path” in Rosen’s text allow vertices to be repeated.) IMPORTANT: for the
purposes of counting, two paths involving the same set of k vertices and the same set of
k — 1 connecting edges count as the same path. In other words, the paths (vg,...,vx)
and (vg,...,v) (the same path travelled backward) count as the same path. So each
path of length > 1 is defined by two walks (forward, backward).

e closed walk of length k& a walk vp,...,v; where vy = vy. (Rosen’s text confounds
readers by using two terms, circuit and cycle for this concept; this important concept
has no name in Anderson’s text.)

e closed trail: a closed walk without repeated edges (this relatively unimportant concept
gets the undeserved name “cycle” in Anderson’s text);

e cycle of length k or k-cycle: a closed walk of length k > 3 with no repeated vertices
except that vg = vg. Notation: Cf. See Figure (This all-important concept has no
name at all in Rosen’s text. Anderson uses the term “simple cycle” but then, to confuse
the reader, he won’t say “simple k-cycle;” in his terminology, as in ours, a k-cycle is auto-
matically “simple” (has no repreated vertices) so in his inconsistent terminology, a “cycle
of length k” is not necessarily a “k-cycle;” only “simple cycles” of length k are k-cycles.)
IMPORTANT: for the purposes of counting, two cycles involving the same set of k ver-
tices and the same set of k connecting edges count as the same cycle. In other words, the
cycle (vg,v1,...,vp_1,v9) counts as the same as its cyclic shifts, (vy,va,...,vk_1,v0,v1),
(v, V3, ..., Vk_1,00,V1,V2), etc., and also as its reverse, (vg, Vg—_1,Vg—2,...,v1,v0) and its
cyclic shifts. So each cycle of length & is defined by 2k distinct closed walks of length k.

e a graph G is connected if there is a path between each pair of vertices.
e a tree is a connected graph without cycles. See Figure [3.5

e H is a spanning tree of GG if H is a tree and it is a spanning subgraph of G.

Exercise 3.1.12. Let GG be a regular graph of degree d. Count the walks of length k starting at
a given vertex v. (Your answer should be a very simple formula. Note that a walk is permitted
to backtrack a step just made.)

Exercise 3.1.13. Count the paths of length k in the complete graph K,,. Your answer should
be a simple formula. (Self-check: make sure your answer is consistent with the observations
that (a) the number of paths of length 1 in a graph is the number of edges; and (b) the number
of paths of length 2 in K3 is 3.)

Exercise 3.1.14. Count the cycles of length k in the complete graph K,,. Your answer should
be a simple formula. (Self-check: make sure your answer is consistent with the observation
that the number of cycles of length 3 in K, is (g))
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3.1. GRAPH THEORY TERMINOLOGY

Figure 3.3: Ps, the path of length 4.

Figure 3.4: Cj5, the cycle of length 5.
® o—0
o
o—0

S

Figure 3.5: The trees on 6 vertices (complete list).
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44 CHAPTER 3. GRAPHS AND DIGRAPHS

Exercise 3.1.15. Prove: if a vertex v has odd degree in the graph G then there exists another
vertex w, also of odd degree, such that v and w are connected by a path.

Exercise 3.1.16. Prove that every tree with n > 2 vertices has at least two vertices of degree
1. Hint. Prove that the endpoints of a longest path in a tree have degree 1.

Exercise 3.1.17. Prove that every tree has n — 1 edges. Hint. Induction. Use the preceding
exercise.

Exercise 3.1.18. Prove: if GG is a connected graph with n vertices then G has at least n — 1
edges. If G is connedcted and has exactly n — 1 edges then G is a tree.

Exercise 3.1.19. Verify that Figure shows each 6-vertex tree exactly once. Hint. Without
looking at Figure produce your own systematic list of all trees on 6 vertices. Once done,
compare your list with Figure |3.5

Exercise 3.1.20. Draw a copy of each 7-vertex tree. Make sure you don’t miss any, and you
do not repeat, i.e., no pair of your drawings represent isomorphic trees. State the number of
trees you found. List the trees in some systematic fashion; state your system.

Exercise 3.1.21. Prove: in a tree, all longest paths share a common vertex.

Exercise 3.1.22. Prove: in a tree on n vertices, the number of longest paths is at most ("51)
Hint. Use the preceding exercise.

Exercise™ 3.1.23. Let dy,...,d, be positive integers such that > ; d; = 2n — 2. Consider
those spanning trees of K, which have degree d; at vertex ¢. Count these spanning trees; show

that their number is
(n—2)!

[T, (di = 1)1

Exercise™ 3.1.24. (Cayley) The number of spanning trees of K, is n"~2. Hint. This
amagzingly simple formula is in fact a simple consequence of the preceding exercise. Use the
Multinomial Theorem.

Exercise 3.1.25. Let ¢(n) denote the number of non-isomorphic trees on n vertices. Use
Cayley’s formula to prove that ¢(n) > 2.7" for sufficiently large n (i.e., (3ng)(Vn > ng)(t(n) >
2.7M)).

Exercise 3.1.26. Count the 4-cycles in the complete bipartite graph K, ,. (You need to
count those subgraphs which are isomorphic to Cy4.) (Comment. Note that K» o is isomorphic
to Cy4, the 4-cycle, therefore K32 has exactly one 4-cycle. Check also that K>3 has three
4-cycles. Make sure that your answer to the general case conforms with this observation. Your
answer should be a very simple formula.

Exercise* 3.1.27. (K6vari—-S6s—Turdn) Prove: if G has no 4-cycles (Cy € G) then |E| =
O(n?/?). Show that this bound is tight (apart from the constant implied by the big-Oh nota-
tion). Hint. Let N denote the number of paths of length 2 in G. Observe that N = """, (%)

Last update: October 12, 2004



3.1. GRAPH THEORY TERMINOLOGY 45

where d; is the degree of vertex i. On the other hand, observe that N < (g) (Why? Use
the assumption that there are no 4-cycles!) Compare these two expressions for N and apply
Jensen’s Inequality to the convex function (g)

Cliques, distance, diameter, chromatic number

e A k-clique is a subgraph isomorphic to K}, (a set of k pairwise adjacent vertices). w(Q)
denotes the size (number of vertices) of the largest clique in G.

e An independent set or anti-clique of size k is the complement of a k-clique: k vertices,
no two of which are adjacent. a(G) denotes the size of the largest independent set in G.

e The distance dist(z,y) between two vertices z,y € V is the length of a shortest path
between them. If there is no path between x and y then their distance is said to be
infinite: dist(z,y) = co.

e The diameter of a simple graph is the maximum distance between all pairs of vertices. So
if a graph has diameter d then (Vz,y € V)(dist(z,y) < d) and (3z,y € V)(dist(x, y) = d).

e The girth of a graph is the length of its shortest cycle. If a graph has no cycles then its
girth is said to be infinite.

Ezamples (verify!): trees have infinite girth; the m x n grid (Figure has girth 4 if
m,n > 2; Ky, ,, has girth 4 if m,n > 2, K,, has girth 3; the Petersen graph (Figure
has girth 5.

e A legal k-coloring of a graph is a function ¢: V' — [k] = {1,...,k} such that adjacent
vertices receive different colors, i.e., {u,v} € E = ¢(u) # c¢(v). A graph is k-colorable if
there exists a legal k-coloring. The chromatic number x(G) of a graph is the smallest
k such that G is k-colorable.

A graph is bipartite if it is 2-colorable.

A Hamilton cycle is a cycle of length n, i.e., a cycle that passes through all vertices.
G is Hamiltonian if it has a Hamilton cycle.

A Hamilton path is a path of length n — 1, i.e., a path that passes through all vertices.

Exercise 3.1.28. State the diameter of each of the following graphs: (a) P, (the path of
length n — 1: this graph has n vertices and n — 1 edges); (b) C,, (the n-cycle); (c) K, (the
complete graph on n vertices); (d) Ky, (complete bipartite graph);

Exercise 3.1.29. Disprove the following statement: “the diameter of a graph is the length of
its longest path.” Prove that the statement is true for trees.
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46 CHAPTER 3. GRAPHS AND DIGRAPHS

Figure 3.6: The 4 x 10 grid, with a shortest path between opposite corners highlighted.

Exercise 3.1.30. The k x ¢ grid has k¢ vertices (Figure [3.6). Count its edges.
Exercise 3.1.31. Verify that the diameter of the k x £ grid is k + ¢ — 2.

Exercise 3.1.32. Let u and v be two opposite corners of the k x ¢ grid. Count the shortest
paths between v and v. Your answer should be a very simple expression. Hint. Think of each

shortest path as a sequence of North or East moves, represented as a string over the alphabet
{N.E}.

Exercise 3.1.33. Prove: the bipartite graphs are exactly the subgraphs of the complete
bipartite graphs.
Exercise 3.1.34. Prove: a graph is bipartite if and only if it has no odd cycles.

Exercise 3.1.35. We color the vertices of a bipartite graph G red and blue (legal coloring).
Assume G has 30 red vertices (all other vertices are blue). Suppose each red vertex has degree
6 and each blue vertex has degree 5. What is the number of blue vertices? Prove your answer.

Exercise 3.1.36. Let us pick 3 distinct vertices at random in a bipartite graph G with n
vertices. Prove that the probability that we picked an independent set is > 1/4 — o(1) (as
n — 00).

Exercise 3.1.37. For every n > 1, name a graph with n vertices, at least (n? — 1)/4 edges,
and no cycles of length 5.

Exercise 3.1.38. Prove: if every vertex of a graph has degree < d then the graph is d 4 1-
colorable (i.e., x(G) <d+1).

Exercise 3.1.39. For every n, construct a 2-colorable graph with n vertices such that every
vertex has degree > (n—1)/2. (Moral: low degree is a sufficient but not a necessary condition
of low chromatic number.)

Exercise 3.1.40. (Chromatic number vs. independence number) Prove: if G is a graph with
n vertices then a(G)x(G) > n.

Exercise 3.1.41. Give a formal definition of “3-colorable graphs.” Watch your quantifiers.
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3.1. GRAPH THEORY TERMINOLOGY 47

Figure 3.7: Graph of knight moves on a 4 x 4 chessboard

Exercise® 3.1.42. Construct a graph G on 11 vertices such that G is triangle-free (K3 Z G)
and G is NOT 3-colorable. Prove that your graph has the stated properties. Hint. Draw your
graph so that it has a rotational symmetry of order 5 (rotation by 27 /5 should not change the
picture).

Exercise* 3.1.43. Prove: (VEk)(3G)(x(G) > k and G is triangle-free.)

The following celebrated result is one of the early triumphs of the “Probabilistic Method.”
You can find the elegant proof in the book by Alon and Spencer.

Theorem 3.1.44. (Erdés, 1959) Prove: (Vk,g)(3G)(x(G) > k and G has girth > g.)
Exercise 3.1.45. Count the Hamilton cycles in the complete graph K.

Exercise 3.1.46. Count the Hamilton cycles in the complete bipartite graph K, ,. (Make
sure you count each cycle only once — note that K32 has exactly one Hamilton cycle.)

Exercise 3.1.47. Prove that all grid graphs have a Hamilton path.

Exercise 3.1.48. Prove: the k x ¢ grid is Hamiltonian if and only if k£,¢ > 2 and k/ is even.
(Your proofs should be very short, only one line for non-Hamiltonicity if k¢ is odd.)

Exercise 3.1.49. Prove that the dodecahedron is Hamiltonian. (Lord Hamilton entertained
his guests with this puzzle; hence the name.)

Exercise 3.1.50. (a) Prove: the graph of the knight’s moves on a 4 x 4 chessboard (Fig-
ure has no Hamilton path. Find an “Ah-ha!” proof: just “one line” after the
following Lemma.

(b) Lemma. If a graph has a Hamilton path then after deleting k vertices, the remaining
graph has < k41 connected components.

Exercise 3.1.51. We have a standard (8 x 8) chessboard and a set of 32 dominoes such that
each domino can cover two neighboring cells of the chessboard. So the chessboard can be
covered with the dominoes. Prove: if we remove the top left and the bottom right corner cells
of the chessboard, the remaining 62 cells cannot be covered by 31 dominoes. Find an “Ah-hal”
proof (elegant, no case distinctions.)
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Exercise 3.1.52. A mouse finds a 3 x 3 x 3 chunk of cheese, cut into 27 blocks (cubes), and
wishes to eat one block per day, always moving from a block to an adjacent block (a block
that touches the previous block along a face). Moreover, the mouse wants to leave the center
cube last. Prove that this is impossible. Find two “Ah-ha!” proofs; one along the lines of the
solution of Exercise the other inspired by the solution of Exercise

Exercise 3.1.53. Prove that the Petersen graph (Figure [3.8) is not Hamiltonian; its longest
cycle has 9 vertices. (No “Ah-hal” proof of this statement is known.)

Exercise 3.1.54. Prove: if G is regular of degree r and G has girth > 5 then n > r2 + 1. (n
is the number of vertices.) Show that n = r? 4 1 is possible for r = 1,2, 3.

Exercise 3.1.55. (a) Prove: if a graph G with n vertices is regular of degree r and has
diameter 2 then n < 72 + 1.

(b) Prove that if G is as in part (a) and n = 72 + 1 then G has girth 5.

(c) Show that there exists a graph G satisfying the conditions of part (a) and the equation
n=r241if r =2 or r = 3 (what is the name of your graph?).  Remark. n =r% +1
is possible also if » = 7 (the “Hoffman-Singleton graph”). It is known (Hoffmann—
Singleton, 1960) that the only values of 7 for which n = r2 +1 is conceivable are 2,3, 7,
and 57. The proof is one of the gems of the applications of linear algebra (the Spectral
Theorem) to graph theory. The question whether or not » = 57 can actually occur is
open.

Exercise 3.1.56. An automorphism of the graph G is a G — G isomorphism. (a) Count the
automorphisms of K, Cy,, Py, Qn. (b)™ Show that the dodecahedron has 120 automorphisms.
(c)* Show that the Petersen graph (Figure has 120 automorphisms.

Exercise™ 3.1.57. (Requires some group theory.) The automorphisms of a graph form a
group under composition. Prove: (a) The automorphism groups of the dodecahedron and of
Petersen’s graph are not isomorphic. Hint: the automorphism group of the dodecahedron
has nontrivial center, i.e., it has an element, other than the identity, which commutes with
all elements. (b) The automorphism group of the dodecahedron is isomorphic to Co x As
where C is the cyclic group of order 2 and Ajs is the alternating group of degree 5. (c) The
automorphism group of the Petersen graph is isomorphic to S5, the symmetric group of degree
5. (This statement has an “Ah-ha!” proof.)

Exercise 3.1.58. Decide whether or not Petersen’s graph (Fig. is isomorphic to the graph
in Fig.
Planarity

A plane graph is a graph drawn in the plane so that the lines (curves) representing the
edges do not intersect (except at their end vertices). A graph is planar if it admits a plane
drawing; such plane drawings are the plane representations of the graph. Of course a planar
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Figure 3.8: The Petersen graph.

Figure 3.9: Is this graph isomorphic to Petersen’s (Fig. ?

Copyright (©) 2003 by Laszl6 Babai. All rights reserved.
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Figure 3.10: K4 drawn two different ways. Only one is a plane graph.

graph may also have drawings that are not plane graphs (e.g., K4 is a planar graph - a plane
representation is a regular triangle with its center, with their conecting straight line segments;
a drawing of K4 which is not a plane graph is the square with all sides and diagonals—see

Figure [3.10).

The regions of a plane graph are the regions into which the drawing divides the plane;
so two points of the plane belong to the same region if they can be connected so that the
connecting line does not intersect the drawing. Note that the infinite “outer region” counts as
a region.

WARNING: it is incorrect to speak of regions of a planar graph; only a plane graph has
regions. A planar graph may have many inequivalent plane representations; the sizes of the
regions may depend on the representation.

Exercise 3.1.59. Prove: every plane representation of a tree has just one region. Hint.
Induction (use the fact that the tree has a vertex of degree 1).

We need the following, highly nontrivial result.

Theorem 3.1.60. (Jordan’s Curve Theorem) Every plane representation of a cycle has
two regions.

Exercise 3.1.61. (Euler’s formula) For a connected plane graph, let n, m, r denote the set
of vertices, edges, and regions, respectively. Then n —m +r = 2. Note that this statement
includes Jordan’s Curve Theorem and the exercise before that. Hint. Induction on m. Unless
the graph is a tree, delete an edge contained in a cycle; verify that this reduces the number of
regions by 1. Trees are the base case.
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Figure 3.11: The numbers indicate the number of sides of each region of this plane graph.

Exercise 3.1.62. Verify that the Platonic solids satisfy Euler’s formula.

Exercise 3.1.63. Let r; denote the number of k-sided regions of a plane graph. (In a plane
graph, an edge has two sides, and it is possible that both sides are incident with the same
region. In such a case this edge contributes 2 to the number of sides of the region. See

Figure ) Prove: Y1 o1 =2m.

Exercise 3.1.64. Prove: in a plane graph, 3r < 2m.

Exercise 3.1.65. Prove: in a plane graph without triangles, 2r < m.

Exercise 3.1.66. Prove: a planar graph with n > 3 vertices has m < 3n — 6 edges. Hint. Use
Fuler’s formula and the inequality 3r < 2m.

Exercise 3.1.67. Prove: a triangle-free planar graph with n > 3 vertices has m < 2n — 4
edges. Hint. Use Euler’s formula and the inequality 2r < m.

Exercise 3.1.68. Prove: the graphs K5 and K33 are not planar. Hint. Use the preceding
two exercises.

A subdivision of a graph is obtained by subdividing some of its edges by new vertices.
For instance, the cycle C), is a subdivision of the triangle C3; the path P, is a subdivision of
an edge. Two graphs are homeomorphic if both of them is a subdivision of the same graph.
For instance, all cycles (including C3) are homeomorphic. Homeomorphic planar graphs have
identical plane drawings.

Kuratowski’s celebrated theorem gives a good characterization of planarity.
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Theorem 3.1.69. A graph is planar if and only if it does not contain a subgraph homeomorphic
to K. 3,3 OTr K5.
The two minimal non-planar graphs, K33 and Kj, are referred to as “Kuratowski graphs.”

Exercise 3.1.70. Draw a BIPARTITE graph G which is NOT planar and does NOT contain
a subdivision of K3 3. Make a clean drawing; your graph should have no more than 20 edges.
Prove that your graph has all the required properties.

Exercise 3.1.71. Prove: (a) if a connected graph G has n vertices and n + 2 edges then G
is planar. (b) Show that for every n > 6, statement (a) becomes false if we replace n + 2 by
n + 3. (You must construct an infinite family of counterexamples, one graph for each n > 6.)

Exercise 3.1.72. Prove that every planar graph has a vertex of degree < 5. Hint. m < 3n—6.

Exercise 3.1.73. Prove that every planar graph is 6-colorable. Hint. Induction, using the
preceding exercise.

The famous 4-Color Theorem of Appel and Haken asserts that every planar graph is
4-colorable. The proof considers hundreds of cases; no “elegant” proof is known.

Exercise 3.1.74. Prove: if a planar graph G has n vertices then a(G) > n/6. (Recall that
a(@G) denotes the maximum number of independent vertices in G.) Hint. Use the preceding
exercise.

Prove that every triangle-free planar graph has a vertex of degree < 3. Hint. m < 2n —4.

Exercise 3.1.75. Prove that every triangle-free planar graph is 4-colorable.

Ramsey Theory

The Erdés—Rado arrow notation n — (k,¢) means that every graph on n vertices either
has a clique of size > k or an independent set of size > £. In other words, if we color the edges
of K,, red and blue, there will either be an all-red K}, or an all-blue K.

Exercise 3.1.76. Prove: (a) 6 — (3,3); (b) 10 — (4,3); (¢) n — (n,2).
Exercise 3.1.77. (Erd3s—Szekeres, 1933)

(HS) —(r+1,5+1).

r
Hint. Induction on r + s.
Exercise 3.1.78. Prove: n — (k, k) where k = [logyn/2].
Exercise 3.1.79. Define and prove: 17 — (3,3, 3).
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3.2 Digraph Terminology

A directed graph (digraph, for short), is a pair G = (V, E), where V is the set of “vertices”
and F is a set of ordered pairs of vertices called “edges:” ECV x V.

Exercise 3.2.1. If G has n vertices and m edges then m < n2.

“Graphs,” also referred to as undirected graphs, can be represented as digraphs by intro-
ducing a pair of directed edges, (u,v) and (v, u), for every undirected edge {u,v} of a graph.
(So the digraph G corresponding to the graph G has twice as many edges as Gj.)

Adjacency. We say that u is adjacent to v, denoted u — v, if (u,v) € E. Self-adjacency may
occur; an edge (u,u) € E is called a loop.

We shall say that a digraph is undirected if the adjacency relation is symmetric (v — v
implies v — u). We say that a digraph is a “graph” if it is undirected and has no loops, i.e.,
no self-adjacencies (v /4 v).

The converse of a digraph G = (V, E) is the digraph G°? = (V, E°P) where E°P consists of all
edges of G reversed: E? = {(v,u) : (u,v) € E}. Note that G is undirected if and only if
G = G°P. — The superscript “tr” refers to “transpose,” for a reason to be clarified below.

Orientations of a graph. Let Gy = (V, Ep) be a graph. We say that the digraph G = (V, E)
is an orientation of G if for each edge {u,v} € Ey, exactly one of (u,v) and (v, u) belongs
to F.

Exercise 3.2.2. Suppose the graph G has n vertices and m edges. Count the orientations of

Go.

Tournaments are orientations of complete graphs. So in a tournament G = (V, E), for every
pair of vertices u,v € V, exactly one of the following holds: (a) u = v; (b) u — v; (¢) v — w.
We often think of the vertices of a tournament as players in a round-robin tournament without
ties or rematches. Each player plays against every other player exactly once; u — v indicates
that player u beat player v.

Exercise 3.2.3. Count the tournaments on a given set of n vertices. Is the similarity with
the number of graphs a coincidence?

Neighbors. If 4 — v in a digraph then we say that v is an out-neighbor or successor of u;
and u is an in-neighbor or predecessor of v.

Degrees. The out-degree deg™ (v) of vertex v is the number of its out-neighbors; the in-
degree deg™ (v) of v is the number of its in-neighbors.
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Exercise 3.2.4. Prove: if the digraph G = (V, E) has n vertices and m edges then

Z deg™(v) = Z deg™ (v) = m.

veV veV

Exercise 3.2.5. Prove: if every vertex of a digraph G has the same out-degree d* and the
same in-degree d~ then d™ = d~.

An isomorphism between the digraphs G = (V, E) and H = (W, F) is a bijection f : V)W
from V to W which preserves adjacency, i.e., (Vz,y € V)(x —¢ v < f(x) =g f(y). Two
digraphs are isomorphic if there exists an isomorphism between them.

Let p be a prime. An integer z is a quadratic residue modulo p if z # 0 (mod p) and
(3z)(2? = 2z (mod p)).

Exercise 3.2.6. List the quadratic residues modulo 5 and modulo 7.

Exercise 3.2.7. Prove that if p is an odd prime then the number of non-congruent quadratic
residues modulo p is (p — 1)/2.

Exercise™ 3.2.8. Prove: —1 is a quadratic residue mod p if and only if p = 2 or p = 1
(mod 4).

Paley graphs/tournaments. Let p be an odd prime. Let V = {0,1,...,p — 1}. Let us set
u — v if u — v is a quadratic residue mod p. (0 < wu,v <p—1.)

Exercise 3.2.9. Prove: the preceding construction defines a tournament (the Paley tour-
nament) if p = —1 (mod 4); and it defines a graph (the Paley graph) if p =1 (mod 4).

A digraph is self-converse if it is isomorphic to its converse.

Exercise™ 3.2.10. Prove: (a) The Paley tournaments are self-converse.  (b) The Paley
tournaments are self-complementary.

Exercise* 3.2.11. (Erdé8s.) We say that a tournament is k-paradoxical if to every k players
there exists a player who beat all of them. Prove that if n > 2k?2* then there exists a k-
paradoxical tournament on n vertices. Hint. Use the probabilistic method: prove that almost
all tournaments are k-paradoxical.

Exercise** 3.2.12. (Graham — Spencer) If p is a prime, p = —1 (mod 4) and p > 2k?4*
then the Paley tournament on p vertices is k-paradoxical. Hint. The proof uses André Weil’s
character sum estimates.
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Directed walks, paths, cycles

e (directed) walk (in text: path) of length k: a sequence of k + 1 vertices vy, .. ., v such
that (Vi)(vi_l — ’UZ‘).

e (directed) trail (in text: simple path): a walk without repeated edges.

e (directed) path: (this all-important concept has no name in the text): a walk without
repeated vertices. (Note that the terms “path” and even “simple path” in the text allow
vertices to be repeated.) Pyiq denotes a directed path of length k (it has k + 1 vertices)

e closed (directed) walk (in text: circuit or cycle) of length k: a (directed) walk
9, - - - , U Where v = vg.

e (directed) cycle of length k or k-cycle: (this all-important concept has no name
in the text): a closed walk of length k& with no repeated vertices except that vy = vy.
Notation: Cl.

e a vertex v is accessible from a vertex w if there exists a u — - -+ — v directed path.

Exercise 3.2.13. Prove that the relation “u and v are mutually accessible from each other” is
an equivalence relation on the set of vertices of the digraph G, i. e., this relation is reflexive,
symmetric, and transitive.

e The strong components of G are the equivalence classes of this relation, i.e., the
mazimal subsets of the vertex set consisting of mutually accessible vertices. The vertex
set of GG is the disjoint union of the strong components. In other words, each vertex
belongs to exactly one strong component. So the vertices u and v belong to the
same strong component if they are mutually accessible from each other.

e a digraph G is strongly connected if there is a (directed) path between each pair of
vertices, i. e., all vertices belong to the same strong component. (There is just one strong
component.)

e an undirected walk (path, cycle, etc.) in a digraph is a walk (path, cycle, etc.) in the
undirected graph obtained by ignoring orientation.

e a digraph is weakly connected if there is an undirected path between each pair of
vertices.

Exercise 3.2.14. Prove that a weakly connected digraph has > n — 1 edges; a strongly
connected digraph has > n edges.

Exercise™ 3.2.15. Prove: if (Vo € V)(degt(v) = deg™(v)) and G is weakly connected then
G is strongly connected.
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e A Hamilton cycle in a digraph is a (directed) cycle of length n, i.e., a cycle that passes
through all vertices. G is Hamiltonian if it has a Hamilton cycle.

e A Hamilton path in a digraph is a (directed) path of length n — 1, i.e., a path that
passes through all vertices.

Exercise 3.2.16. Prove that every tournament has a Hamilton path.

Exercise™ 3.2.17. Prove that every strongly connected tournament is Hamiltonian.

e A DAG (directed acyclic graph) is a digraph with no directed cycles.

Exercise 3.2.18. Prove that for every n, there exists exactly one tournament (up to isomor-
phism) which is a DAG.

e A topological sort of a digraph is an ordering of its vertices such that all edges go
“forward:” if u — v then u precedes v in the ordering.

For example, if V' = {1,2,...,n} and v — v means u # v and ulv (u divides v) then the
natural ordering of integers is a topological sort; but it is not the only possible topological sort
of this digraph.)

Exercise 3.2.19. Prove that the “divisibility digraph” described in the preceding paragraph
has at least [n/2]! topological sorts.

Exercise 3.2.20. Prove that a digraph G can be topologically sorted if and only if G is a
DAG. — Note that this is a good characterization: the existence of an object (topological
sort) is shown to be equivalent to the nonexistence of another (directed cycle).

The adjacency matrix

Let G = (V,E) be a digraph; assume V = [n] = {1,2,...,n}. Consider the n x n matrix
Ag = (a;j) defined as follows: a;; = 1 if ¢ — j; and a;; = 0 otherwise. Ag is the adjacency
matrix of G.

Exercise 3.2.21. Prove: The adjacency matrix of the G (the converse of G) is A% (the
transpose of Ag. In particular, the digraph G is undirected if and only if Ag is a symmetric
matrix.
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Exercise™ 3.2.22. (Counting walks) For k£ > 0, let a;j; denote the number of directed
walks of length k from vertex i to vertex j. Consider the matrix Ag(k) which has a;j;;, as its
entry in row i, column j. Prove: Ag(k) = A%. Hint. Induction on k.

Exercise 3.2.23. Let T be a tournament with n vertices. Prove: if all vertices have the same
out-degree then n is odd.

Exercise 3.2.24. List the strong components of the digraph in the figure below. State the
number of strong components. Recall that two vertices x and y belong to the same strong
component if either x = y or there exists + — y and y — =z directed walks. The strong
components are the equivalence classes of this equivalence relation, so each strong component
is either a single vertex or a maximal strongly connected subgraph.

(o)
(=2
S

Exercise 3.2.25. Let pq, ..., p; be distinct prime numbers and let n = Hle p;. Let D denote
the set of positive divisors of n.
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1. Determine |D| (the size of D). (Your answer should be a very simple formula.)

2. We define a digraph G with vertex set V(G) := D by setting i — j if j|¢ and i/j is
a prime number (i, € D). Determine the number of directed paths from n to 1 in G.
(Again, your answer should be a very simple formula.)

3. Prove that this digraph is self-converse (isomorphic to the digraph obtained by reversing
all arrows). (You need to state a bijection f : D + D which reverses all arrows. You
should define f by a very simple formula.)

Definition 3.2.26. Let v be a vertex in a directed graph. The period of v is defined as the
g.c.d. of the lengths of all closed walks containing v.

Exercise 3.2.27. Let G be a directed graph. Prove: if v,w € V are two vertices in the same
strong component of G then their periods are equal.

Last update: October 12, 2004



Chapter 4

Finite Probability Spaces

4.1 Finite Probability Spaces and Events

Definition 4.1.1. A finite probability space is a finite set Q # () together with a function
Pr: Q — R™ such that

1. YVw € Q, Pr(w) >0
2. Z Pr(w) =1.

The set €2 is the sample space and the function Pr is the probability distribution. The
elements w € () are called atomic events or elementary events. An event is a subset of
Q. For A C Q, we define the probability of A to be Pr(4) := Z Pr(w). In particular, for

weA
atomic events we have Pr({w}) = Pr(w); and Pr(0) = 0, Pr(Q2) = 1. The trivial events are

those with probability 0 or 1, i.e. () and .

The uniform distribution over the sample space 2 is defined by setting Pr(w) = 1/|9|
for every w € 2. With this distribution, we shall speak of the uniform probability space
over €. In a uniform space, calculation of probabilities amounts to counting: Pr(A) = |A|/|Q].

Exercise 4.1.2. In the card game of bridge, a deck of 52 cards are evenly distributed among
four players called North, East, South, and West. What sample space does each of the following
questions refer to: (a) What is the probability that North holds all the aces? (b) What is
the probability that each player holds one of the aces? — These questions refer to uniform
probability spaces. Calculate the probabilities.

Exercise 4.1.3. We flip n coins. (a) What is the size of the sample space of this experiment?
Show that the sample space has size 2". Is this a uniform probability space? (b) What is
the probability that exactly k coins come up heads? (c¢) What is the probability that an even
number of coins come up heads?
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Exercise 4.1.4. We flip 2n coins. Let ¢ denote the number of Heads among the first n coins
and 77 the number of Heads among the last n coins. Let p, denote the probability of the event
that £ = 1. (a) Determine p,. Give a very simple closed-form expression (no summation
symbols or ellipses (dot-dot-dots). (b) Asymptotically evaluate p,. Prove that there exists a
constant ¢ such that p, ~ ¢/y/n. Determine c.

Observation 4.1.5. Pr(AU B) 4+ Pr(AN B) = Pr(A) + Pr(B).
Definition 4.1.6. Events A and B are disjoint if AN B = 0.

Consequence 4.1.7. Pr(A; U--- U Ag) < Zle Pr(A;), and equality holds if and only if the
A; are pairwise disjoint.

Definition 4.1.8. If A and B are events and Pr(B) > 0 then the conditional probability

Pr(ANB
of A relative to B, written Pr(A|B), is given by Pr(A|B) = rlg‘r(;))

We note that B can be viewed as a sample space with the probabilities being the conditional
probabilities under condition B.

Note that Pr(A N B) = Pr(A|B) Pr(B).
Exercise 4.1.9. Prove: Pr(AN BN C) =Pr(A|BNC)Pr(B|C)Pr(C).

Exercise 4.1.10. We roll three dice. What is the probability that the sum of the three
numbers we obtain is 97 What is the probability that the first die shows 57 What is the
conditional probability of this event assuming the sum of the numbers shown is 97 — What is
the probability space in this problem? How large is the sample space?

A partition of € is a family of pairwise disjoint events Hy, ..., H,, covering §2:

Q=H{U...UHy, H,QHJZQ (41)

The sets H; are the classes of the partition. We assume that each class is nonempty.

Exercise 4.1.11. “Theorem of Complete Probability.”  Prove: given a partition (H, ..., H)
of 2, we have

k
Pr(A) = Pr(A|H;) Pr(H;). (4.2)
=1

for any event A C €.

The significance of this formula is that the conditional probabilities are sometimes easier
to calculate than the left hand side.

Definition 4.1.12. Events A and B are independent if Pr(A N B) = Pr(A) Pr(B).
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Exercise 4.1.13. Pick a card at random from the standard deck of 52 cards. Are the following
events independent: “the card picked is a King;” and “the card picked is of the ‘Heart suit’ ”?

Exercise 4.1.14. We flip 2n 4+ 1 coins. Are the following events independent: “the majority
of the coins comes up Heads”; and “an even number of coins comes up heads.”

Exercise 4.1.15. If Pr(B) > 0 then: A and B are independent <= Pr(A|B) = Pr(A).

Exercise 4.1.16. Prove: if A and B are independent events then A and B are also indepen-
dent, where A = Q\ A.

Exercise 4.1.17. Let us consider a uniform probability space over a sample space whose
cardinality is a prime number. Prove that no two non-trivial events can be independent.

Note that the trivial events are independent of any other events, i.e. if a trivial event is
added to a collection of independent events, they remain independent.

The events A and B are said to be positively correlated if Pr(A N B) > Pr(A) Pr(B).
They are negatively correlated if Pr(A N B) < Pr(A4) Pr(B).

Exercise 4.1.18. Are the two events described in Exercise [4.1.10] positively, or negatively
correlated, or independent?

Exercise 4.1.19. We roll a die. Consider the following events: A : “the number shown is
odd”; B : “the number shown is prime”; (c) “the number shown is = 1 (mod 4). Decide
whether the following pairs of events are independent; if they are not, determine whether they
are positively or negaively correlated: (i) A and B; (ii) A and C; (iii) B and C.

Exercise 4.1.20. Prove: two events A, B are positively (negatively) correlated if and only if
Pr(B|A) > Pr(B) (Pr(B|A) < Pr(B), resp.).

Definition 4.1.21. Events Ay,..., Ay are independent if for all subsets S C {1,...,k}, we
have

Pr(NiesAi) = [ [ Pr(4:). (4.3)

i€S

Note that if k£ > 3, then the statement that events Ay, ..., A; are independent is stronger
than pairwise independence. For example, pairwise independence does not imply triplewise
independence. For added emphasis, independent events are sometimes called fully independent,
or mutually independent, or collectionwise independent.

Exercise 4.1.22. Construct 3 events which are pairwise independent but not collectionwise
independent. What is the smallest sample space for this problem?

(See the end of this section for more general problems of this type.)
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Exercise 4.1.23. Prove: if the events A, B,C, D, E are independent then the events A\ B,
C' UD, and E are independent as well. Formulate a general statement, for n events grouped
into blocks.

Exercise 4.1.24. We have n balls colored red, blue, and green (each ball has exactly one color
and each color occurs at least once). We select k of the balls with replacement (independently,
with uniform distribution). Let A denote the event that the k balls selected have the same
color. Let p, denote the conditional probaility that the first ball selected is red, assuming
condition A. Define p;, and p, analogously for blue and green outcomes. Assume pj 4 pa = pa3.
Prove: k < 2. Show that k = 2 is actually possible.

Exercise 4.1.25. (Random graphs) Consider the uniform probability space over the set of all
the 2(3) graphs with a given set V of n vertices. (a) What is the probability that a particular
pair of vertices is adjacent? Prove that these (g) events are independent.  (b) What is the
probability that the degrees of vertex 1 and vertex 2 are equal? Give a closed-form expression.
(c) If p,, denotes the probability calculated in part (b), prove that p,+/n tends to a finite positive
limit and determine its value.  (c) How are the following two events correlated: A:“vertex 1
has degree 3”; B:“vertex 2 has degree 3”7 Asymptotically evaluate the ratio Pr(A|B)/Pr(A).

In exercises like the last one, one often has to estimate binomial coefficients. The following
result comes in handy:

Stirling’s formula.
n! ~ (n/e)"V2mn. (4.4)

Here the ~ notation refers to asymptotic equality: for two sequences of numbers a,, and b,
we say that a, and b, are asymptotically equal and write a,, ~ b, if lim,_,~ a, /b, = 1.

To “evaluate a sequence a,, asymptotically” means to find a simple expression describing
a function f(n) such that a, ~ f(n). Striling’s formula is such an example. While such
“asymptotic formulae” are excellent at predicting what happens for “large” n, they do not tell
how large is large enough.

A stronger, non-asymptotic variant, giving useful results for specific values of n, is the
following:

n! = (n/e)"Vv2rn(1 + 6,/(12n)), (4.5)
where |6,,| < 1.

Exercise 4.1.26. Evaluate asymptotically the binomial coefficient (27?) Show that (27:‘) ~
¢-4"/\/n where ¢ is a constant. Determine the value of c.
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We mention some important asymptotic relations from number theory. Let 7(z) denote
the number of all prime numbers < z, so w(2) = 1, 7(10) = 4, etc. The Prime Number
Theorem of Hadamard and de la Vallée-Poussin asserts that

n(z) ~z/Inz. (4.6)

Another important relation estimates the sum of reciprocals of prime numbers. The sum-
mation below extends over all primes p < x.

Zl/p ~Inlnz. (4.7)

p<w

In fact a stronger result holds: there exists a number B such that

lim Zl/p—lnlnx = B. (4.8)
p<z

(Deduce (4.7) from (4.8)).)

Exercise 4.1.27. Assuming 100-digit integers are “large enough” for the Prime Number The-
orem to give a good approximation, estimate the probability that a random integer with at
most 100 decimal digits is prime. (The integer is drawn with uniform probability from all
positive integers in the given range.)

Exercise 4.1.28. Construct a sample space  and events Aj,..., A, (¥n > 2) such that
Pr(4;) = 1/2, every n — 1 of the A; are independent, but the n events are not independent.

Exercise 4.1.29. (*) Let 1 <k <n — 1. (a) Construct a sample space 2 and n events such
that every k of these n events are independent; but no k + 1 of these events are independent.
(b) Solve part (a) under the additional constraint that each of the n events have probability
1/2.

(Hint. Take a k-dimensional vector space W over a finite field of order ¢ > n. Select n vectors
from W so that any k are linearly independent. Let W be the sample space.)
Exercise 4.1.30. Suppose we have n independent nontrivial events. Prove: Q| > 2™.

Exercise 4.1.31. (Small sample space for pairwise independent events.) (a) For n = 2F — 1,
construct a probability space of size n+1 with n pairwise independent events each of probability
1/2. (b)* Same for n a prime number of the form n = 4k — 1.

Exercise 4.1.32. (*) Prove: if there exist n pairwise independent nontrivial events in a
probability space then [Q] > n + 1. (If this is too difficult, solve the special case when all
events considered have probability 1/2 and the space is uniform.)
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4.2 Random Variables and Expected Value

Definition 4.2.1. A random variable is a function £ : 2 — R.

We say that £ is constant if {(w) takes the same value for all w € Q.

Definition 4.2.2. The expected value of a random variable ¢ is E(£) = Z é(w) Pr(w).
weN

Proposition 4.2.3. Let {uq,...,ux} be the set of (distinct) values taken by &.
Let p; = Pr(§ = u;), where the statement € = u;” refers to the event {w : {(w) = u;}. Then

E($) = Yi, wipi-

Proof: Exercise.

Exercise 4.2.4.
min ¢ < E(§) < max¢. (4.9)

Throughout these notes, £, 1, ¢, ¥, and their subscripted versions refer to random variables.

Proposition 4.2.5. (Additivity of the Expected Value) Let &1,. .., & be arbitrary ran-
dom variables. Then

k
B&+ - +&) =Y E(&) (4.10)
i=1
k k k
Proof: E(Z &) = Z(fl(w) + -+ & (w)) Pr(w) = Z Z & Pr(w) = ZE(&) O
i=1 wen i=1 weQ i=1
Exercise 4.2.6. (Linearity of the expected value.) If ¢1,. .., ¢, are constants then

k k

E() ci&) =Y aE&). (4.11)

i=1 =1

Definition 4.2.7. The indicator variable of an event A C  is the function 94 : Q2 — {0,1}
given by

1 forweAd
ﬁA(w)_{ 0 forwgA

Exercise 4.2.8. The expected value of an indicator variable is E(d4) = Pr(A).

Indicator variables are particularly useful if we want to count events. Some of the exercises
at the end of this section should serve as examples.
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Exercise 4.2.9. (a) Every random variable ¢ is a linear combination of indicator variables.
(b) Given a random variable £ there exist functions fi, ..., fr such that the random variables
& = fi(§) are indicator variables and ¢ is a linear combination of the &;.

We say that £ is nonnegative if {(w) > 0 for all w € Q.

Theorem 4.2.10 (Markov’s Inequality). If £ is nonnegative then Ya > 0,

B()

a

Pr(¢ >a) <

Proof: Let m =E({) > 0. Then m =), p; Pr(§ = ;) >

> D i>a i Pr(§ = i) (we just omitted some terms; all terms are nonegative)

> a5, Pr(€ = i) = aPr({ > a) (sum of disjoint events).

So we have m > aPr(§ > a). ]

Exercise 4.2.11. What is the expected number of runs of £ heads in a string of n coin-flips? (A
“run of k heads” means a string of k consecutive heads. Example: the string HHTHTTHHHT
has 3 runs of 2 heads.) Prove your answer! Hint. Indicator variables.

Exercise 4.2.12. Suppose in a lottery you have to pick five different numbers from 1 to 90.
Then five winning numbers are drawn. If you picked two of them, you win 20 dollars. For
three, you win 150 dollars. For four, you win 5,000 dollars, and if all the five match, you win a
million. (a) What is the probability that you picked exactly three of the winning numbers? (b)
What is your expected win? (c) What does Markov’s inequality predict about the probability
that you'll win at least 20 dollars? (d) What is the actual probability that this happens?

Exercise 4.2.13. A club with 2000 members distributes membership cards numbered 1
through 2000 to its members at random; each of the 2000! permutations of the cards is equally
likely. Members whose card number happens to coincide with their year of birth receive a
prize. Determine the expected number of lucky members.

Exercise 4.2.14. What is the expected number of edges in a random graph? What is the
expected number of triangles? (There are n vertices; each pair is adjacent with probability 1/2
independently.)

Exercise 4.2.15. Let n be a random integer, chosen uniformly between 1 and N. What is
the expected number of distinct prime divisors of n? Show that the result is asymptotically
equal to Inln N (as N — o0).

Exercise 4.2.16. The boss writes n different letters to n addressees whose addresses appear
on n envelopes. The careless secretary puts the letters in the envelopes at random (one letter
per envelope). Determine the expected number of those letters which get in the right envelope.
Prove your answer. State the size of the sample space for this problem.
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Exercise 4.2.17. For a permutation m € Sy, let ¢;(7) denote the number of k-cycles in the
cycle decomposition of m. (For instance, if n = 7 and # = (13)(256)(47) then co(m) = 2,
c3(m) = 1, and ci(m) = 0 for all k # 2,3.) Pick 7 at random (from S,,). Calculate E(ck(m)).
Your answer should be a very simple expression (no factorials, no binomial coefficients, no
summation). Prove your answer.

4.3 Standard deviation and Chebyshev’s Inequality

Definition 4.3.1. The k" moment of ¢ is E(¢¥). The k' central moment of ¢ is the k**
moment of & — E(£), i.e. E((¢ — E(¢))¥).

Definition 4.3.2. The variance of ¢ is its second central moment, Var(§) := E((¢£ — E(€))?).

Note that the variance is always nonnegative. It is zero exactly if £ is constant. (Why?)
Definition 4.3.3. The standard deviation of £ is (&) := /Var(§).

Exercise 4.3.4. (Invariance under shifts.) Prove that if ¢ is a constant then Var(§) = Var(§ +
¢); and consequently, o(§) = (£ + ¢).

Exercise 4.3.5. Prove: if ¢ is a constant then Var(c¢) = ¢2 Var(¢); and consequently, o(c) =
clo(§)-

Observation 4.3.6. Var(¢) = E(¢2) — (E(¢))%

Corollary 4.3.7 (Cauchy-Schwarz inequality). (E(€))? < E(&?). O

Proof of Observation: Let m = E(£). Then Var(¢) = E((¢ — m)?) = E(£2 — 2¢m + m?) =
E(€2) — 2mE(¢) + E(m?) = E(€2) — 2mm + m? = E(£2) — m?. O

Chebyshev’s inequality tells us that random variables don’t like to stray away from their
expected value by more than a small multiple of their standard deviation.
Theorem 4.3.8 (Chebyshev’s Inequality). Let m = E(§). Then for any number a > 0,

Var(§) '

Pr(|e —m| > a) <~

; (4.12)

Proof: Let n = (¢—m)2. Then, by definition, E(n) = Var(¢). We apply Markov’s Inequality to
the nonnegative random variable n: Pr(|¢—m| > a) = Pr(n > a?) < E(n)/a® = Var(¢)/a?. [

Exercise 4.3.9. A vertex z is a “common neighbor” of vertices x and y in a graph G if both
x and y are adjacent to z in G. Let N(z,y) denote the number of common neighbors of = and
y. Prove that the following statement is true for almost all graphs G = (V, E) with n vertices:

(Vo #y € V)(0.24n < N(z,y) < 0.26n).

In other words, if p, denotes the probability of the event described by the displayed formula
then lim,, .. p, = 1.
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Exercise 4.3.10. In its more common form the Cauchy-Schwarz inequality asserts that for
any real numbers z1,...,Zn, Y1, .. .,Yn We have

($50) (559) - (5 »

Deduce this inequality from Corollary

Exercise 4.3.11. (Limit on negatively correlated events.) Suppose the events Aq,..., A,
each have probability 1/2 and for each 4, j, Pr(|4; N A;] < 1/5. Prove: m < 6. Generalize the
statement to events of probability p, with p? — € in the place of 1/5.

Exercise 4.3.12. Prove: if the k" moment of ¢ is zero for all odd integers & > 0 then
Pr(§ =u) = Pr(§ = —u) for all w € R.

4.4 Independence of random variables

Definition 4.4.1. &1,..., & are independent if Yuy, ..., ug,

k
Pr(&'l :ulaagk‘:uk‘):HPr(glzul) (414)
i=1
Exercise 4.4.2. Prove that the events A1, ..., A are independent if and only if their indicator

variables are independent.

Exercise 4.4.3. Prove that the random variables &;,...,&; are independent if and only if
for all choices of the numbers uq,...,ux, the k events & = u1,...,& = up are independent.
Show that this is also equivalent to the independence of all k-tuples of events of the form

& <ut,..., & < ug.

Exercise 4.4.4. Prove: if &,...,&; are independent then f1(&1), ..., fx(&) are also indepen-
dent, where the f; are arbitrary functions. For example, 7, %2, and cos(&3) are independent.

Exercise 4.4.5. Prove: if ,n,( are independent random variables then f(£,7) and ¢ are
also independent, where f is an arbitrary function. (For instance, £ + 7 and ¢, or {n and ¢
are independent.) Generalize this statement to several variables, grouped into blocks, and a
function applied to each block.

Exercise 4.4.6. Let &1, ..., &, be non-constant random variables over a sample space of size n.
Suppose the §; are 4-wise independent (every four of them are independent). Prove: n > (ZL)
Hint. Prove that the (Tg) random variables &¢£; (1 <i < j < m) are linearly independent over
R (as members of the space of functions 2 — R). To prove linear independence, first prove
that w.l.o.g. we may assume (Vi)(E(&;) = 0); then use the “inner product” argument, using
the function E({n) in the role of an “inner product” of the random variables ¢ and 7.
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Theorem 4.4.7 (Multiplicativity of the expected value). If &1, ... &, are independent,
then

BE(J[]¢) =] E®). (4.15)
=1 =1

Exercise 4.4.8. Prove this result for indicator variables.

Exercise 4.4.9. Prove: if £,n are independent, then one can write £ as a sum £ = c1&1+...+
ckér and n as n = dym + ... + dyny where the & and 7; are indicator variables and for every
1, J, the variables ¢ and 7; are independent.

Exercise 4.4.10. Combine the two preceding exercises to a proof of the Theorem for m = 2
variables.

Exercise 4.4.11. Deduce the general case from the preceding exercise by induction on m,
using Exercise [4.4.5

This sequence completes the proof of Theorem O

While this result required the full force of independence of our random variables, in the
next result, only pairwise independence is required.

Theorem 4.4.12 (Additivity of the variance). Let n =& + &+ -+ & If &1, ..., & are
pairwise independent then Var(n) = Zle Var(&;).

Proof: By Exercise we may assume that E(§;) = 0 (otherwise we replace each ¢
by & — E(&); this will not change the variance, nor does it affect independence (why?)).
Having made this assumption it follows that E(n) = 0. Moreover, for i # j we have E(§;&;) =
E(&)E(€;) = 0 by pairwise independence.

It follows that Var(¢;) = E(¢7) and Var(n) = E(n*) = E(3° &)%) = B, §+2 3, &¢&) =
> E(E) +2 zz‘q E(&&;) = 22, Var(&). o

Corollary 4.4.13. Let &1,...,&, be random wvariables with the same standard deviation o.
Let us consider their average, n := (1/n)> " &. If the & are pairwise independent then

o(n) =o/vn. O

Corollary 4.4.14 (Weak law of large numbers). Let &1,&s,... be an infinite sequence of
pairwise independent random variables each with expected value m and standard deviation o.
Let nn, = (1/n) Y1, &. Then for any 6 > 0,

lim Pr(|n, —m|>§) =0. (4.16)
n—oo

Proof: Use Chebyshev’s inequality and the preceding corollary. We obtain that the probability
in question is < 02/(dn) — 0 (as n — o0). O
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Remark 4.4.15. Strictly speaking, we bent our rules here. An infinite sequence of non-
constant, pairwise independent variables requires an infinite sample space. What we actually
proved, then, is the following. Let us fix the values m and ¢ > 0. Assume that we are given an
infinite sequence of finite probability spaces, and over the n'" space, we are given n independent
random variables &,1,8n.2, .-, &nn. Let p, = (1/n) > " &ni. Then for any 6 > 0, the limit

relation (4.16) holds.

Exercise 4.4.16. You and the bank play the following game: you flip n coins: if £ of them
come up “Heads,” you receive 2¢ dollars.

1. You have to buy a ticket to play this game. What is the fair price of the ticket? Hint: it
is the expected amount you will receive.

2. Prove: the probability that you break even (receive at least your ticket’s worth) is expo-
nentially small. Hint: At least how many “heads” do you need for you to break even?

3. Calculate the standard deviation of the variable 2¢. Your answer should be a simple
formula. Evaluate it asymptotically; obtain an even simpler formula.

4. State what the “weak law of large numbers” would say for the variable 25. Hint. This
law talks about the probability that 2¢ is not within (14 €)-times its expectation.) Prove
that the Law does NOT hold for this variable.

4.5 Chernoff’s Bound

Although the bound in the proof of the Weak Law of Large Numbers tends to zero, it does
so rather slowly. If our variables are fully independent and bounded, much stronger estimates
can be obtained by a method due to Chernoff. The bounds will go to zero exponentially as a
function of n, and this is what most combinatorial applications require.

For example, let us consider a sequence of n independent coin flips; let ¢ denote the
number of heads in this sequence. Then E(¢)) = n/2 and Var(§) = n/4 (by the additivity of
the variance). Therefore Chebyshev’s inequality tells us that

1
Pr(|y) — n/2| > rv/n) < R (4.17)
Below we shall prove the much stronger inequality

Pr(|th — n/2| > rv/n) < 2e727 (4.18)

under the same conditions.

The following corollary illustrates the power of inequality (4.18]).
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Corollary 4.5.1. For any ¢ > 0, almost all graphs have no vertices of degree < (1 —e)n/2 or
> (1+ &)n/2 where n is the number of vertices.

Proof of the Corollary. Let V = {1,...,n} be the vertex set of our random graph. Let ¢;
denote the degree of vertex i; so ¢; is the number of heads in a sequence of (n — 1) independent
coin flips. Therefore, by inequality (4.18]), we have that

Pr(|6; — (n—1)/2| > rv/n— 1) < 2¢72". (4.19)
Let us now set r = ey/n — 1. Then we obtain
Pr(|6; — (n —1)/2| > e(n — 1)) < 227 (=), (4.20)

Therefore the probability that there exists an i such that |0; — (n — 1)/2| > e(n — 1) is less
than n times the right hand side, i.e., less than 2ne=2"(n=1) This quantity approaches zero
at an exponential rate as n — oo.

The slight change in the statement (having changed n to n — 1) can be compensated for
by slightly reducing ¢. O

Note that the same procedure using inequality (4.17)) will fail. Indeed, setting r = ey/n — 1
in inequality (4.17)), the right hand side will be 1/(4e%(n —1)), and if we multiply this quantity
by n, the result will be greater than 1 (if ¢ < 1/2, a meaningless upper bound for a probability.

Now we turn to the proof of inequality (4.18)). It will be convenient to state the main result
in terms of random variables with zero expected value.

Theorem 4.5.2 (Chernoff). Let & be independent random variables satisfying Pr(& = 1) =
Pr(§ =—1)=1/2. Let n=>_7", &. Then for any a > 0,

Pr(n>a) < e /2n (4.21)

and
Pr(|n| > a) < 2¢~%°/?", (4.22)

Exercise 4.5.3. Deduce inequality (4.18]) from this theorem.

Hint. Represent ¢ as » ., 6; where 6; is the indicator variable of the i-th coin flip. Set

& =20; —1and n=>",&. Note that ¢) —n/2 = n/2. Apply Theorem to the & and
translate the result back to .

Exercise 4.5.4. Prove that the following is true for almost all graphs G,, on n vertices: the
degree of every vertex is within the interval [0.497n,0.51n|. In answering this question, be
sure to clearly state the meaning of each variable occurring in your formulas. Also pay close
attention to the logical connectives (“and,” “if-then,” and quantifiers).
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Now we turn to the proof of Theorem [4.5.2

Let t be a positive real number. We shall later suitably choose the value of t. Let us consider
the random variables ¢; := exp(tfz) (Notation: exp(x) = e*.) The (; are again independent
(for any fixed t) by Exercise Therefore we can apply the multiplicativity of the expected
value to them:

n

E(et”)ZE(eXp(Zt& = HQ ——H (i) = [ ] Elexp(t&))- (4.23)
=1 i

=1
Applying Markov’s inequality to the variable e, we conclude that

n

Pr(n > a) = Pr(e! > ¢'%) < H (exp(t&;))e . (4.24)

Recall that cosh(z) = (e* 4+ e™*)/2 and observe that
E(exp(t&;)) = cosh(t). (4.25)

Therefore the preceding inequality implies that
cosh(t)"

Pr(n>a) < i

(4.26)

This is true for every ¢t > 0. All we need to do is choose t appropriately to obtain the strongest
possible result. To this end we need the following simple observation.

Lemma 4.5.5. For all real numbers zx,

cosh(z) < e /2,

Proof: Compare the Taylor series of the two sides. On the left hand side we have

2 22 22 ozt 2
=14+—=—4+ =+ — 4.2
DN T TR ST (4.27)
k:O
On the right hand side we have
o 2k 2 4 6
x x x x
—_— 1+ =4+ =4+ —4.... 4.2
ZQk!+2+8+48+ (4.28)
k=0
O
Consequently, from inequality (4.26)) we infer that
Pr(n > a) < exp(t*n/2 — ta). (4.29)
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The expression t?n/2 — ta is minimized when ¢ = a/n; setting ¢ := a/n we conclude that
Pr(n > a) < exp(—a?/2n), as required.

Replacing each & by —&; we obtain the inequality Pr(n < —a) < exp(—a?/2n); adding this
to the preceding inequality we obtain Pr(|n| < a) < 2exp(—a?/2n). O

We note that Chernoft’s technique works under much more general circumstances. We
state a useful and rather general case, noting that even this result does not exploit the full
power of the method.

Theorem 4.5.6 (Chernoff). Let &; be independent random variables satisfying |§;| < 1 and
E(&) =0. Let n=">_;", &. Then for any a > 0,

Pr(n > a) < e /2" (4.30)

and ,
Pr(|n| > a) < 2e7% /2", (4.31)

Proof: As before, we set t = a/n. Let
h(xz) = cosh(t) + « - sinh(t). (4.32)

(Recall that sinh(t) = (e —e™t)/2.) Observe that h(z) > €' for all x in the interval —1 < z < 1.
(The graph of h(z) over the interval [—1, 1] is the segment connecting the corresponding two
points of the graph of the function e!*, and e!” is a convex function.)

Moreover, because of the linearity of the h(x) function, we have E(h(§)) = h(E(&)) =
h(0) = cosh(t). Therefore
E(e'*) < E(h(&)) = cosh(t). (4.33)

From here on the proof is identical with the proof of Theorem [4.5.2 O
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4.6 Problems

Exercise 4.6.1. (Bipartite Ramsey) (Erd&s) Let n = 2%/2, where t is an even integer.
Prove that it is possible to color the edges of K, ,, red and blue (each edge receives one color)
such that there will be no monochromatic K;;. Hint. Use the probabilistic method.

A random graph on n vertices is defined by fixing a set of n vertices, say V = [n], and
flipping a fair coin (g) times to decide adjacency of the (g) pairs of vertices. Let G,, denote a
random graph on the vertex set [n].

Exercise 4.6.2. (Diameter of a random graph)

(a) State the size of the sample space of the experiment which produces a random graph.

(b) What is the probability diam(G,) = 1?7 Your answer should be a very simple closed-form
expression. (diam(G) denotes the diameter of G. See the handout for the definition.)

(c) Prove that almost all graphs have diameter 2.

The meaning of this statement is the following. Let p, denote the probability that a
random graph on n vertices has diameter 2. Then lim,, .o, p, = 1.

Hint. Let ¢, = 1 — p,. Prove that g, — 0. Show this by proving that with large
probability, every pair of vertices has a common neighbor. What is the probability that
vertices  and y do not have a common neighbor? Give a precise answer to this question;
it should be a simple formula. Now estimate the probability that there exist vertices z,y
without a common neighbor.

Use without proof the following fact from calculus:

(Ve,d > 0)( lim 29 = 0).
Tr—00
Exercise 4.6.3. (Chromatic number of a random graph) (Erdés) Recall from the graph
theory handout that w(G) denotes the size of the largest clique (complete subgraph) in the
graph G; «(G) denotes the size of the largest independent set (anticlique) in G, and x(G)
denotes the chromatic number of G. Note that a(G) = w(G) where G denotes the complement
of G. Note also (do!) that for every graph G, x(G) > w(G).

1. prove: x(G) > n/a(G), where n is the number of vertices of G.

2. Show that the chromatic number can be much greater than the clique number by proving
that there exists a constant ¢ > 0 such that for all sufficiently large n there exists a graph
G, with n vertices such that

X(Gp) cn
w(Gp) z (logn)?
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Estimate the value of ¢ in your proof.
Hint. To prove the existence of these graphs, use the probabilistic method. To obtain a

lower bound on x(G),), give an upper bound on «(G,,) for almost all graphs G,,.

Prove: for almost all graphs, x(G) = ©(n/logn). (The lower bound is easy; the upper
bound is more challenging!)

Exercise 4.6.4. (Chromatic number of set systems) (Erdds) Let F = {A;,..., A}
be an r-uniform set-system (|A4;| = r) over the universe [n] (so 4; C [n]). Assume m < 2"1,
Prove that F is 2-colorable, i.e., it is possible to color every vertex v € [n] red or blue such
that none of the A; is monochromatic (each A; has both colors). Hint. Assign the colors at
random. Compute the expected number of monochromatic sets A;.

Exercise 4.6.5. (Error-correcting codes) Let X be a set of n elements. Let B(X) be the
set of all subsets of X; we view B(X) as a uniform probability space. A “random subset of X”
is an element of B(X) chosen from the uniform distribution.

(a)

(b)

Prove: E(|A\ B|) = n/4, where A, B are two independent random subsets of X. What
is the size of the sample space for this experiment?

(Constant-rate, cn-error-correcting codes) Prove that there exists a constant C' > 1 and
there exists a family {A1,..., A} of m > C™ subsets of X such that (Vi,j)(i # j =
|A;\ A;| > 0.24n). Hint. Take m random subsets, chosen independently. Use Chernoff’s
inequality to prove that |A; \ A;| < 0.24n is exponentially unlikely. Ezplanation of the
title. Suppose we want to send messages ((0,1)-strings) of length & through a noisy
channel. Let n = k/log C, so 2 = C™ = m and we can think of the messages as integers
from 1 to m. Rather than sending message i, we transmit the incidence vector of the
set A;. This increases the length of the message by a constant factor (1/logC). On
the other hand, even if 23% of the transmitted bits get changed due to noise, the error
can uniquely be corrected because the difference (Hamming distance) between any two
valid codewords is at least 0.48n. — Here we only prove the existence of such codes.
Constructive versions exist (Justesen codes).

Exercise 4.6.6. (Strongly negatively correlated events) Let Aj,..., A,, be events with
probability 1/2; suppose (Vi,7)(i # j = P(A; N Aj) < 1/5). Prove: m < 6. Hint. Use the
Cauchy— Schwarz inequality, Corollary
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Chapter 5

Finite Markov Chains

Ezercises. The unmarked exercises are routine, the exercises marked with a “plus” (+) are
creative, those marked with an asterisk (*) are challenging.

Recall that a directed graph (digraph, for short), is a pair G = (V, E), where V is the set of
“vertices” and FE is a set of ordered pairs of vertices called “edges:” FE CV x V.

A discrete system is characterized by a set V' of “states” and transitions between the states. V
is referred to as the state space. We think of the transitions as occurring at each time beat,
so the state of the system at time ¢ is a value X; € V (¢ =0,1,2,...). The adjective “discrete”
refers to discrete time beats.

A discrete stochastic process is a discrete system in which transitions occur randomly ac-
cording to some probability distribution. The process is memoryless if the probability of an
i — j transition does not depend on the history of the process (the sequence of previous states):
(Vi,j,uo,...,ut,1 S V)(P(Xt+1 = ]|Xt =4, Xt 1 =U_1,...,X0 = uo) = P(Xt+1 = ]|Xt =
i)). (Here the universal quantifier is limited to feasible sequences of states ug, u1, ..., us—1,1,
i.e., to sequences which occur with positive probability; otherwise the conditional probability
stated would be undefined.) If in addition the transtion probability p;; = P(Xiy1 = j| X¢ = i}
does not depend on the time ¢, we call the process homogeneous.

A finite Markov chain is a memoryless homogeneous discrete stochastic process with a
finite number of states.

Let M be a finite Markov chain with n states, V = [n] = {1,2,...,n}. Let p;; denote the
probability of transition from state i to state j, i.e., pj; = P(Xy41 = j| Xy = ). (Note that
this is a conditional probability: the question of ¢ — j transition only arises if the system is in
state i, i.e., Xy = 1.)

The finite Markov chain M is characterized by the n x n transition matrix T' = (p;;)
(1,7 € [n]) and an initial distribution ¢ = (q1,...,qn) where ¢; = P(Xo = 1).
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Definition. An n xn matrix T' = (p;;) is stochastic if its entries are nonnegative real numbers
and the sum of each row is 1:

(Vi, ) (pyj = 0) and (Vi) (S, piy = 1).

Exercise 5.1.1. The transition matrix of a finite Markov chain is a stochastic matrix. Con-
versely, every stochastic matrix can be viewed as the transition matrix of a finite Markov
chain.

Exercise 5.1.2. Prove: if T is a stochastic matrix then 7% is a stochastic matrix for every k.

Random walks on digraphs are important examples of finite Markov chains. They are defined
by hopping from vertex to neighboring vertex, giving equal chance to each out-neighbor. The
state space will be V, the set of vertices. The formal definition follows.

Let G = (V,E) be a finite digraph; let V = [n]. Assume (Vi € V)(deg® (i) > 1). Set
pij = 1/ deg™*(3) if (i,5) € E; pij = 0 otherwise.

Exercise 5.1.3. Prove that the matrix (p;;) defined in the preceding paragraph is stochastic.

Conversely, all finite Markov chains can be viewed as weighted random walks on a digraph,
the weights being the transition probabilities. The formal definition follows.

Let T' = (p;j) be an arbitrary (not necessarily stochastic) n x n matrix. We associate with
T a digraph G = (V, E) as follows. Let V' = [n] and E = {(4,7) : pi;j # 0}. We label the edge
i — j with the number p;; # 0 (the “weight” of the edge).

This definition makes sense for any matrix T’; edges indicate nonzero entries. If T is the
transition matrix of a finite Markov chain M then we call the associated digraph the transition
digraph of M. The vertices of the transition digraph represent the states of M and the
edges the feasible transitions (transitions that occur with positive probability).

Exercise 5.1.4. Prove that in the transition digraph of a finite Markov chain, (Vi)(deg™ (i) >

1).

Exercise 5.1.5. Draw the transition digraph corresponding to the stochastic matrix
0.7 0.3
A= (0.2 0.8) '
Label the edges with the transition probabilities.

The principal subject of study in the theory of Markov chains is the evolution of the
system.

The initial distribution ¢ = (q1,...,qn) describes the probability that the system is in a
particular state at time t = 0. So ¢; > 0and ) ;" ¢ = 1.

Last update: October 12, 2004



7

L0

€0
0

<
)

Figure 5.1: The solution to Exercise [5.1.5

Set ¢(0) = q and let q(t) = (qu¢, - - -, qnt) be the distribution of the states at time ¢, i.e., the
distribution of the random variable X;:

The following simple equation describes the evolution of a finite Markov chain.

Exercise 5.1.6. (Evolution of Markov chains) Prove:  ¢(t) = ¢(0)T".

So the study of the evolution of a finite Markov chain amounts to studying the powers of
the transition matriz.

Exercise 5.1.7. Experiment: study the powers of the matrix A defined in Exercise [5.1.5
Observe that the sequence I, A, A%, A%, ... appears to converge. What is the limit?

Exercise™ 5.1.8. Prove the convergence observed in the preceding exercise.

The study of the powers rests on the study of eigenvalues and eigenvectors.

Definition. A left eigenvector of an n X n matrix A is a 1 x n vector = # 0 such that
xA = Az for some (complex) number A called the eigenvalue corresponding to x. A right
eigenvector of A is an n x 1 matrix y # 0 such that Ay = uy for some (complex) number
called the eigenvalue corresponding to y.
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Remember that the zero vector is never an eigenvector.

The right action of a matrix. Note that if x = (z1,...,2,) is a 1 x n vector, A = (a;;) is
an n X n matrix, and z = (21,...,2,) = vA then

n
z5 = inaij. (51)
=1

Note that if G is the digraph associated with the matrix A then the summation can be reduced
to

n
Zj = Z inaij. (5.2)

So the left eigenvectors to the eigenvalue A is defined by the equation

)\$j = Z l‘iaij. (5.3)

21— ]

Exercise 5.1.9. State the equations for the left action and the right eigenvectors of the matrix
A.

Theorem. The left and the right eigenvalues of a matrix are the same (but not the eigenvec-
tors!).

Proof. Both the right and the left eigenvalues are the roots of the characteristic polynomial
fa(z) = det(xl — A) where I is the n x n identity matrix.

Exercise 5.1.10. Find the eigenvalues and the corresponding left and right eigenvectors of
the matrix A from Exercise [F.1.5l

Hint. The characteristic polynomial is

r—07 =03

Fa@ =05 4 08

' =2 - 152 +05=(z—1)(z — 1/2).

So the eigenvalues are A\; = 1 and A2 = 1/2. Each eigenvalue gives rise to a system of linear
equations for the coordinates of the corresponding (left/right) eigenvectors.

Exercise® 5.1.11. Prove: if \ is a (complex) eigenvalue of a stochastic matrix then [A\| < 1.
Hint. Consider a right eigenvector to eigenvalue .
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Exercise 5.1.12. Let A be an n X n matrix. Prove: if x is a left eigenvector to eigenvalue
A and y is a right eigenvector to eigenvalue p and A # p then z and y are orthogonal, i.e.,
zy = 0. Hint. Consider the product xAy.

Definition. A stationary distribution (also called equilibrium distribution) for the
Markov chain is a probability distribution ¢ = (q1,...,¢x) (¢ > 0, >.i" ;¢ = 1) which is
a left eigenvector to the eigenvalue 1: ¢A =q.

Exercise 5.1.13. If at time ¢, the distribution ¢(t) is stationary then it will remain the same
forever: q(t) =q(t+1)=q(t+2)=....

Exercise 5.1.14. Prove: if T is a stochastic matrix then A = 1 is a right eigenvalue. Hint.
Guess the (very simple) eigenvector.

Observe the consequence that A = 1 is also a left eigenvalue. This is significant because it
raises the possibility of having stationary distributions.

Exercise 5.1.15. Find a left eigenvector x = (x1,x2) to the eigenvalue 1 for the stochastic
matrix A defined in Exercise Normalize your eigenvector such that |zi| + |zo| = 1.
Observe that z is a stationary distribution for A.

Exercise 5.1.16. Let T be a stochastic matrix. Prove: if the limit 7> = lim;_,~ 7" exists
then every row of T°° is a stationary distribution.

Exercise 5.1.17. Consider the stochastic matrix

0 1
B = .
(o)
Prove that the sequence I, B, B? B3,... does not converge, yet B does have a stationary
distribution.

Exercise 5.1.18. Let C,, denote the directed cycle of length n. Prove that the powers of the
transition matrix of the random walk on C,, do not converge; but a stationary distribution
exists.

Exercise 5.1.19. Consider the following digraph: V =[3], E = {1 — 2,1 — 3,2 — 2,3 — 3}.

Write down the transition matrix of the random walk on the graph shown in Figure
Prove that the random walk on this graph has 2 stationary distributions.
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e

Figure 5.2: A graph with transition probabilities. FIX THIS!

Definition. A stochastic matrix T' = (p;;) is called “doubly stochastic” if its column sums
are equal to 1: (Vj € [n])(>o1  pij = 1).

In other words, T is doubly stochastic if both 7' and its transpose are stochastic.
Exercise 5.1.20. Let T be the transition matrix for a finite Markov chain M. Prove that the

uniform distribution is stationary if and only if 7" is doubly stochastic.

A matrix is called non-negative if all entries of the matrix are non-negative. The Perron—
Frobenius theory of non-negative matrices provides the following fundamental result.

Theorem (Perron—Frobenius, abridged) If A is a non-negative n x n matrix then A has
a non-negative left eigenvector.

Exercise 5.1.21. Prove that a non-negative matrix has a non-negative right eigenvector. (Use
the Perron—Frobenius Theorem.)

Exercise 5.1.22. Let T be a stochastic matrix and x a non-negative left eigenvector to eigen-
value A\. Prove: A = 1. Hint. Use Exercise 5.1.12

Exercise 5.1.23. Prove: every finite Markov chain has a stationary distribution.

Exercise™ 5.1.24. Let A be a non-negative matrix, x a non-negative left eigenvector of A,
and G the digraph associated with A. Prove: if G is strongly connected then all entries of
x are positive. Hint. Use equation ([5.3)).

Exercise 5.1.25. Let A be a non-negative matrix, z and =’ two non-negative eigenvectors of
A, and G the digraph associated with A. Prove: if G is strongly connected then z and 2’
belong to the same eigenvalue. Hint. Use the preceding exercise and Exercise [5.1.12
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Exercise™ 5.1.26. Let A be a non-negative matrix; let x be a non-negative left eigenvector
to the eigenvalue \ and let 2’ be another left eigenvector with real coordinates to the same
eigenvalue. Prove: if G is strongly connected then (Ja € R)(2' = ax). Hint. WLOG
(without loss of generality we may assume that) all entries of x are positive (why?). Moreover,
WLOG (Vi € V)(z; < 2;) and (35 € V(2 = x;) (why?). Now prove: if z; = 2 and i — j
then z; = 2. Use equation (5.3).

Finite Markov chains with a strongly connected transition digraph (every state is accessi-
ble from every state) are of particular importance. Such Markov chains are called irreducible.
To emphasize the underlying graph theoretic concept (and reduce the terminology overload),
we shall deviate from the accepted usage and use the term strongly connected Markov
chains instead of the classical and commonly used term “irreducible Markov chains.”

Our results are summed up in the following exercise, an immediate consequence of the
preceding three exercises.

Exercise 5.1.27. Prove: A strongly connected finite Markov chain (a) has exactly
one stationary distribution; and (b) all probabilities in the stationary distribution
are positive.

As we have seen (which exercise?), strong connectivity is not sufficient for the powers of
the transition matrix to converge. One more condition is needed.

Definition. The period of a vertex v in the digraph G is the g.c.d. of the lengths of all closed
directed walks in G passing through v. If G has no closed directed walks through v, the period
of v is said to be 0. If the period of v is 1 then v is said to be aperiodic.

Exercise 5.1.28. (a) Show that it is not possible for every state of a finite Markov chain to
have period 0 (in the transition digraph). (b) Construct a Markov chain with n states, such
that all but one state has period 0.

Note that a loop is a closed walk of length 1, so if G has a loop at v then v is automatically
aperiodic. A lazy random walk on a digraph stops at each vertex with probability 1/2 and
divides the remianing 1/2 evenly between the out-neighbors (p; = 1/2, and if ¢ — j then
pij = 1/2deg+(i)). So the lazy random walks are aperiodic at each vertex.

Exercise 5.1.29. Let G = (V, E) be a digraph and z,y € V two vertices of G. Prove: if z
and y belong to the same strong component of G (i.e., z and y are mutually accessible from
one another) then the periods of z and y are equal.

It follows that all states of a strongly connected finite Markov chain have the same
period. We call this common value the period of the strongly connected Markov chain. A
Markov chain is aperiodic if every node has period 1.
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Exercise 5.1.30. Recall that (undirected) graphs can be viewed as digraphs with each pair
of adjacent vertices being connected in both directions. Let G be an undirected graph viewed
as a digraph. Prove: every vertex of G has period 1 or 2. The period of a vertex v is 2 if and
only the connected component of G' containing v is bipartite.

Exercise 5.1.31. Suppose a finite Markov chain M is strongly connected and NOT aperiodic.
(It follows that the period > 2 (why?).)

Prove: the powers of the transition matrix do not converge.

Hint. If the period is d, prove that the transition graph is a “blown-up directed cycle of length d”
in the following sense: the vertices of the transition graph can be divided into d disjoint subsets
Vo, Vi, ..., V41 such that (Vk) all edges starting at Vj, end in Vi1, where the subscript is read
modulo d (wraps around). — Once you have this structure, observe that any t-step transition
would take a state in Vj, to a state in Vj44 (the subscript again modulo d).

Now we state the Perron—Frobenius Theorem in full.

Theorem (Perron—Frobenius, unabridged) Let A be a non-negative n X n matrix and
G the associated digraph. Let fa(z) = []/;(x — \;) be the characteristic polynomial of A
factored over the complex numbers. (So the \; are the eigenvalues, listed with multiplicity.)
Then

(a) There is an eigenvalue A; such that

(al) Ay is real and non-negative;
(a2) (V0)(Ar = [Ail);

(a3) there exists a non-negative eigenvector to eigenvalue A;.

(b) If G is strongly connected and aperiodic then (Vi)(A\; > |\;]).

Definition. A strongly connected aperiodic Markov chain is called ergodic.

The significance of aperiodicity is illuminated by the following exercises.

Exercise 5.1.32. Prove that the eigenvalues of the random walk on the directed n-cycle are
exactly the n-th roots of unity. (So all of them have unit absolute value.)

More generally, we have the following:

Exercise 5.1.33. Let A be a (not necessarily non-negative) n x n matrix and G the associated
digraph. Suppose d is a common divisor of the periods of G. Let w be a complex d-th root of
unity (i.e., w? = 1). Then, if ) is an eigenvalue of A then \w is also an eigenvalue of A. Hint.

Equation ((5.3).
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The following consequence of the Perron—Frobenius Theorem is the fundamental result in
the theory of finite Markov chains.

Exercise* 5.1.34. (Convergence of ergodic Markov chains.) Prove: if T' is the transition
matrix of an ergodic Markov chain then the powers of T' converge.  Hint. There exists
an invertible complex matrix S such that U = S™'T'S is an upper triangular matrix of which
the first row is [1,0,0,...,0]. (This follows, for example, from the Jordan normal form.) Now
the diagonal entries of U are the eigenvalues, starting with A\; = 1; all other eigenvalues satisfy
|\il < 1. Prove that as a consequence, the sequence U’ (t — oo) converges to the matrix N
which has a 1 in the top left corner and 0 everywhere else. Now T% — M := SNS~! (why?).

Exercise 5.1.35. Prove: if T is the transition matrix of an ergodic Markov chain and
limy_oo T = M then all rows of M are equal.

Exercise 5.1.36. Prove: if a finite Markov chain is ergodic then from any initial distributrion,
the process will approach the unique stationary distribution. In other words, let T" be the
transition matrix, s the stationary distribution, and ¢ an arbitrary initial distribution. Then

lim ¢7T" = s.

t—oo

The following example illuminates the kind of Markov chains encountered in combinatorics,
theoretical computer science, and statistical physics.

Random recoloring: a class of large Markov chains. Let G = (V| E) be a graph with n
vertices and maximum degree A; and let Q > A + 1. Let S be the set of all legal colorings of
G with @ colors, i.e., S is the set of functions f : V — [@Q] such that if v,w € V are adjacent
then f(v) # f(w). This “random recoloring process” is a Markov chain which takes S as its
set of states (the “state space”). The transitions from a legal coloring are defined as follows.
We pick a vertex v € V at random, and recolor it by one of the available colors (colors not
used by the neighbors of v), giving each available color an equal chance (including the current
color of v).

Exercise 5.1.37. Prove: if Q@ > A + 2 then the random recoloring process is an ergodic
Markov chain.

Exercise 5.1.38. Prove that the number of states of the random recoloring process is between
(@ —A—1)" and Q™. So if @ > A + 2 then the state space is exponentially large.

Exercise 5.1.39. Prove: if Q > A + 2 then the stationary distribution for the random
recoloring process is uniform.
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As a consequence, the random recoloring process will converge to a uniformly distributed
random legal @-coloring of G. Just how quickly the process approaches the uniform distribu-
tion is an open problem. While the state space is exponential, it is expected that the process
distribution will be close to uniform within a polynomial (n°"') number of steps. This phe-
nomenon is called rapid mixing. Marc Jerrum proved in 1995 that for Q > 2A, the random
recoloring process does indeed mix rapidly; Jerrum proved an O(nlogn) bound on the mixing
time. In a recent (2000) paper, published in the Journal of Mathematical Physics, Eric Vigoda
showed that the 2A bound was not best possible; he proved that rapid mixing already occurs
for Q > (11/6)A; under this weaker condition Vigoda shows a somewhat less rapid, O(n?logn)
mixing. The techniques leading to such improvements are expected to be widely applicable in
combinatorics, theoretical computer science, and statistical physics.

Concluding remarks. Markov chains are widely used models in a variety of areas of
theoretical and applied mathematics and science, including statistics, operations research, in-
dustrial engineering, linguistics, artificial intelligence, demographics, genomics. Markov chain
models are used in performance evaluation for computer systems (“if the system goes down,
what is the chance it will come back?”), in queuing theory (server queuing, intelligent trans-
portation systems). Hidden Markov models (where the transition probabilities are not known)
are a standard tool in the design of intelligent systems, including speech recognition, natural
language modelling, pattern recognition, weather prediction.

In discrete mathematics, theoretical computer science, and statistical physics, we often
have to consider finite Markov chains with an enormous number of states. Card shuflling is an
example of a Markov chain with 52! states. The “random recoloring process,” discussed above,
is an example of a class of Markov chains which have exponentially many states compared
to the length of the description of the Markov chain. (The description of an instance of the
random recoloring process consists of specifying the graph G and the parameter ().) We remark
that the random recoloring process is but one instance of a class of Markov chains referred to
as “Glauber dynamics,” originating in statistical physics.

An example from computer science: if the state of a memory unit on a computer chip can
be described by a bit-string of length k then the number of states of the chip is 2¥. (Transitions
can be defined by changing one bit at a time.)

This exponential behavior is typical of combinatorially defined Markov chains.

Because of the exponential growth in the number of states, it is not possible to store the
transition matrices and to compute their powers; the size of the matrices becomes prohibitive
even for moderate values of the description length of the states. (Think of a 52! x 52! matrix
to study card shuffling!)

The evolution of such “combinatorially defined” Markov chains is therefore the subject
of intense theoretical study. It is of great importance to find conditions under which the
distribution is guaranteed to get close to the stationary distribution very fast (in a polynomial
number of steps). As noted above, this circumstance is called rapid mixing. Note that rapid
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Figure 5.3: Transition graph for a Markov chain.

mixing takes place much faster than it would take to visit each state! (Why is this not a
paradox?)

5.2 Problems

Exercise 5.2.1. Let M be the Markov chain shown in Figure [5.2

1. Is M strongly connected?
2. Write down the transition matrix 1" for M.
3. What is the period of vertex 17

4. Find a stationary distribution for M. You should describe this distribution as a 1 x 5
matrix.

5. Prove that lim;_. 7% does not exist. Prove this directly, do not refer to the Perron-
Frobenius theorem.

Exercise 5.2.2. Consider the following digraph: V = [3], E = {1 — 2,1 — 3,2 — 2,3 —
3}. Write down the transition matrix of the random walk on this graph, with transition
probabilities as shown in Figure[5.2] State two different stationary distributions for this Markov
chain.
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Figure 5.4: The transition graph for a Markov chain.

Last update: October 12, 2004



Chapter 6

Algebra Review

6.1 Groups

Definition 6.1.1. A semigroup (G, ") is a set G with a binary operation - such that:

Axiom 1 (Ya,be€ G)(3la-b € G)
Axiom 2 (Va,b,c€ G)(a-(b-c)=(a-b)-c)

Definition 6.1.2. A group (G, -) is a semigroup such that:

Axiom 3 (Identity element) (31 € G)(Va € G)(1-a=a=a-1)
Axiom 4 (Inverse) (Va € G)(Ib € G)(a-b=b-a=1)

Multiplicative Notation:

eab=a-b

e In Axiom 4, b=a~!

Additive Notation:
e Binary operation ‘+’

e Identity becomes ‘0’

e Additive inverse ‘—a’
The size of G as a set, which is denoted |G|, is called the order of G.
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Definition 6.1.3. G is an abelian group if G is a group such that (Va,b € G)(ab = ba).

Definition 6.1.4. H C G is a subgroup of G (denoted H < G) if

1.1e H
2. H is closed under the binary operation
3. H is closed under inverses

Definition 6.1.5. Let H < G. The sets of the form a - H := {ah : h € H} for a € G are the
left cosets of H. The left cosets partition G. Right cosets are defined analogously.

Definition 6.1.6. |G : H| = number of left cosets of H in G is called the index of H in G.

Exercise 6.1.7. Prove that the number of left cosets is the same as the number of right cosets,
even if G is infinite. (Hint: construct a bijection between the left and the right cosets.)

Exercise™ 6.1.8. Prove: if G is finite then the left and the right cosets have a common system
of representatives, i.e., there exists a set T" of size |T| = |G : H| such that T contains exactly
one element from every left coset as well as from every right coset.

Exercise 6.1.9 (Lagrange). If H < G then |G| = |H|- |G : H|. Therefore, if |G| < 0o then
[H| |G-
Exercise 6.1.10. Prove: the intersection of subgroups is a subgroup.

Definition 6.1.11. Let S C G. We define the subgroup of G generated by S by

($)= () H
H<G
H2S
A group is cyclic if it is generated by an element (|S| = 1).

Exercise 6.1.12. (S) is the set of all (finite) products of elements of S and inverses of elements
of S.

Example 6.1.13. Let S = {a,b}. Then aba~%bab® € (S).
Example 6.1.14. If |S| =1 and S = {g} then (S) = {¢" : n € Z}.

Exercise 6.1.15. If G is cylic then

1. if |G| = oo then G = (Z,+) (= denotes isomorphism)

2. if |G| =n then G = (Z/nZ,+)
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Definition 6.1.16. The order of an element g € G is the order of the cyclic group generated
by g: lgl := [{g}].

Exercise 6.1.17. ¢* =1 < |g| | k

Exercise 6.1.18. If G is finite then ¢/l =1
Exercise 6.1.19 (Euler - Fermat). (Va,n € Z)(g.c.d. (a,n) = 1 = a#™ =1 mod n)
Exercise 6.1.20. If G is an abelian group then

Le.m. Ja, [B]
g.c.d.[[al, [b]]

lab| ‘ Le.. [|al, |b]].

This shows that if g.c.d. [|al, |b]] = 1 then |ab|] = l.c.m. [|al, |b|].

Definition 6.1.21. Fj is a free group of rank k on free generators {aq,...,a;} if the
products of the a; and the a; ! give 1 only by explicit cancellation.

Example 6.1.22. ab3a*a2a20°b" 271 =1
Exercise™ 6.1.23. F3 < Fy. In fact, Fio < Fb.

Definition 6.1.24. For a commutative ring R (see Definition|6.2.3)), the special linear group
SL(n, R) is the group of those n x n matrices A € M, (R) with det(A) = 1. (More about rings
below; we assume all rings have an identity element.)

Exercise* 6.1.25. (Sanov) A = [ é

F» < SL(2,Z). (Hint: for T = (t;;) € SL(2,7Z), let m(T') = max|t;;|. Show that VT there is
at most one X € {4, AT, A=1, A=T} such that m(T) > m(TX).)

% and AT (A transpose) freely generate a free group

Definition 6.1.26. Let G be a group and S C G\ 1. The Cayley graph I'(G, S) has G for
its vertex set; elements g, h € G are adjacent if gh~! € SUS~! (where S~ = {571 : s € S}).

Exercise 6.1.27. Prove: I'(G, S) is connected if and only if S generates G.

Exercise 6.1.28. Suppose G = (S). Then I'(G, S) is bipartite if and only if G has a subgroup
N of index 2 such that SN N = 0.

Exercise 6.1.29. Let S be a minimal set of generators of GG, i.e., no proper subset of S
generates G. Prove: K35 ¢ I'(G, S).

A theorem of Erdés and Hajnal states that if an (infinite) graph X does not contain K, x, as
a subgraph (for some m € N) then y(X) < Xy. As a consequence of the preceding exercise, if
S is a minimal set of generators then x(I'(G, 5)) < No.
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Exercise 6.1.30. Prove that every group G has a set S of generators such that x(G,S) < Ng.
Hint. Not every group has a minimal set of generators (e.g., (Q,+) does not). But every
group has a sequentially non-redundant set of generators, {s, : a € I}, where I is a well-
ordered set and (Vo € I)(sa & (55 : B < «). Prove that if S is sequentially non-redundant
then K5717 04 F(G, S)

Exercise 6.1.31. If a regular graph of degree r with n vertices has girth g then
n>1l4+r+r@r—1)+...r@r—DW32 5 —1)9/271

Consequently, g < 1 + 2logn/log(r — 1).

On the other hand, Erdds and Sachs proved for every r > 3 there exist r-regular graphs of girth

g > logn/log(r —1). The following problem addresses the question of explicit construction

of a 4-regular graph with large girth. The girth will be optimal within a constant factor.

Exercise® 6.1.32. (Margulis) Let G = SL(2,p) := SL(2,Z/pZ). Let S = {A, B} where
1 2

A= [ 01 ] and B = AT (A transpose). Note that |G| < p3 and T'(G, S) has degree 4. Prove

that the girth of I'(G, S) is 2(logp). (Hint. Use Sanov’s Theorem and the submultiplicativity
of matrix norm.

6.2 Rings
Definition 6.2.1. A ring (R, +,-) is an abelian group (R, +) and semigroup (R, -) such that:

e (Distributivity) (Va,b,c € R)(a(b+ c) = ab+ ac) and ((b+ c)a = ba + ca)
Exercise 6.2.2. In aring R, (Va € R)(a-0=0=0"-a)
Definition 6.2.3. (R, +,") is a commutative ring if (R, -) is abelian.

Definition 6.2.4. R is a ring with identity if (R,-) satisfies Axiom 3 (semigroup with
identity) and 1 # 0.

CONVENTION. By “rings” we shall always mean rings with identity.
Definition 6.2.5. a € R is a unit if 3a~' € R.
Exercise 6.2.6. The units of R form a multiplicative group denoted R*.

Example 6.2.7. Let R be a ring.

e M, (R) := set of n x n matrices over R is a ring
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Exercise 6.2.8. Let R be a commutative ring. GL(n, R) denotes the group of units of M, (R).

Prove: A € M,(R) belongs to GL(R) if and only if det(A) € R*.

Example 6.2.9. mod m residue classes form a ring, denoted Z/mZ.

Exercise 6.2.10. What is the order of the group of units of Z/mZ?

Definition 6.2.11. a € R is a left zero divisor if a # 0 and (3b € R,b # 0)(ab = 0). Right
zero divisors are defined analogously.

Definition 6.2.12. a € R is a zero-divisor if a is a left OR a right zero-divisor.
Exercise 6.2.13. 1. If 3a~! then a is not a zero-divisor.

2. The converse is false.

3. The converse is true if R is finite.

4. The converse is true if R = M,,(F') where F is a field. In this case, A € R is a zero-divisor
if and only if det(A) = 0.

Definition 6.2.14. An integral domain is a commutative ring with no zero-divisors.

Definition 6.2.15. A division ring is a ring where all nonzero elements are units, i.e.,

R* = R\ {0}.

6.3 Gaussian integers and quaternions; sums of two squares
and four squares

Definition 6.3.1. The Gaussian Integers are complex numbers of the form {a+bi : a,b € Z}
where i = v/—1. They form the ring Z[i]. The norm of z € Z[i] is N(z) = a® + b? = 27.

Exercise 6.3.2. Define divisibility among Gaussian integers. Observe that z |w = N(2)| N(w).
Show that the units among the Gaussian integers are +1, 4.

Exercise 6.3.3. Use Gaussian integers to show that (a? + b?)(c? + d?) = sum of two squares.
Hint. Observe that N(zw) = N(z)N(w).

Exercise™ 6.3.4. Define division with remainder among Gaussian integers. Show the existence
of g.c.d.’s. Use this to establish unique prime factorization in Z[i].

Exercise 6.3.5. Show: if z is a prime in Z[i] then N(z) is either p or p? for some prime p € Z.
In the former case p = N(z) = a? + b?; in the latter case, p = 2.

Exercise™ 6.3.6. Let p € Z be a prime. Prove: p is a prime in Z[i] if and only if p = —1
(mod 4). Hint. “If.” if p = —1 (mod 4) then p # a® + b%. “Only if:” if p = 1 (mod 4) then
(3a € Z)(p|a® +1). Let w = a + bi € Z[i]. Let z = g.c.d. (p,w).
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Exercise 6.3.7. Infer from the preceding exercise: if p is a prime (in Z) and p = 1 (mod 4)
then p can be written as a® + b.

(e7)

Exercise™ 6.3.8. The positive integer n = Hp

;| can be written as a sum of two squares if
and only if (Vi)(p; = —1 (mod 4) = 2| ;).

Exerciset 6.3.9. Show that the number of ways to write n as a® + b% in Z is
€+ H (Cki + 1)
i:p;=1 mod 4
where € = 1 if n is a square and 0 otherwise.

Exercise 6.3.10. Let n be a product of primes = 1 (mod 4) and suppose n is not a square.
Prove: the number of ways to write n as a? + b? is d(n) (the number of positive divisors of n).

Definition 6.3.11. The quaternions form a 4-dimensional division algebra H over R, i.e., a
division ring which is a 4-dimensional vector space over R. The standard basis is denoted by
1,i,j,k, so a quaternion is a formal expression of the form z = a + bi + ¢j + dk. Multiplication
is performed using distributivity and the following rules:

o ij=-ji=k
o jk=—kj=i
o ki=—ik=]j.

It is clear that H is a ring. We need to find inverses.

Exercise 6.3.12. For z = a+bi+cj+dk, we define the norm of z by N(z) = a?+b?+c?+d>.
Prove: N(z) = 2Z = Zz, where Z = a — bi — ¢j — dk is the conjugate quaternion.

Exercise 6.3.13. Let z,w € H. Prove: N(zw) = N(z)N(w).
Exercise 6.3.14.
@+ 02+ @+ )2+ 12+m?+n?) =2+ 0+ 0+ w?

where ¢, u, v, w are bilinear forms of (a, b, ¢, d) and (k, [, m,n) with integer coefficients. Calculate
the coefficients.

Exercise* 6.3.15. (Lagrange) Every integer is a sum of 4 squares. Hint. By the preced-
ing exercise, it suffices to prove for primes. First prove that for every prime p there exist
T1,...,24 € Z such that p| > 2? and g.c.d. (z1,...,74) = 1. Now let m > 0 be minimal such
that mp = z? + --- + 22%; note that m < p. If m > 2, we shall reduce m and thereby obtain
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a contradiction (Fermat’s method of infinite descent; Fermat used it to prove that if p = 1
(mod 4) then p is the sum of 2 squares). If m is even, halve m by using (z; £ z2)/2 and
(x3+x4)/2 (after suitable renumbering). If m is odd, take y; = x; — mt; such that |y;| < m/2.
Observe that 0 < Y y? < m? and m| Y. 32, so Y. y? = md where 0 < d < m. Now represent
m2dp = (3. 27)(3 y?) as a sum of four squares, Y 22, using the preceding exercise. Analyzing
the coefficients, verify that (Vi)(m|z;). Now dp = 3. (z;/m)?, the desired contradiction.

6.4 Fields

Definition 6.4.1. A field is a commutative division ring.

Example 6.4.2. Let F be a field.

e M, (F) := set of n x n matrices over F is a ring
e GL,(F) := group of units of M, (F) is called the “General Linear Group”

Exercise 6.4.3. A finite ring with no zero divisors is a division ring. (Hint: use Exer-

cise [6.2.13])

Theorem 6.4.4 (Wedderburn). A finite division ring is a field.
Exercise 6.4.5. If F'is a field and G < F* is a finite multiplicative subgroup then G is cyclic.

Definition 6.4.6. Let R be a ring and for x € R let n, be the g.c.d. of all n such that nx =0
where

nr = x+---+z (n times) when n >0
nr = —x—---—x (|n| times) when n <0
nr := 0 whenn =0.

Exercise 6.4.7. n,-x =0
Exercise 6.4.8. If R has no zero divisors then (Vz,y # 0)(n,; = ny).
Definition 6.4.9. The common value n, is called the characteristic of R.

Exercise 6.4.10. If R has no zero divisors then char(R) = 0 or it is prime. In particular,
every field has 0 or prime characteristic.

Exercise 6.4.11. If R is a ring without zero-divisors, of characteristic p, then (a+b)P = a?+bP.
Exercise 6.4.12. 1. If R has characteristic O then R D Z

2. If R has characteristic p then R D Z/pZ.
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Exercise 6.4.13. If F' is a field of characteristic 0 then F' O Q.

Definition 6.4.14. A subfield of a ring is a is a subset which is a field under the same
operations. If K is a subfield of L then we say that L is an extension of K; the pair (K, L) is
referred to as a field extension and for reasons of tradition is denoted L/K.

Definition 6.4.15. A prime field is a field without a proper subfield.
Exercise 6.4.16. The prime fields are Q and Z/pZ (p prime).

Definition 6.4.17. Observe: if L/K is a field extension then L is a vector space over K. The
degree of the extension is [L : K] := dimg L. A finite extension is an extension of finite
degree.

Exercise 6.4.18. The order of a finite field is a prime power. Hint. Let L be a finite field
and K its prime field, so |K| = p; let [L : K] = k. Prove: |L| = p*.

Exercise 6.4.19. The degree of the extension C/R is 2. The degree of the extension R/Q is
uncountably infinite (continuum).

Exerciset 6.4.20. Prove that v2,v/3,V5,..., /P are linearly independent over Q.

Exercise 6.4.21. If K C L C M are fields then [M : L|][L: K] = [M : K|.

6.5 Polynomials over Rings and Fields

Definition 6.5.1. Let R be a commutative ring. (As always we assume R has an identity.)
RJ[z] denotes the ring of polynomials in the variable z with coefficients in R.

Exercise 6.5.2. If R is an integral domain then R[z] is an integral domain.

Definition 6.5.3. A unique factorization domain (UFD) is an integral domain in which
every element can be written uniquely as a product of irreducible elements. The factorization
is unique up to the order of the factors and multiplying each factor by units.

Example 6.5.4. Every field is a UFD. The rings Z and Z[i] are UFDs.
Exercise 6.5.5. Prove: if R is a UFD then R[z] is a UFD.

Exercise 6.5.6. For an integral domain R, define the field of quotients (or field of fractions)
{Z ta,b e Rb # 0} by copying how Q arises from Z. (Hint: “rational numbers” are

equivalence classes of fractions).

Definition 6.5.7. Let F be a field and F(z) be the field of quotients of F[x]. F(x) is called
the function field over F.
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Exercise 6.5.8. dimg R[z] is countably infinite and dimg R(x) is uncountably infinite. (Hint:

Show {

o€ R} is linearly independent over R.)
T —a«

Definition 6.5.9. Let F' be a field. f € F[z] is irreducible if f is not constant (i.e.,
deg f > 1) and (Vg,h € Flz])(f = gh = degg =0 or degh = 0).

Definition 6.5.10. Let L/K be a field extension; let & € L. We say that « is algebraic over

K if (3f € K[z])(f # 0 and f(a) = 0). We define m,(x) as the g.c.d. of all such polynomials
and we call it the minimal polynomial of « (over K). If all elements of L are algebraic over
K then we call L/K an algebraic extension.

Exercise 6.5.11. mq(a) = 0.
Exercise 6.5.12. m,, is irreducible over K.
Exercise 6.5.13. Every finite extension is algebraic.

Definition 6.5.14. Let R be a ring. I C R is a left ideal of R if I is an additive subgroup
of R and (Vr € R)(rI C I). Right ideals are defined analogously. I is an ideal if it is both a
left- and a right-ideal.

Definition 6.5.15. Let R be a ring and I and ideal of R. The additive quotient group R/I
with elements a + I is a ring under the multiplication rule (a + I)(b+ I) = ab+ I. It is called
the quotient ring.

Exercise 6.5.16. Let F' be a field and f € K[z]. The ring K[z]|/(f) if a field if and only if f
is irreducible.

Definition 6.5.17. A simple extension K («) is the smallest field containing K and «.

Exercise 6.5.18. If « is algebraic over K then K(a) = K[a| = {f(«) : f € K[z]} ~ K[x]/

(Mma)-

Exercise 6.5.19. Let F, be a finite field of order ¢. Then

2l —x = H(:c—a)

a€lFy
g7t 1= H(x—a)
a€Fy

Exercise™ 6.5.20. Let ¢ = p" be a prime power. Let F;(x) be the product of of all monic
irreducible polynomials of degree d over F,. Prove that 27—1 =[], Fa(x). (For this exercise,
do not assume the existence of ;. The field F), = Z/pZ of course exists.)
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Exercise™ 6.5.21. Let N; be the number of monic irreducible polynomials of degree d over
F,. Observe from the preceding exercise that p* = 3" din dNy. Infer:

N = (1/m) Y uln/d)p".
din
Conclude that N, # 0.

Exercise 6.5.22. Prove that there exists a field of order p™. Hint. The preceding exercise
shows that there exists an irreducible polynomial f of degree n over F,,. Take the field Fp[z]/(f).

Exercise 6.5.23. Prove: the field of order p* is unique (up to isomorphism).

6.6 Irreducibility over Z, Gauss lemma, cyclotomic polynomi-
als

Exercise 6.6.1. (Gauss Lemma) A polynomial f € Z[z] is primitive if the g.c.d. of its
coefficients is 1. Prove: the product of primitive polynomials is primitive. (Hint. Assume
fg = ph where f,g,h € Z[x] and p is a prime. Look at this equation modulo p and use the
fact that [Fp[x] is an integral domain.)

Exercise 6.6.2. If f € Z[z] splits into factors of lower degree over Q[z] then such a split
occurs over Z[z|. In fact, if f = gh where g, h € Q[z] then (3r € Q)(rg € Z[z] and h/r € Z[z]).

n

Exercise 6.6.3. Let f(z) = H(m — a;) — 1 where the a; are distinct integers. Then f(z) is

i=1
irreducible over Q. Hint. Let f = gh where g, h € Z[z]|. Observe that (¥i)(g(a;) + h(a;) = 0).
n 2
Exercise 6.6.4. Let f(x) = (H(x —a;) | + 1 where the a; are distinct integers. Then f(z)
i=1
is irreducible over Q. Hint. Let f = gh where g, h € Z[z]. Observe that (Vi)(g(a;) = h(a;) =
+1). Observe further that g never changes sign; nor does h.)
n .
Exercise 6.6.5. Let f(z) = Zaixl € Z[x]. If pis a prime and p { an,p|ao,...,p|an—1,0* 1
i=0

ag, then f is irreducible over Q. (Hint: Unique factorization in Fp[z]).

Exercise 6.6.6. If p is a prime then ®,(z) :== 2P~ +2P=2 + ... + 2 + 1 is irreducible over Q.
(Hint: Introduce the variable z = x — 1.)

Exercise 6.6.7. g.c.d. (z¥ — 1,2 —1) = 29 — 1 where d = g.c.d. (k, /).
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Definition 6.6.8. The n-th cyclotomic polynomial is defined as
O, (z) = [[(z - w) € C[a]

where the product extends over all complex primitive n-th roots of unity.

Exercise 6.6.9.
H ‘Pd(l') =z" -1

d|n
Exercise 6.6.10. Let f,g € Z[x] with the leading coefficient of g equal to 1. If f € Q] then
g
! € Zlx].
9
Exercise 6.6.11.
,(z) € Zx]

Exercise 6.6.12.

O () = [ J(a — D/

din

Exercise 6.6.13. Let f,g be polynomials over the field F. Prove: if g?| f then g| f’, where
/" is the (formal) derivative of f.

Exercise 6.6.14. Prove: if p{n then 2™ — 1 has no multiple factors over F,,.

Exercise™ 6.6.15. Let a # b and n be positive integers. Let p be a prime. Assume
p| g.c.d. (Pg(n), Pp(n)). Prove: p| g.c.d. (a,b).

Exercise 6.6.16. 1. Prove: if f is a polynomial over F,, then f(zP) = (f(x))P.

2. Prove: if f is a polynomial over F, where ¢ is a power of the prime p then there exists a
polynomial g over Fy such that f(2P) = (g(z))P.

3. Find an infinite field F' of characteristic p such that part (b) is false if F, is replaced by
F.

Exercise™ 6.6.17. Let w be a complex primitive n-th root of unity. Prove: if p is a prime
and p { n then the minimal polynomials of w and w? (over Q) coincide. (Hint. Let f and g be
the minimal polynomials of w and wP, respectively. Assume f # g; then fg|z™ — 1. Observe
that f(x)|g(zP). Look at this equation over [, and conclude that ™ — 1 has a multiple factor
over Fp, a contradiction.)

Exercise 6.6.18. A major result is now immediate: ®,, is irreducible over Q.
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Chapter 7

Finite Projective Planes

7.1 Basics

Definition 7.1.1. An incidence geometry is a set P of “points,” a set L of “lines,” and an
incidence relation I C P x L.

Notation 7.1.2. If (p,f) € I then we say that p is incident with ¢ and we write p - £¢. If
(p,€) ¢ I, we write p— /.

Definition 7.1.3. The dual of the incidence geometry (P, L,I) is the incidence geometry
(L, P,I7') (we switch the roles of points and lines; the same pairs remain incident).

Definition 7.1.4. A projective plane is an incidence geometry satisfying the following three
axioms:

Axiom 1. (Vp; # py € P)(3W € L)(p1 = ¢ and py —=-{).
Axiom 2. (V) # ly € L)(3p € P)(p— {1 and p-+{3).

Axiom 3. (Non-degeneracy) 3p1, p2,p3, p4 € P such that no three are on the same line.

Exercise 7.1.5. Prove that the dual of a projective plane is a projective plane. (Note the
dual of Axiom 1 is Axiom 2 and vice versa. State the dual of Axiom 3 and prove that it follows
from Axioms 1-3.)

Unless expressly stated otherwise, all projective planes considered here will be finite. For
p € P, let deg(p), the degree of p, be the number of lines incident with p. For £ € L, let rk(¢),
the rank of £, be the number of points incident with /.

Exercise 7.1.6. If p——/, then deg(p) = rk(¢).
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This result is an immediate consequence of Axioms 1 and 2 and does not require Axiom 3.
(Prove!)

Exercise 7.1.7. ¥Ypi,ps € P, 3 € L, py — ¢ and py — .

The proof of this requires some care.

The following is immediate from the preceding two exercises.

Exercise 7.1.8. In a projective plane, all points have the same degree.

Use the fact that the dual of a projective plane is a projective plane to infer:
Exercise 7.1.9. In a projective plane, all lines have the same rank.
Exercise 7.1.10. In a projective plane, the degree of every point and the rank of each line is

the same.

In other words, projective planes are regular and uniform, and their degree and rank are
equal.

For reasons of tradition, we denote this common value by n + 1. Every point of the plane
is thus incident with n 4 1 lines and every line is incident with n + 1 points. The number n is
called the order of the projective plane.

Proposition 7.1.11. |P| = |L| =n? +n+ 1.

The smallest projective plane is the Fano plane, which has order n = 2.

5

The incidence matrix for the Fano plane is as follows:
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0 = @© &0 T

—_ o= OO0 OO
O R O O O ik
_ O OO = OIN
OO O R, K~ O W
OO R = O R Ok
O = = O = O O ut
= = O =, OO oo

7.2 Galois Planes

A class of projective planes called Galois planes is constructed as follows. Let F' be a finite
field of order ¢q. Let F be the 3-dimensional space over F. We define the inner product over
F3 in the usual way: for u = (a1, a9, a3) and v = (81, B2, 33) we set u-v = a1 31 + B2 + 3 3.
We say that u and v are perpendicular if u-v = 0.

Let us say that two nonzero vectors u,v € F3 are equivalent if u = v for some \ € F.

Let S be the set of equivalence classes on F> — 0. Note that each equivalence class has ¢— 1
elements and therefore the number of equivalence classes is (¢ —1)/(q — 1) = ¢* + ¢ + 1.

Set P =L = S and let us say that p € P and ¢ € L are incident if u-v = 0 where u € p (u
is a vector in the equivalence class p) and v € £. The coordinates of u are called homogeneous
coordinates of p (they are not unique—every point has ¢—1 triples of homogeneous coordinates);
similarly, the coordinates of v are called homogeneous coordinates of £.

Exercise 7.2.1. Prove that this definition gives a projective plane of order ¢. It is called a
Galois plane after Evariste Galois (1811-1832), the discoverer of finite fields and of modern
algebra.

Exercise 7.2.2. Prove that the Fano plane is a Galois plane (necessarily over the field of order
2) by assigning homogeneous coordinates to the points and lines of the Fano plane.

A set of points is collinear if there is a line with which all of them are incident.

We say that four points are in general position if no three of them are collinear.

A collineation is a transformation of the projective plane consisting of a permutation of the
points and a permutation of the lines which preserves incidence.

Theorem 7.2.3 (Fundamental Theorem of Projective Geometry.). If ai,...,a4 and
b1,...,bs are two quadruples of points in general position in a Galois plane then there exists a
collineation ¢ such that (Vi)(v(a;) = b;).

Exercise 7.2.4. (Prove!) Use Theorem to show that the Fano plane has 168 collineations.
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Exercise 7.2.5. Consider the projective plane IT = PG(2, F') over the field F. for i = 1,2, 3,
let p; = (aji,b;, ¢;) be three points in II, given by homogeneous coordinates (a;, b;, ¢; € F, not
all zero). Prove: the three points are collinear (lie on a line) if and only if the 3 x 3 determinant
la; b; ¢;| is zero.

Exercise 7.2.6. A projective plane Il = (P, L1,11) is a subplane of the projective plane
Iy = (P, Lo, I5) if Py C P2, L1 C Lo, and the incidence relation I; is the restriction of I5 to
Py x Ly. Prove: if II; is a proper subplane of IIy then n; < y/n, (where n; is the order of II;).

Exercise 7.2.7. Let P(n) be the number of projective planes of order n. Prove: P(n) <
(ne)"+1°  Hint. first prove that

n24+n+1

(n2+n+1)
P(n) < < n+1 >
Exercise 7.2.8. Let us consider the Galois plane PG(2,5) (over the field of 5 elements).

1. How many points does this plane have, and what is the number of points per line?

2. Points are given by “homogeneous coordinates.” Determine whether or not the points
given by a = [1,4,0], b = [3,2,2], and ¢ = [4, 1, 2] are collinear (belong to the same line).
(Coordinates are mod 5.) Prove your answer.
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Matroids and Geometric Lattices

8.1 Matroids

Definition. Let P be a poset and a,b € P. We say that a covers b if b < a and there is no ¢
satisfying b < ¢ < a.

Matroids (also called “combinatorial geometries”) are a combinatorial abstraction of the
concept of “linear independence” of a finite set of vectors. There are several related concepts
which can be used to produce equivalent sets of axioms that describe matroids. We start with
the description via “flats.” We consider finite matroids only.

Definition 1 (via “flats”) A matroid is a pair M = (X, F) where X is a set of points and
F is a family of subsets of X called flats, such that

(1) F is closed under intersection,
(2) F contains the empty set, all singletons {z},z € X and the set X itself,

(3) for every flat E € F, E # X, the union of all flats that cover F in F (F is a poset
ordered by inclusion) is equal to X.

Exercise 8.1.1. Prove that the flats that cover E partition X\ E.

The closure Y of a subset Y C X is defined as the intersection of all flats that contain Y.
The subset Y C X is closed if Y =Y. The subset Y C X is independent if for each x € Y we
have x ¢ Y\{z}. The rank p(Y) of Y C X is the maximum size of an independent subset of
Y. The rank of X is the rank of the matroid M.

One can define matroids directly through independent sets.

Definition 2 (via “independent sets”) A matroid is a pair (X,Z), where 7 is a family of
subsets of X, called independent sets, having the following three properties:
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(A) 0ez
(B) If Y € Z and Z C Y then Z € Z,

(C) (Exchange principle) If Y, Z € 7 and |Z| > |Y| then (3z € Z)(Y U{z} € 7).

It follows that any two maximal independent sets have the same cardinality, the rank of
the matroid; therefore every maximal independent set is maximum. A maximal independent
set is called a basis, and a minimal dependent set is called a cycle.

For Y C X, let Zy be the set of those members of Z contained in Y. Then (Y,Zy) satisfies
axioms (A)—(C) and therefore defines a matroid on the point set Y. We define p(Y') to be the
rank of this matroid. This defines a rank function p : P(X) — { nonnegative integers }.

A subset Y of X is now said to be closed if (Vx ¢ Y)(p(Y U {z}) > p(Y)). The closure Y
of an arbitrary set Y is the smallest closed set containing Y.

Exercise 8.1.2. Prove: (a) The closed subsets are exactly the maximal subsets of a given
rank. (b) The closure of a closed set is itself. (c) Intersection of closed sets is closed.

The flats of a matroid defined via independent sets are defined as the closed sets.

Having completed the translation of the concepts of each definition in terms of the fun-
damental concept of the other definition, we can state that the two classes of structures are
identical. In other words:

Exercise 8.1.3. Prove that the two sets of axioms (via flats and via independent sets) are
equivalent (after translation of the concepts).

Matroids can also be axiomatized by making any of the following the basic concept: bases,
the rank function, the cycles, the closure operator on P(X).

8.2 Examples of matroids

We list some examples of matroids.

Exercise 8.2.1. For each class of examples below, prove that they define matroids.

1. (Linear independence: the principal example) Let V' = {v1, ..., v} be elements of a vector
space. A subset of V is independent if it is linearly independent.

A matroid is representable over a field F if it is isomorphic to a matroid defined by a set
of vectors over F as above.
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2. (Algebraic independence) Let Fi, F» be fields with F; C F,. The elements ay,...,a; € Fy
are algebraically independent over F} if there is no nonzero polynomial in & variables with
coefficients in F which has (ai,...,a;) as a root. Take any finite subset X C Fb; call
Y C X “independent” if it is algebraically independent.

3. (Graphic matroids) Let X be the set of edges of a graph G. A subset of edges is “inde-
pendent” if it is a forest (cycle free).

Note that the points of this matroid M(G) are the edges of the graph G.

Exercise 8.2.2. Prove that the rank of M(G) is n—k, where n is the number of vertices
of G and k is the number of connected components.

Exercise 8.2.3. Prove that the cycles in M(G) are exactly the cycles of the graph G
(hence the term).

Exercise 8.2.4. A connected partition of the graph G is a partition V = V4U...UVj of
the vertex set of GG such that the subgraph of G induced by each V; is connected. Show
that the flats of M(G) correspond to the connected partitions of the graph G.

Exercise 8.2.5. Prove that a graphic matroid is representable over any field.

4. (Transversal matroids) Let F = {A1,...,An} be a set-system. We define the matroid
7T = (F,T) by calling a subfamily G C F independent if G has a SDR (system of distinct
representatives).

Exercise 8.2.6. Prove that a transversal matroid is representable over every sufficiently
large field.

5. (Dual matroid) Let M = (X, B) be matroid defined by its set of bases, B. We define the
dual matroid M? = (X, B%) to be the matroid with the same point set whose bases are
the complements in X of the bases of M, i.e., B = {X\ B : B € B}.

Exercise 8.2.7. Prove: if M is representable over a field F, then M is representable
over F.

Exercise 8.2.8. Prove: if G is a planar graph then the dual of M(G) is also graphic
(and corresponds to a planar graph). (Note: the converse also holds: if the dual of a
graphic matroid is also graphic then the corresponding graphs are planar.)

6. (Contraction) Let M = (X,7) be a matroid defined by its set of independent sets. For
x € X, we define the contraction M /x to have point set X’ = X \ {z}; a subset Y C X’
is “independent” in M/z if Y U{zx} € 7.
Exercise 8.2.9. Prove: for a graphic matroid M(G) and an edge z € E(G), the matroid
M(G)/z is the same as the matroid M(G/z), where G/z is the graph obtained by

contracting the edge x (hence the term).

Exercise 8.2.10. Prove: if the matroid M is representable over the field F' then so is
M/z (for any = € X).
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8.3 Lattices

Definition: A finite lattice L is a partially ordered set with the property that any subset S
has a join (or least upper bound), i.e., an element b € L such that

(Va € S) (a <b)and (Ve e S)(((Vae S)(a<c)) = (b<c)).

It follows (why?) that every subset has a meet (or greatest lower bound), that is an element
b € L such that

(Va € S) (b<a)and (Ve e S)((Va € S)(c<a)) = (c<Dh)).
The join of two elements a and b is denoted by a\/ b and the meet by a A b.
A finite lattice L always has a minimum element 07, and a maximum element 1;..

A point in L is an element that covers 0.

Definition (Geometric lattice) A lattice is called geometric if:

(o) L is atomic (or a point lattice), that is, each element of L is the join of points of L, and

(B) L is semimodular, that is, if a # b € L and both a and b cover ¢ in L then a\/ b covers
both a and b.

Exercise 8.3.1. (Jordan—Dedekind property) Prove: if the lattice L is semimodular then it has
the Jordan-Dedekind (JD) property: if a < b (a,b € L) then any two maximal chains between
a and b have the same length.

In particular,if L is semimodular then for ¢ € L all maximal chains between 07, and a have
the same length; this length is called the rank of a. The points of a lattice are the elements of
rank 1.

The relation between matroids and geometric lattices is given by the following exercise.

Exercise 8.3.2. (Equivalence of matroids and geometric lattices) The set of flats of a matroid,
ordered by inclusion, is a geometric lattice. Conversely, given a geometric lattice L with point
set X, then (X, {F, : y € L}) is a matroid, where F, = {z € X : < y} are the flats of the
matroid.

Exercise 8.3.3. (Lattice of divisors) Let n be a positive integer. Consider the lattice D(n)
of divisors of n. The points of the lattice are the positive integers dividing n, ordered by
divisibility. Determine, for what values of n is this lattice geometric.
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Chapter 9

Linear Algebra and Applications to
Graphs

9.1 Basic Linear Algebra

Exercise 9.1.1. Let V and W be linear subspaces of F", where F is a field, dimV = k,
dim W = ¢. Show that dim(V W) >k + ¢ —n.

Exercise 9.1.2. Let A be an n x n matrix over the field F and x € F\ {0}. Then (3x)(4Ax =
0) < det(A) = 0, where det(A) is the determinant of A.

Definition 9.1.3. Let A be an n x n matrix over the field F and x € F™ \ {0}. We say that
X is an eigenvector for A with eigenvalue A if

Ax = \x.

Exercise 9.1.4. Show that if x;,...,x, € F" are eigenvectors with distinct eigenvalues then
they are linearly independent.

Definition 9.1.5. The characteristic polynomial of the n x n matrix A is
fa(z) :=det(zl — A).
Exercise 9.1.6. ) is an eigenvalue of A if and only if it is a root of f4(x), i.e. fa(\) =0.

Exercise 9.1.7. Let fa(z) = 2" + ap—12" ! + - -+ + ap (why is it monic?). Show that ag =
(—1)™det(A) and an—1 = —tr(A), where the trace of A is defined as tr(4) = >_"" | a;; (sum
of the diagonal elements).

Definition 9.1.8. If X\ is an eigenvalue of A then the geometric multiplicity of X is
dimker(A — AI) (the number of linearly independent eigenvectors for eigenvalue A). The
algebraic multiplicity of X is its multiplicity as a root of fa(z).
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CONVENTION. By the multiplicity of the eigenvalue (without adjective) we always mean
the algebraic multiplicity.

Exercise 9.1.9. The algebraic multiplicity of A is greater than or equal to its geometric
multiplicity.

Exercise 9.1.10. If A is an n X n matrix then the algebraic multiplicity of the eigenvalue A
equals dim ker(A — \I)™.

Definition 9.1.11. The n x n matrices A and B are similar, A ~ B, if there exists an
invertible matrix S s.t. A= S"'BS.

Exercise 9.1.12. Show that if A and B are similar then f4(z) = fp(x).

Definition 9.1.13. An eigenbasis for A is a basis of F" consisting of eigenvectors of A.
Definition 9.1.14. A is diagonalizable if it is similar to a diagonal matrix.

Exercise 9.1.15. A is diagonalizable if and only if it has an eigenbasis.

Exercise 9.1.16. If A is an upper triangular matrix then its eigenvalues, with proper algebraic
multiplicity, are its diagonal elements.

Exercise 9.1.17. Every matrix over C is similar to an upper triangular matrix. More generally,
a matrix over the field [F is similar to a triangular matrix if and only if all roots of f4 belong
to IF.

Exercise 9.1.18. Let Aq,..., A, be the eigenvalues of the n x n matrix A (listed with their
algebraic multiplicities). Then det(A) = [[; A and tr(A4) = >, \;.

Exercise 9.1.19. Show that () is not similar to (§1). Verify that their characteristic
polynomials are identical. Show that the second matrix is not diagonalizable.

Exercise 9.1.20. Let F = C (or any algebraically closed field). Show that A is diagonalizable if
and only if each eigenvalue of A has its geometric multiplicity equal to its algebraic multiplicity.
A1
Exercise 9.1.21. If A is a diagonal matrix, A = , and f is a polynomial
An
(A1)
then f(A) =
f(An)

Definition 9.1.22. m4(z), the minimal polynomial of A, is the monic polynomial of lowest
degree such that m4(A) = 0.

Exercise 9.1.23. Show that m4(x) exists and degma < n?.
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Exercise 9.1.24. Show that if f € F[z] is a polynomial then (f(A) =0) < (ma| f).
Theorem 9.1.25 (Cayley-Hamilton Theorem).

malfa  or, equivalently,  fa(A)=0.

Consequently degm g < n.

Exercise 9.1.26. A proof of the Cayley-Hamilton theorem over C is outlined in this series of
exercises:

1. Prove Cayley-Hamilton for diagonal matrices.
2. Prove the theorem for diagonalizable matrices.

3. Show that if A; is a sequence of matrices, lim; .., A; = A, and f; is a sequence of
polynomials of the same degree, and lim; o, f; = f (coefficientwise convergence) then
lim; o fi(4;) = f(A). In other words, polynomials of matrices are continuous functions
of the matrix entries and the coefficients of the polynomials.

4. Show that for any matrix A there exists a sequence of diagonalizable matrices A;, such
that lim; .., A; = A. In other words diagonalizable matrices form a dense subset of the
set of all matrices.

(Hint: prove it first for upper triangular matrices.)

5. Complete the proof of Cayley-Hamilton theorem over C.

Exercise 9.1.27. Complete the proof of the Cayley-Hamilton Theorem (over any field) by
observing that if an identity of (multivariate) polynomials holds over Z then it holds over any
commutative ring with identity.

9.2 Euclidean Spaces, Gram—Schmidt orthogonalization

In this section the field I is either R or C. If z = a + bi € C (i = /—1), we will denote by
Z the complex conjugate Z = a — bi. Note that z € R if and only if 2 = 2. If A = (a;;) is a
matrix then each entry of A = (a;;) is the complex conjugate of the corresponding entry of A.

Let V be a vector space over F, i.e., and abelian group under addition which permits
multiplication by scalars (members of F). Multiplication by scalars is an F x V' — V function
satisfying to the rules of associativity ((Va,b € F)(Vx € V)((ab)x = a(bx))), both rules of
distributivity ((a+b)x = ax+ bx and a(x+y) = ax+ay) and the normalization rule 1x = x.

Definition 9.2.1. A Hermitian bilinear form over V is a function f : V xV — T satisfying
the indentities f(x,y +2) = f(x,y) + f(x,2); f(x,ay) = af(x,y) and f(x,y) = f(y,x).
Consequently we also have f(y + z,x) = f(y,x) + f(z,x) and f(ay,x) =af(y,x).
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Definition 9.2.2. If f is a Hermitian bilinear form then the function Qf(x) := f(x,x) is
called a Hermitian quadratic form.

Exercise 9.2.3. Prove that the values of a Hermitian quadratic form are always real.

Definition 9.2.4. A Hermitian bilinear form f and its corresponding quadratic form Q; are
called positive semidefinite if f(x,x) > 0 for all x € V; if in addition f(x,x) > 0 for all
x # 0 then we call f and @Q; positive definite.

Definition 9.2.5. A Eulidean space is a pair (V, f) where V is vector space over F and f
is a positive definite Hermitian form over V. We refer to f as the inner product.

Definition 9.2.6. In a Euclidean space (V, f), the norm of x € V is defined as

[ = v/ f (x, ).

The distance of two vectors, x and y, is defined as
dist(x,y) = |lx —yl|.

Exercise 9.2.7. Prove that the distance defined above is a metric, i. e., it satisfies the triangle
inequality.

Definition 9.2.8. An isometry between two Euclidean spaces (V, f) and (W, g) over the
same field F is a linear isomorphism V' — W which preserves the norm. (V, f) and (W, g) are
isometric if there exists an isometry between them.

Definition 9.2.9. Two vectors x,y are orthogonal if their inner product is zero. Notation:
x L y. A set of vectors is orthogonal if every pair among them is orthogonal.

Exercise 9.2.10. Prove: if a set of nonzero vectors is orthogonal then the vectors are linearly
independent.

Definition 9.2.11. The Gram matrix of a sequence x1,...,X,, of vectors is the m x m
matrix

G = G(Xh s >Xm) = (f(xlaxj))?,gzl
The Gramian is the determinant of the Gram matrix.

Exercise 9.2.12. Prove: the Gramian of a sequence of vectors is zero if and only if the vectors
are linearly dependent.

Exercise 9.2.13. Prove: the Gramian of a sequence of vectors is always real and nonnegative.
Hint. Use Exercise [0.3.111

Our next goal is to turn any (finite or infinite) sequence bi, bo,... of vectors into an
orthogonal sequence while preserving the chain of subspaces generated by the initial segments
of the sequence of vectors and also preserving the Gramian of the initial segments.
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Theorem 9.2.14. (Gram—Schmidt orthogonalization) Let by, bg,... be a (finite or in-
finite) sequence of vectors; for every i, let U; be the span of by,...,b;. Then there exists a

sequence of orthogonal vectors e1,es, ... such that for all i, U; is the span of of e1,...,e; and
det G(el, PN ,ei) = det G(bl, PN ,bl)

Proof. We construct the e; inductively. To construct e;, assume we have the orthogonal
sequence e, ..., ej_1 which satisfies the Theorem with respect to the sequence bq,...,bj_1.
Guided by the requirement that the the span of U;_; and e; must agree with the span of U;_;
and b;, we try to find e; in the form

i—1

e;=Db; + E Q; j€;.
Jj=1

To determine the coefficients o j, we take the inner product of each side of the equation by
vve; from the left (j < i). The condition f(ej,e;) = 0 then becomes equivalent to

2
0= f(ej,bi) + aijlle;l”
If e; = 0 then this condition is automatically satisfied; otherwise there is a unique «; ; which

satisfies it:
f(ej7 bl)

Q=
" eI

Exercise 9.2.15. Prove that the sequence {e;} constructed indeed satisfies the conclusions of
the Theorem.

Exercise 9.2.16. Assuming the b; are linearly independent, prove that the sequence {e;}
constructed is the unique solution, up to + signs, satisfying the requirements stated in the
Theorem.

Exercise 9.2.17. Prove that the following holds for any sequence {e;} satisfying the conditions
of the Theorem: e; = 0 if and only if b; belongs to the span of {b; : j < i}. In particular,
zero occurs among the e; if and only if the b; are linearly dependent.

Definition 9.2.18. A sequence of vectors is orthonormal if the vectors are orthogonal and
have unit norm.

Exercise 9.2.19. A sequence of vectors is orthonormal if and only if their Gram matrix is the
identity matrix.

Corollary 9.2.20. FEvery finite dimensional Euclidean space has an orthonormal basis
(ONB).

Exercise 9.2.21. Prove: two finite-dimensional Euclidean spaces over the same filed are
isometric if and only if they have the same dimension. Hint. Use ONBs to construct an
isometry.
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Exercise 9.2.22. (Shortest distance to a subspace) Let U < V be a subspace and
x € V a vector. Show that there is a unique y € U such that y | x —y. Show that
|Ix — y|| = mingep ||[x — z||. Give an algorithm to find y. (We call y the component of x
parallel to U; and x — y the component of x perpendicular to U.)

Definition 9.2.23. Let V be an n-dimenisional real vector space and xi,...,x; € V. The
parallelepiped spanned by the vectors x; is the set {)_ a;x; : 0 < a; < 1}. The parallelepiped
is non-degenerate if the x; are linearly independent.

Definition 9.2.24. Let V' be an n-dimensional real vector space and x1,Xo,... be a sequence
of vectors in V. We define the k-dimensional volume of the parallelepiped spanned by x1,...,xx
inductively as follows:

(a) For k =1, vol(x1) := [|x1]]

(b) For k > 2, vol(xy,...,x%) := hy - vol(x1,...,Xi_1), where hj, is the distance of x;, from
the subspace spanned by x1,...,Xg_1.
Exercise 9.2.25. Prove: vol(xy,...,x;) = 0 if and only if X1, ..., X are linearly dependent.

Exercise™ 9.2.26. Let G = G(x1, . ..,Xy) be the Gram matrix. Prove: det G = (vol(xy, ..., x)>.

Exercise 9.2.27. Let V = R" and consider n vectors xi,...,%,. Prove: vol(xi,...,X,) =
|| det(x1,...,%Xn)]|-

EXAMPLES of Euclidean spaces follow. The first example is F™, the set of n-tuples over F,

usually represented as column vectors, with their “standard” inner product:

Definition 9.2.28. Let x,y € F". Their standard inner product is
n
<X7y> = Zflyz
i=1

Definition 9.2.29. If A is a matrix, then the adjoint matrix is A* = e (conjugate-
transpose).

Exercise 9.2.30. We think of vectors in F” as column matrices. Verify the following:
L (xy) =x"y;
2. |Ix]| = vx*x.

Exercise 9.2.31. Orthogonalize the sequence of columns of this matrix:

3 -1 2 0
1 2 3 1 |.Youroutput is a sequence of 4 orthogonal vectors in R?. Naturally,
-1 0 -1 5

one of them must be zero. Which one? Why? Switch the first two columns and orthogonalize
again. Observe what changes and what does not change in the output.
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The next example: ORTHOGONAL POLYNOMIALS

The field is R. Let (a,b) be a finite or infinite interval and w : (a,b) — R a nonnegative

continuous function, not everywhere zero, such that for all n, f: |z™|w(z) < co. We call w the
weight function. We define the following inner product with respect to w over the space R[z]
of real polynomials: for p(z),q(z) € R[z], we set

b
(P q) 5—/ p(x)g(z)w(z)de.

Exercise 9.2.32. Verify that this is a positive definite bilinear form.

Definition 9.2.33. The classical Legendre polynomials P, (x) are defined as follows:

Pala) = g [~ 1))
S gnpl dgn ’
Exerciset 9.2.34. Orthogonalize the infinite sequence 1, z, 2, ... with respect to the function

w(z) = 1 over the interval (—1,1). Describe the spaces U;. Prove that the orthogonalized
sequence is the sequence of Legendre polynomials Py, Py, . ...

“Orthogonal polynomials” are sequences of polynomials arising by orthogonalizing the se-
quence 1, z,z2,... under various weight functions. For more about the remarkable properties
of orthogonal polynomials and their surprising connections to graph theory, see Chapter
polynomials

9.3 Normal matrices and the Spectral Theorem

Exercise 9.3.1. For an n x n matrix A, verify the following;:

1. (A*x,y) = (x, Ay)
2. (vx,y)((Bx,y) = (x,4y))) & B=A"

Exercise 9.3.2. (AB)* = B*A*, where A, B are not necessarily square matrices. (What
dimensions should they have so that we can multiply them?)

Definition 9.3.3. We say that a matrix A is Hermitian if A* = A. A real Hermitian matrix
is symmetric.

Exercise 9.3.4. If A = A* then all eigenvalues of A are real.

Exercise 9.3.5. Show that the characteristic polynomial of a Hermitian matrix has real co-
efficients.
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Definition 9.3.6. The Hermitian bilinear form associated with a Hermitian matrix is the
F™ x F* — [F function defined by

Ba(x,y) =x"Ay = Zazjwzy]

quadratic form associated with a A is the function Q 4(x) : F” — F defined by

QA(X) =x"Ax = Z Qi T 5.
i?j
Exercise 9.3.7. Prove that if A is Hermitian then B4 is indeed a Hermitian bilinear form in
the sense of Definition [0.2.1]

Definition 9.3.8. A Hermitian matrix is positive (semi)definite if the corresponding quadratic
form is positive (semi)definite.

Exercise 9.3.9. (a) Prove that every matrix of the form A*A is Hermitian, positive semidef-
inite. A does not need to be a square matrix for this exercise. (b) Prove that A*A is positive
definite if and only if the columns of A are linearly independent.

Exercise 9.3.10. Prove that every positive semidefinite Hermitian matrix B can be written
as B = A*A. Hint. Use the Spectral Theorem. Prove that B in fact has a “square root,” i.e.,
there exists a positive semidefinite Hermitian matrix A such that B = A2.

Exercise 9.3.11. Let (V, F') be a Euclidean space and let G = G(xi,...,Xm) be the Gram
matrix of a sequence of vectors. Prove: There exists A such that G = A*A. Consequently G is
positive semidefinite; and G is positive definite if and only if the x; are linearly independent.

Definition 9.3.12. The operator norm of a matrix A is defined as

141} = e | Ax].

Exercise 9.3.13. Show that || A|| = \/A1(A*A), where A\;(A*A) denotes the largest eigenvalue
of A*A. (Note that A*A is Hermitian. A does not need to be a square matrix for this exercise.)

Definition 9.3.14. A Hermitian matrix A is called positive semidefinite if (Vx € F)(Qa(x) >
0). A is called positive definite if (Vx € F\ {0})(Qa(x) > 0).

Exercise 9.3.15. Show that a Hermitian matrix is positive definite (resp. semidefinite) if and
only if all its eigenvalues are positive (resp. nonnegative).

Exercise 9.3.16. Show that a Hermitian matrix A is positive definite if and only if all of its
upper left corner determinants det(a1), det (gil ai2), etc, are positive.

Hint. Use the Interlacing Theorem, given in Exercise [9.3.39] below.

Definition 9.3.17. A is a unitary matrix if A*A = I. A real unitary matrix is called an
orthogonal matrix.
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Exercise 9.3.18. Show that the following conditions on an n X n matrix are equivalent:

(a) (Vx,y € F*)((Az, Ay) = (z,9));
(a) (Vz e F)(||Az|| = ||=|)) (i.e., A is an F™ — F™ isometry);
(b) A is unitary.

Exercise 9.3.19. Let A be an n x n matrix. Prove that the following are equivalent:

1. A is unitary;
2. AA* =1;
3. the columns of A form an orthonormal basis of F";
4. the rows of A form an orthonormal basis of F™.
Exercise 9.3.20. Show that if A is unitary and X is an eigenvalue of A then |\ = 1.

Exercise 9.3.21. Prove: the isometries of the real plane which fix the origin are the rotations
(about the origin) and the reflections (in axes passing through the origin). Verify that the
following are the matrices of the rotations and reflections with respect to a fixed orthonormal
basis:

cosa —sina cosa  sina . .
R, = ) and T, = ) . What is the angle of rotation
sina cos« sina  cosa

for R,? What is the position of the axis of reflection for T,7?

Exercise 9.3.22. Find the eigenvalues and orthonormal eigenbases for the 2 x 2 matrices given
in the preceding exercise. Note that all matrices R, share an orthogonal eigenbasis.

Exercise 9.3.23. Given a complex number A with [A| = 1, construct a 2 x 2 orthogonal matrix
with eigenvalues A and .

Exercise 9.3.24. Prove: if A is an n x n orthogonal matrix and n is odd then one of the
eigenvalues of A is +1. Prove that this statement is false in all even dimensions.

Exerciset 9.3.25. (a) Let F = C. Prove that to any matrix A there exists a unitary matrix
S such that the matrix S*AS is upper triangular (all entries below the diagonal are zero).
Observe that the diagonal entries of S*AS are the eigenvalues of A.

(b) Let F = R. Let A be a real matrix and suppose all eigenvalues of A are real. Prove
that there exists an orthogonal matrix S such that the matrix S*AS is upper triangular
(all entries below the diagonal are zero). (Note that this statement is false if not all
eigenvalues of A are real.)

Definition 9.3.26. The n x n matrix A is normal if AA* = A*A.
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Exercise 9.3.27. Prove: if an upper trianguilar matrix 7" is normal then T is diagonal.
Exercise 9.3.28. Prove: if A is normal and S is unitary then S*AS is normal.

Exercise® 9.3.29. (Characterization of complex normal matrices) Prove that the fol-
lowing three conditions on a complex n X n matrix are equivalent:

(a) A has an orthonormal eigenbasis;

(b) there exists a unitary matrix S such that S*AS is a diagonal matrix; if so, the eigenvalues
of A are the diagonal elements of S*AS;

(c) A is normal.

Exerciset 9.3.30. (Characterization of real symmetric matrices) Prove that the fol-
lowing three conditions on a real n X n matrix are equivalent:

(a) A has an orthonormal eigenbasis in R";

(b) there exists a orthogonal matrix S such that S*AS is a diagonal matrix; if so, the
eigenvalues of A are the diagonal elements of S*AS;

(c) A is normal and has real eigenvalues;

(d) A is a real symmetric matrix.

Comments. In each of the two preceding problems, the equivalence of parts (a) and (b) is easy
to prove, as is either of the implications (a) = (c) and (b) = (c¢). The converses of each of
these last implications are fundamental results which include the Spectral Theorem (complex
and real versions, resp.). Hint. For the (c) = (b) implications, use the exercises leading up
to the characterizations of the normal matrices. For the equivalence with part (d) in the last
exercise, prove (b) = (d) = (¢).

Exercise 9.3.31. Show that the n X n matrix A is

1. Hermitian if and only if A is normal and all its eigenvalues are real;

2. unitary if and only if A is normal and all its eigenvalues have unit absolute value.

NOTATION: For the rest of this section we use the following notation: F = C or R; A is a
Hermitian matrix over F. The eigenvalues of A (with multiplicity) are Ay > --- > \,,.

Theorem 9.3.32 (Spectral Theorem). The eigenvalues of A are real and A has an or-
thonormal eigenbasis.
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Note that the Spectral Theorem follows from Exercises[9.3.29] and [9.3.30]

Let eq,..., e, be an orthonormal eigenbasis for A.

Exercise 9.3.33. Show that if x = ), x;e;, then
Qa(x) =D Nifxil*.
i

Definition 9.3.34. The Rayleigh quotient is the function R : F™\ {0} — R defined by

R(x) x* Ax _ Qa(x)

x*x o x[*

Exercise 9.3.35. Show that

A1 = Hmliamxl R(x).
Exercise 9.3.36. Show that

A2 = max R(x);

[Ix[[=1
xle;

A3 = max R(x);
lIxll=1
xlei,e2

and so on.
Exercise 9.3.37. Show that if \; = x*Ax, ||x|| = 1, then Ax = \;x.

Exercise 9.3.38 (Fischer-Courant Theorem).

Ai = max min R(x)
U<F" zxeU
dim U=i

where the maximum runs over all linear subspaces U < F" of dimension i.

Exercise 9.3.39 (Interlacing Theorem). Let A be an n x n Hermitian matrix. We can
construct a new (n—1) x (n—1) matrix by removing the ith row and the ith column of A. The
resulting matrix B is Hermitian. Let Ay > --- > A, be the eigenvaluesof Aand 1 > -+ > pup—1
be the eigenvalues of B (with multiplicity). Show that A\; > p1 > Ao > o > -+ > pip—1 > A

9.4 Applications to Graph Theory

There are two important square matrices commonly associated to graphs — the adjacency
matrix of the graph, and the (finite or combinatorial) Laplacian. This allows us to apply the
theory of eigenvalues to graphs, and it turns out that a great deal of information about the
graph is carried in the spectra of these matrices.

For graph theory terminology please refer to “Graph Theory Terminology “ handout.
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9.4.1 The Adjacency Matrix

Definition 9.4.1. Let G = (V, E) be a graph; assume V = [n] = {1,2,...,n}. The adjacency
matrix Ag = (a;;) of G is the n x n (0,1)-matrix defined by a;; = 1 if {4, j} € E (vertices i
and j are adjacent); and a;; = 0 otherwise. Note that a;; = 0.

Exercise 9.4.2. Show that the (4,7) entry of (Ag)* gives the number of walks of length &
between vertex i and vertex j. Give an interpretation for the (i,i) entry of (Ag)* and for

> i=1(Ac)ij-

The adjacency matrix acts on functions on the graph. That is, if f : V — R is a function
on the vertices of the graph (which can also be considered a column matrix), then

Af()y =) f0)-
fij)er
Notice that this action is just matrix multiplication.

Exercise 9.4.3. Isomorphic graphs have similar adjacency matrices.

This allows us to make the following definitions:

Definition 9.4.4. « is an eigenvalue of G if it is an eigenvalue of Ag. The characteristic
polynomial of G is the characteristic polynomial of Ag. The spectrum of G is the ordered
set of all eigenvalues of Ag (with multiplicities).

As before we will assume that eigenvalues of G are always ordered k1 > - -+ > K.

Exercise 9.4.5. Compute the spectrum of each of the following graphs: K, (the complete
graph on n vertices), the star on n vertices (a tree with a vertex of degree n — 1, denoted
Kp—1.1), Ky (the complete bipartite graph).

Exercise 9.4.6. Let G = (V, E) be a graph. Let G; be the graph obtained by deleting the ith
vertex (and the edges incident with it) from G. Show that eigenvalues of G and G; interlace.

Exercise 9.4.7. (Vi) (|ki| < k1).
Exercise 9.4.8. If GG is connected then x1 > ko.
Exercise 9.4.9. If G is bipartite , then x,_; = —K;11.

Exercise 9.4.10. If G is connected and k1 = —k,, than G is bipartite. Thus if G is connected
and not bipartite then (Vi > 1) (|xi| < k1).

Exercise 9.4.11. k1 < maxdegq(i).
7
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Exercise 9.4.12. k1 > @ = %Zdegg(i) (average degree).
1

Exercise 9.4.13. If G is k-regular, i.e. (Vi)(degqs (i) = k), then k1 = k.

Exercise 9.4.14. If k1 = maxdeg(i) and G is connected then G is regular.
(2
Exercise 9.4.15. If ky = 2 3" degg/(i) then G is regular.
i

Exercise 9.4.16. 1. Upper bounds on the maximal eigenvalue are hereditary; that is, if
H C G is a subgraph, then k1 (H) < k1(G).

2. Show that upper bounds on the second eigenvalue k4 fail to be hereditary in general, but
are hereditary in the special case that H is an induced subgraph.
(Hint: for the first part, consider the spectrum of K,. For the second part, recall the
Interlacing Theorem.)

Exercise 9.4.17. If diam(G) = d, then the number of distinct eigenvalues of A¢ is at least
d+1.

(Hint: Prove that under the diameter hypothesis, I, A,..., A% are linearly independent. To
show this, recall the significance of the (i, j) entry of A* from Exercise )

9.4.2 The Laplacian and Expansion of a Graph

Definition 9.4.18. We define the Laplacian of the graph G to be

Aqg=Dqg— Ag
where A is the adjacency matrix and D¢ is a diagonal matrix, D¢ (i,1) = degq(4).
)T

Exercise 9.4.19. Verify that for x = (x1,...,x,

)

x"Agx = Z |z — 24|
{igteE

Exercise 9.4.20. Show that Aq is positive semidefinite.

However, Ag is not positive definite:
Exercise 9.4.21. Check that Agj = 0, where j = (1,...,1)7.
Exercise 9.4.22. Show that if G is connected, then 0 is a simple eigenvalue.

Exercise 9.4.23. Prove that the multiplicity of 0 as an eigenvalue of Ag is equal to the
number of connected components of G.

Copyright (©) 2003 by Laszl6 Babai. All rights reserved.



122 CHAPTER 9. LINEAR ALGEBRA AND APPLICATIONS TO GRAPHS

Therefore if 0 = A} < Ay < --- < )\, are eigenvalues of Ag then Ay = 0 if and only if G is
disconnected.

Definition 9.4.24 (Fiedler). \; is the algebraic connectivity of G.

Exercise 9.4.25. If G is a k-regular graph (every vertex has degree k) and k = k1 > -+ > Ry,
are eigenvalues of Ag and 0 = Ay < --- < )\, are eigenvalues of Ag the \; + k; = k. In
particular, Ao = K1 — k2. Ao is also referred to as the eigenvalue gap or spectral gap.

Definition 9.4.26. If A C G we denote by §(A) the number of edges between A and A = V'\ A.
(

The isoperimetric ratio for A is (S\Tﬁ)' The isoperimetric constant of G is

i = min L(A)
97 e A
lA|I<%

The next result shows the important fact that if Ay is large then G is “highly expanding”.

Exercise* 9.4.27. \y <2 %.

Later we will state a companion result which shows that in some sense if Ao is small then
G has a small isoperimetric constant.
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9.4.3 More basic properties of the eigenvalues of graphs

Recall the notation that, for a graph G, the adjacency matrix is denoted A and has eigenvalues
K1 > ... > Kn, while the Laplacian is denoted Ag and has eigenvalues A; < ... < A,.

Exercise 9.4.28. Prove: K1+ -+ K, = 0.
Exercise 9.4.29. Prove: A\; +---+ A\, = 2m where m = |E| is the number of edges.

Exercise 9.4.30. Prove: x2 + -+ + k2 = 2m.

Exercise 9.4.31. Prove: k3 + -+ + k3 = 6t where t is the number of triangles in G.

Exercise 9.4.32. Prove: (Vs > 0)(k; + --- + k5 is an integer.) The same holds for the A;.

Exercise 9.4.33. Prove: the following numbers cannot occur as eigenvalues of a graph:
V-1, 7, 3/5, \/3/2, 21/3 They cannot occur as eigenvalues of the Laplacian either.

Exercise® 9.4.34. Prove: if the characteristic polynomial of a graph G is irreducible (over
Q) then G has no nontrivial automorphisms. (An automorphism is a self-isomorphism, i.e., a
permutation of the vertices which preserves adjacency.)

OPEN PROBLEM. The characteristic polynomial of almost every graph is irreducible (over
Q). (“Almost every graph” means that if we create a random graph on a given set of n vertices
by flipping (g) coins to decide adjacency then the probability of the event in question is 1—o(1).)

9.4.4 Eigenvalues and chromatic number

The chromatic number of a graph is the smallest number of “colors” needed for an assignment
of colors to the vertices of G such that no pair of adjacent vertices receives the same color. This
is one of the most important graph invariants. Here we consider the connections of chromatic
number and the spectral theory of graphs.

Recall the notation that [k] = {1,2,...,k}.

Definition 9.4.35. A legal k-coloring of a graph GG is a map ¢ : V — [k| such that {i,j} €
E = ¢(i) # ¢(j). The chromatic number of G, denoted x(G), is the smallest value of k for
which a legal k-coloring exists.

Exercise 9.4.36. Compute the chromatic number k of the Petersen graph and present a legal
k-coloring.

Exercise 9.4.37. Show that x(G) < deg, . +1.
The famous four-color theorem asserts that the chromatic number of a planar graph is at

most four. But the weaker result that planar graphs are all six-colorable can be derived in a
very elementary way, which we describe here.
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Exercise 9.4.38. We will show, in several parts, that x(G) < 6 for planar graphs.

1. Show: If G is planar, then |E| < 3n — 6, where n = |V/|.
(Hint: recall Euler’s formula: if a connected graph is embedded in the plane, then
|V| — |E| + |F| = 2, where F is the set of faces, or regions; the outside counts as one of
the regions.)

2. Show: If GG is planar, then deg,;, < 5.

3. Conclude that x(G) < 6.
(Hint: use induction, setting aside a vertex of smallest degree at each stage.)

Eigenvalue bounds on the chromatic number are given below.
Theorem 9.4.39 (H. Wilf). x(G) <1+ k.
This is an improvement over the result that xy < 1+ deg,,.,. (Exercise [9.4.37) because
k1 < degp,. (Exercise|9.4.11)).
K1

Theorem 9.4.40 (Hoffman). x(G) > 1+ .

This is our first lower bound on chromatic number. While an upper bound on the chromatic
number requires presenting a coloring, in order to prove a lower bound, we need to show that
all attempted colorings with fewer colors fail. So the question of lower bounds is more profound
and accordingly leads to deeper results.

Exercise 9.4.41. We prove Wilf’s theorem, in steps.

1. For a graph G, let G, denote the graph obtained by deleting vertex v; that is, the induced
subgraph on V' \ {v}. Show that degv < x(G) — 1 = x(G,) = x(G).

2. Conclude that G has an induced subgraph H with x(G) = x(H) and deg,,;,(H) >
x(G) — L.

3. Use this to finish the proof of the theorem.

(Hint: recall Exercise [9.4.12])

Exercise™ 9.4.42 (Biggs). We show Hoffman’s theorem, in steps.
1. If a real symmetric matrix A is in block form

L8]

where P, @), R are n X n matrices, then
)\max(A) + )\min(A) S )\max(P) + )\max(R)-
(Hint: a somewhat delicate application of Rayleigh quotients, see Def. [9.3.34])
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2. Show by induction: if A is a real symmetric matrix in block form with ¢? submatrices
A;;j (1 <14,j <t) such that the diagonal submatrices A;; are square, then

t

Amax(A) + (t - 1))\min(A) S Z Amax(Aii)-

=1

3. Deduce Hoffman’s theorem.
(Hint: consider a partition of the vertices by color to apply the previous part of the
exercise. Then observe that Ay, < 0 to complete the proof.)

Next, we consider a special class of graphs for which the spectral gap is as big as possible.

Definition 9.4.43. A Ramanujan graph G is a regular graph of degree r such that (Vi >

2)(|ki| < V2r —1).

Note that kK1 = deg G = r, so there is a large gap between k1 and k.

It follows, by Hoffman’s theorem, that x(G) > 1+ \/2:7_1 = Q(/7).

In fact, this bound on the eigenvalues is asymptotically tight; that is, the v/2r — 1 bound
in the definition of Ramanujan graphs cannot be replaced with any smaller value. This fact is
quite difficult to show, and can be found in the work of Lubotzky-Phillips-Sarnak.

While it is hard to get a good upper bound on k2, we can obtain lower bounds with less
work. The next exercise provides one such bound.

Exercise 9.4.44. We will show that, for all r-regular graphs on n vertices with sufficiently
large n, the second eigenvalue is at least /7.

1. Show that for r-regular graphs G, we have

diam(G) =3 = n<r—ri4r+1.

2. Conclude that for such graphs with r > 2, n > r® = diam(G) > 4.

3. Show that, if n is sufficiently large relative to r then we have ko(G) > /7.
(Hint: use the diameter information to find induced subgraphs which are disjoint, and
reason from there using the results of Exercise [9.4.16})
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Chapter 10

Hadamard Matrices

10.1 Introduction

Notation. [n] denotes the set {1,2,...,n}

Exercise 10.1.1. Let 4|n and let A;,..., A, C [n] such that for all i, |4;| = n/2 and for all
i #j, |A; N Aj| =n/4. Prove: m <n—1. Hint. Use linear algebra.

Exercise 10.1.2. Prove that the inequality m < n — 1 in the preceding exercise is tight, i.e.,
for infinitely many values of n, set systems as described in the preceding exercise exist with
m =n— 1. Hint. Does this problem belong in these notes?

Definition 10.1.3. A (+1)-matrix is a matrix whose entries are 1 and —1.

An n x n (£1)-matrix is called an Hadamard matrix if the rows are orthogonal.

Remark. In Hadamard’s name, the “H” and the final “d” are silent.

Exercise 10.1.4. Prove that an n x n (£1)-matrix H is Hadamard < H - H' = nl,, where
I,, denotes the n x n identity matrix.

Definition 10.1.5. An n x n real matrix is orthogonal if AA! = I,,.

Exercise 10.1.6. A real n x n matrix A is orthogonal < (Vx € R")(||Az| = ||z||), where
llz|| = V- 2t denotes the Euclidean norm.

Exercise 10.1.7. Prove: if H is an n xn Hadamard matrix then ﬁH is an orthogonal matrix.

Exercise 10.1.8. If H is an n x n Hadamard matrix then (Vx € R")(||Hz| = v/n|z]|).

Exercise 10.1.9. Prove that the columns of an Hadamard matrix are also orthogonal, i.e.,
H' - H =nl,.
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Exercise 10.1.10. Prove: all (complex) eigenvalues of an n x n Hadamard matrix have
absolute value /n.

Exercise 10.1.11. Prove: if H is an n x n Hadamard matrix then det(H) = +n"/2,

Exercise 10.1.12. Prove: if A is an n x n (£1)-matrix then |det(A)| < n"/2. Equality holds
if and only if A is an Hadamard matrix. Hint. Prove Hadamard’s Inequality: if A is ann xn
real matrix then |det(A)] < Ny ----- N, where N; is the Euclidean norm of the it row of A.
Equality holds exactly when either a row is zero or the rows are orthogonal. Use the geometric
meaning of the determinant (volume of the paralellopiped spanned by the rows).

Example 10.1.13. S} = [ 1 _11 ],

| Sk Sk
Sk+1—|:sk —Sk;:| (k>1).

The matrix Sy, is called the 2F x 2F Sylvester matrix.
Exercise 10.1.14. Prove that S} is an Hadamard matrix.

Exercise 10.1.15. Let a,,, = (—1)"", where v,w € F5. Prove that the 2¥ x 2F matrix (ay )
is Sy (after suitable renumbering of the rows and columns).

Definition 10.1.16. The group Z3 = Zy X...XZs is called an elementary Abelian 2-group.

Remark. This group is the additive group of the n-dimensional vector space over Fy. (Fy is the
field of two elements.) Z% is also the additive group of the field Fan.

Exercise 10.1.17. Prove that the Sylvester matrix Sy is the character table of Z&.

Exercise 10.1.18. Let p be a prime number, p = —1 (mod 4). Construct a
(p+1) x (p+ 1) Hadamard matrix using the quadratic character of the field F,,.

Hint. Consider the p x p matrix (a;;) where a;; = (%) (Legendre symbol). Modify this

matrix by adding a row and column and suitably changing the zeros to +1.

Exercise 10.1.19. Prove: if 3n x n Hadamard matrix, then n = 2 or 4 |n.

Exercise 10.1.20. Prove: if Jdk x k Hadamard matrix and 3! x [ Hadamard matrix, then
dkl x kIl Hadamard matrix.
Hint. Kronecker product.

Comment. The Sylvester matrices are Kronecker powers of S1: Sy =51 ® - ® 5.

Conjecture 10.1.21. If4|n, then 3 an n x n Hadamard matriz.
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Comment. Let H={n|3n x n Hadamard matrix } and let h,, = |H N [n]|. If the conjecture is
true, then h, = Q(n). But even this weak consequence of the conjecture remains unsolved.

OPEN PROBLEM 10.1.22. Prove that h,, # o(n).

Exercise 10.1.23. Prove that h,, = Q (10&”)).

10.2 Discrepancy and Ramsey Theory for (+1)-Matrices

Lemma 10.2.1. (Lindsey’s Lemma) Let H = (h;j) be a Hadamard matriz. Let S,T C [n]
and s = |S|, t = |T|. Then

Z Z hij S stn.

i€S jeT
Definition 10.2.2. We call the submatrix on the entries corresponding to S x T an s X t
rectangle in H. We call the sum ‘ZZES > jer Nij

the discrepancy of this rectangle.

Discrepancy measures the deviation from uniform distribution.

Exercise 10.2.3. Prove Lindsey’s Lemma.

Hint. Let vg € {0,1}" denote the incidence vector of S C [n], i.e., the (0,1)-vector indi-
cating membership in S. Observe that

Z Z hij = USHU%.

i€S jeT
Now use Exercise [10.1.8 and the Cauchy-Schwarz inequality:
(Va,b € R")(Ja- 0] < [|al| - [[o]])-
Definition 10.2.4. A rectangle is homogeneous if all of its entries are equal.

Exercise 10.2.5. If H is an n x n Hadamard matrix, then H has no homogeneous rectangles
of area (= st) greater than n.

Exercise 10.2.6. (Erdés)
Prove: For all sufficiently large n, 3(n xn) (£1) matrices without homogeneous ¢ x t rectangles
such that £t > 1 4 2log, n.

Hint. Use the Probabilistic Method. Flip a coin for each entry. Show that the probability
that a random matrix is “bad” is less than 1. In fact it will be o(1) (almost all matrices are
Mgood?’)‘
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Exercise 10.2.7. Construct an explicit family of (n xn) (£1) matrices A,, (for infinitely many
values of n) such that A,, has no homogeneous ¢ X t rectangles for ¢ > /n.

OPEN PROBLEM 10.2.8. Construct an explicit family of (nxn) (£1) matrices A, (for infinitely
many values of n) such that A, has no homogeneous t x t rectangles for t > n%49.

10.3 Gale—Berlekamp Switching Game

Let A = (a;;) be a matrix with entries £1. The first player sets the initial entries of A.
Subsequently the second player may switch any row or column (multiply the row or column
by —1) and repeat this operation any number of times. The second player’s “score” is the
quantity |, i€l a; j| which the second player wishes to maximize. The second player’s gain
is the first player’s loss (zero-sum game), so the first player’s goal is to keep the second player’s
score low.

Let m(n) denote the score an optimal Player 2 can achieve against an optimal Player 1.

Exercise 10.3.1. Prove that m(n) = ©(n%/?).

Hint 1. m(n) = O(n®/?) requires Player 1 to be clever. Use an Hadamard matrix and
Lindsey’s Lemma (Lemma [10.2.1)). Warning: an n x n Hadamard matrix may not exist (but
a slightly larger one will be just as good).

Hint 2. m(n) = Q(n%?)). Player 2 needs a good strategy.

Let Player 2 flip a coin for each row to decide whether or not to switch that row. Subse-
quently, Player 2 should switch those columns whose sum is negative. Use the Central Limit
Theorem for the analysis.
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Chapter 11

Character sums, Weil’s Estimates
and Paradoxical Tournaments

11.1 Characters of finite fields

Definition 11.1.1. A character of a finite field F' is a function y : F' — C, satisfying the
following conditions:

1. x(0)=0

2. y(1) =1

3. (Ya,b € F)(x(ab) = x(@)x(8)).

Note that a character is a homomorphism from the multiplicative group F'* = F'\ {0} to
the multiplicative group C*.
Example 11.1.2. For any field F, we define the principal character, xo, by x0(0) = 0 and
(Va # 0)(xo(a) = 1).

Notation. For a prime power g = p”, F, denotes the field of order ¢ (i.e., the field F, has ¢
elements). For k = 1, the field F, is the field of mod p residue classes. Note that for k > 2,
the mod p* residue classes do not form a field, so for k > 2, the field [F, is not the same as the
ring of residue classes mod ¢. It is known, however, that for every prime power ¢ there exists
a field F,; and this field is unique up to isomorphism. If you are not familiar with finite fields,
you may still read this note, always replacing g by p.

Example 11.1.3. When F' = F,, for an odd prime p, we define the quadratic character x(a) :=
<a> , Where (a) is 0 when a = 0, 1 when a is a quadratic residue, and —1 when a is a quadratic
p p

nonresidue. (2 is called the Legendre symbol.
p
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Exercise 11.1.4. Show that, for all a, <a> =aP~1/2 (mod p).
p

Next, we extend the concept of the quadratic character to all finite fields of odd order.

Example 11.1.5. Let F, be a finite field of odd order q. The quadratic character x of F, is
defined as follows: for a € Fy,

1 if (3b € Fy)(a = b* #0);
x(a) =4 =1 if (Vb € F,)(a # b?);
0 ifa=0.

Exercise 11.1.6. Let ¢ be an odd prime power and x the quadratic character of ;. Prove:
if g = —1 (mod 4) then x(—1) = —1; and if ¢ =1 (mod 4) then x(—1) = 1.

Exercise 11.1.7. For any prime power ¢, prove: (Va € F,)(a?"1 = 1).
(Note that for ¢ = p a prime, this is Fermat’s Little Theorem.) Hint. Use Lagrange’s
theorem from group theory (the order of a subgroup divides the order of the group).

The order of a nonzero element a € I, is the smallest positive k such that a® = 1. Tt follows
from the preceding exercise that k|g — 1 (“k divides ¢ — 1).

Corollary 11.1.8. (Va € F;)(x(a) is a complex root of unity).

Indeed, if a* = 1 then (x(a))* = x(a*) = x(1) = 1.

Definition 11.1.9. The order of a character is the least positive integer s such that x(a)® =1
foralla € F', a # 0.

Note that, for any character of IFy, the order s must divide ¢ — 1.

The following is a basic fact about the structure of finite fields.
Theorem 11.1.10. For any prime power q, the multiplicative group F is cyclic. Equivalently,
there exists some g € F such that Fy = {g9,6% ...,g7 =1}

Such an element g is called a generator of F, or a primitive root of the field F,.

Exercise 11.1.11. Prove the Theorem. Hint. Use Sylow’s Theorem from group theory and
the fact that a polynomial of degree n has at most n roots in a field.

Corollary 11.1.12. If x is a character of F, of order s, and g is a primitive root of Fy, then
x(9) is a primitive s* root of unity. Conversely, for any w € C such that w*' = 1, there
exists a unique character x of Fq with x(g) = w.

Exercise 11.1.13. Prove the Corollary.

Note that if we take w = 1 we get the principal character, and, for ¢ odd, if we take w = —1,
we get the quadratic character.
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11.2 Character Sums: Weil’s Theorem

In this section we describe one of the most beautiful results of 20th century mathematics.

First we consider the sum of characters over all elements of a field.

Exercise 11.2.1. If y # xo, then Z x(a) =0.
a€l,

Let now f be a polynomial of degree d over IF,. We wish to estimate the sum

SOuf) = x(f(a)

a€lfy

Clearly, since |x(f(a))|is 0 or 1 for all a, we have |S(x, f)| < ¢. This is the best possible
upper bound; for example, if f is identically 1 then S(x, f) = g¢; if x is the quadratic character
and f(z) = 22, then S(x, f) = q¢ — 1.

Amazingly, once the trivial exceptions have been eliminated, a much stronger bound holds
on the magnitude of S(y, f): the values of the character tend to cancel each other out roughly
by the same amount as if they were chosen to be £+1 by coin flips.

Theorem 11.2.2 (André Weil). Let Fy be a finite field, and let x be a character of Fy of
order s. Let f(x) be a polynomial of degree d over Fy such that f(x) cannot be written in the
form ¢ (h(x))®, where ¢ € Fq. Then

> x(f(a)| < (d-1)y/g.

a€cl,

Thus, in a sense, the values of a character over the range of a polynomial behave as “ran-
dom” values, even though they are fully “deterministic.” This feature is the key to a large
number of applications to combinatorics and the theory of computing where the goal is “deran-
domization”: the elimination of random choice from the proof of existence of a combinatorial
object, i.e., replacing a probabilistic proof of existence by an explicit construction.

11.3 Paradoxical tournaments: proof of existence

Let X = (V,FE) be a digraph. Let x € V and A C V. We say that * dominates A if
(Va € A)((x,a) € E). We write x — A to denote this statement.

Definition 11.3.1. A digraph X = (V, E) is k-paradoxical if (VA C V)(|A| = k = Tz €
V)(z — A).
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Definition 11.3.2. A tournament is a digraph T' = (V, E) in which for every pair {z,y} of
vertices, exactly one of the following holds: z =y or (z,y) € E or (y,x) € E.

Note that this concept corresponds to diagrams of round-robin tournaments without draws
and without rematches. An edge (arrow) from a to b indicates that player a beat player b.

In a 1-paradoxical tournament, every player is beaten by someone. In a 2-paradoxical
tournament, every pair of players is beaten by someone. Even 2-paradoxical tournaments are
not straightforward to construct.

Exercise 11.3.3. Construct a 2-paradoxical tournament on 7 players. Hint. Make your
diagram have a symmetry of order 7.

So it is quite surprising that k paradoxical tournaments actually do exist for every k.
Constructing such tournaments even for k = 3 is quite hard. However, Paul Erdds, in one of
the gems of his Probabilistic Method, demonstrated the existence of such tournaments without
telling us how to construct them.

Theorem 11.3.4 (Erdés). If n > ck?2* then there exists a k-paradoxical tournament on n

vertices. (c is an absolute constant.)

What Erdés has shown is not just that such tournaments exist, but they abound: almost
every tournament on a given set of n vertices (players) is k-paradoxical. The model of “random
tournaments” is very simple: flip a coin to decide the outcome of each match.

Exercise 11.3.5. Let A C V be a set of k players (out of the set V of n players) and let = be
a player, not in A. Calculate the probability that x — A.

Exercise 11.3.6. Let A be as before. Show that the probability that none of the remaining
n — k players dominates A is exactly (1 — 27F)"k,

Exercise 11.3.7. Infer from the preceding exercise that the probability that our random
tournament is not k-paradoxical is less than

(Z) (1 . 2—k)n_k . (11.1)

Exercise 11.3.8. Conclude that if (Z) (1 - 2_k)n_k < 1 then there exists a k-paradoxical
tournament on n vertices.

Exercise 11.3.9. Prove that if k¥ > 3 and n > 4k%2* then the inequality in the preceding
exercise will hold. (A constant ¢ > 4 works for £ = 2; smaller constants work for larger values
of k. As k — oo, the value of a suitable constant — 1.)  Hint. Use the following facts:
(1) <nF/kl; 1 — 2 < e™®; and the monotonicity of the function z/Inx.

This concludes the proof of Erdés’s Theorem.
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Exercise 11.3.10. Prove that if n > ck?2¥ (for some absolute constant c) then almost all
tournaments on a given set of n players are k-paradoxical.

Here “almost all” means that for every ¢ > 0 there exists ng such that if n > ng and
n > ck?2F then the probability that the random tournament is k-paradoxical is greater than
1 — €. Hint. Revisit the same calculations done for the previous exercises. Only minimal
modifications are needed.

11.4 Paley tournaments: an explicit construction

We describe an explicit construction of k-paradoxical tournaments for arbitrarily large k.

Definition 11.4.1. Let ¢ = —1 be a prime power and let y denote the quadratic character of
[Fy. The Paley tournament of order q is defined as a digraph P(q) = (V, E) where V = F,; we
have a directed edge a — b iff x(a —b) = 1.

Note that because ¢ = —1 (mod 4), we have x(—1) = —1 (Exercise [I1.1.6). Since the
character is multiplicative, this ensures that x(a — b) = —x(b — a), so there is exactly one
directed edge between any two distinct vertices. This shows that P(q) is a tournament. (We
also need to note that x(0) = 0, so there are no loops in the digraph.)

Theorem 11.4.2 (Graham-Spencer). If ¢ = —1 (mod 4) and q > k4%, then P(q) is a
k-paradozxical tournament.

Proof: Let A= {ai,...,ax} C V be an arbitrary k-subset. Let N = #{x € V : x — A} be
the number of vertices which dominate the set A. We seek to show that N > 0. In fact, we
will show that N ~ .

Consider the following three cases:

ezx—A = Vi)(x(zx—a)=1).

ezt Aandz ¢ A = (Vi)(x(z—a;) =+£1) and (3i)(x(z —a;) = —1).
ezcA = (3N)(x(zr—a;)=0).

Now let ¢(x) := [[%_,(x(z — a;) + 1). Considering the cases above, we have
2k r— A
Y(x) =4 0, rAA ¢ A

Oor 281 zeA

The case 1)(x) = 2¥~! occurs for at most one x € A; namely, if and only if z dominates the
rest of A.
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Thus, we can compute the sum S := 3 g ¥(z) = 28N + €281 where ¢ € {0,1}. We will
have succeeded in showing that N > 0 if we can prove that S is large (S > 2¢~! will suffice).

Using the notation [k] := {1,...,k}, we obtain the expansion

SzZﬁ( (x—ai)+1)= ZZHXI—C%

x€Fq i=1 z€Fy IC[k] i€l

Letting f7(z) := [ [;c;(z — a;) and using the multiplicativity of x we see that

$=3 3 «( z S @) = 3 xa@) + 3 3 x(fi@)

x€F, IC[k] k] x€Fq z€F, I#0 z€lF,

Let us denote by R the rest of the sum: R:= > > x(fr(x)). Since the empty product is 1
I1#() z€lFy
and x(1) =1, we have S = (3> 1) + R = ¢+ R. If we can show that ¢ dominates R then we
]Fq
shall be done since then N ~ S/2F ~ ¢/2*, as desired. Now

|R| = ZZX(fIUU Z Z (f1(= <Z Il —1)\/q (by Weil).

I#0 z€Fy I#£0D |x€Fy I#£0

Note we can apply Weil because fr, by definition, has no multiple roots, so in particular
f1(z) # c(h(z))?. There are 2 choices for I C [k] and, for each choice, |I| < k. Thus, we have
shown that |R| < 2% - (k —1),/7.

From above, S = 2N + e2¥~1 = g + R, so
q 1
N>2—k—(k:—1)\/§—§> - ky/q.

So for N > 0 it suffices that % > k\/g, i.e., ¢ > 24k, O

Last update: October 12, 2004



Chapter 12

Zeros of Matching Polynomials

12.1 Orthogonal Polynomials

Let P denote the vector space of all polynomials in one variable with real coefficients, and let
the “weight function” w(x) be a continuous non-negative function over a (finite or infinite)
open interval, which is not identically zero (in the interval). Then we can define an inner
product in P as:

(1.9) = [w@)f(2)gle) do
where the integration is over the given interval in Rﬂ By the hypothesis on w, we see that for
all f e P, (f,f) =0 exactly when f =0 (Why?).

Definition 12.1.1. A sequence of polynomials, {p,}n>0, is called an orthogonal family with
respect to the weight function w if the following hold:

(1) deg(pn) =n

(2) (Pn,pm) =0,if m#n

Note that (pn,pn) is strictly positive. Also we may assume that all the p,,’s are monic (the
leading coefficient is 1) by scaling them. Scaling does not affect orthogonality.

The following is straightforward; we leave the proof to the reader.

Lemma 12.1.2. If the sequence of polynomials {pn}n>0 satisfies condition (1) then {pn}n>0
is a basis of P.

'If the interval is infinite then w has to go to zero at infinity fast enough, to make these integrals finite. If
the interval is finite then w(x) does not need to be bounded but its integral must be finite
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138 CHAPTER 12. ZEROS OF MATCHING POLYNOMIALS

Example 12.1.3. Some examples of families of orthogonal polynomials, and their correspond-
ing weight function.

Family of Polynomials Defining Interval | Weight function
Chebyshev Polynomial of first kind (-1,1) (1—a2%)~1/2
Chebyshev Polynomial of second kind (-1,1) V1— a2
Hermite Polynomials (—00, +00) e
Laguerre Polynomials (0,00) e "
Legendre Polynomials (—1,1) 1
The actual polynomials and their norms ¢, = (pn,pn) are given below. Here D := % is

the derivative operator.

Type Cn Polynomial
Chebychev 1 | 7/2(n =0),7(n > 0) T, (cos B) = cos(nh)
Chebychev 2 /2 Un(cosf) = sin((n +1)0)/sin 6

Hermite (n!)? H,(z) = (—1)"* D"[e=*]
Laguerre (n!)? L,(z) = e*D"[z"e™™]
Legendre 2/(2n+1) Py(z) = 52 D"[(z® — 1)"]

Lemma 12.1.4. Let {p, }n>0 be a sequence of orthogonal polynomials. If f(z) is a non-negative
factor of py, for some n, then f(x) must be a constant.

Proof: Suppose deg(f) > 1. Then p,(x) = f(x)g(x), where deg(q) < n. Since p, is
orthogonal to all polynomials of degree < n, we have

0= (o) = [ w@@pn()ds = [ w(z)f(@)a(e) do
But since f is non-negative and not identically zero, the integral is strictly positive, a

contradition.

Corollary 12.1.5. With the notation as above:

o All zeros of pp(x) are real.

e p, has no multiple zeros.

Proof: If p,(a + ib) = 0, then since complex zeros of real polynomials come in conjugate
pairs, we have that (z — a)? 4 b? is a positive factor of p,. Similarly, if # is a multiple real zero
of pp, then (x — )? is a non-negative factor of p,,.

Proposition 12.1.6. If {p,} is a sequence of monic orthogonal polynomials, then it satisfies
a three-term recurrence of the form pny1 = (x — ap)pn — bppPn—1, where ay, b, € R and b, > 0.
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Proof: Since xp, is a polynomial of degree n + 1, we have that xp, = Z?:Jrol c;p;- Taking the
inner product on both sides with p; gives ¢j(p;,pj) = (€pn,pj) = (Pn,xp;). So we have that
c; =0if j <n—1,1ie 2P, = cnt1Pnt+1 + CuPn + Cn—1Pn—1. Comparing the coefficients of the
leading terms gives ¢,+1 = 1. Hence p,11 = ( — an)pn — bupn—1, where a, = ¢u, by = cp—1.
To show that b, > 0, note that

TPn, Pn—1)
Pn> TPn—1)
PnsPn + f)
DPnsPn)-

bn(pnflapnfl)

(
(
(
=

Here f is a polynomial of degree < n, and hence (p,, f) = 0.

Remark 12.1.7. One corollary to this recurrence is that if p,, and p,,+1 have a common factor
q, then ¢ divides all p,,n > 0. This is impossible because pg is a nonzero constant.

Consequently, for all n > 1, g.c.d.(pp,pn—1) = 1; in other words, adjacent members of a
sequence of orthogonal polynomials have no common zeros.

We shall prove that in fact the zeros of p, and p,_; interlace.

Definition 12.1.8. Let f and g be two polynomials of degree n and n—1 respectively. Assume
all zeros of these polynomials are real. The zeros of f and g are said to interlace if there is a
root of g between any two roots of f, and vice-versa.

This definition permits f and g to have have multiple zeros.

Proposition 12.1.9. Let f and g be monic polynomials of degree n and n — 1 respectively.
Assume all zeros of each polynomial are real. Then the zeros of f and g interlace iff g/ f is a
decreasing function on each interval between conscutive zeros of f.

Proof: We prove the result only when each of f and g have distinct roots, and they have no
common roots. The result holds otherwise also, but requires a little more work.

(<=) Let o < 3 be two consecutive zeros of f. Then (¢/f) = (fg' — gf")/f? implies
fg —gf’ <0, in the interval («, 3). Hence g(«)f'(c) and g(3)f' () have the same sign. Since
a and (3 are consecutive zeros, we see that f'(«) and f’(3) have opposite signs. Hence g(«) and
g(0) differ in sign and hence g has a zero between o and 5. Now if o and /3 are two consecutive
zeros of g and f has no zero in the interval [a, (], then f¢' —gf’ < 0in [a, 3]. Hence f(a)g'(a)
and f(3)¢'(B) have the same sign. Hence f changes sign in [«, 3] contradicting assumption,
that f has no zero in |«, f].

(=) Now suppose that the zeros of f and g interlace. We can write g/ f in partial fractions
as:

n

g(z) a;

fla) ~ + T — oy

1=
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140 CHAPTER 12. ZEROS OF MATCHING POLYNOMIALS

where the o; are the zeros of f, and the a; are real numbers. Multiplying both sides by (z —«a;),
and taking the limit as * — «;, we see that a; = g(a;)/f'(c;). To show that g/ f is decreasing,
it is enough to show that the a;’s are all positive. Since the polynomials are monic, we see
that f(+00) = g(+00) = f'(+00) = +od?] This shows that f'(ay) > 0. Since oy, > (,—1 and
g(00) = 00, g(ay,) > 0. Hence we have that a,, > 0. Since f/(x — o) and g/(z — B,—1) satisfy
the hypothesis, we can apply induction to complete the rest. Alternatively, one can show that
sgn(g(a;)) = sgn(f’(a;)) = (—=1)"* and conclude that a; > 0 for all 1.

Exercise 12.1.10. Identify the exact places in the proof, where we used the additional hy-
pothesis that f and g have distinct zeros, and no common zeros.

Corollary 12.1.11. Suppose f and g are monic polynomials of degree n and n—1 respectively,
and g/ f is a decreasing function between every pair of consecutive roots of f. If one of f,g
has all real zeros, then so does the other and their zeros interlace.

Proof: If f has all real zeros, then the proof shows g has n — 1 real zeros. Hence all its zeros
are real. Hence the result holds.

If g has all real zeros, then the proof shows that f has exactly n—2 real zeros in the interval
[a, 8], where « is the smallest zero of g and [ is its largest zero. We need to show that f has
one zero < « and another > 3. Let 7 be largest zero of f in the interval [, §]. Since f is
the largest zero of g and g(o0) = oo, g > 0 to the right of 3, and hence g(v) < 0 (Why?).
Since fg' — gf'(v) < 0 (Why?), we have g(v)f'(y) > 0. But g(y) < 0 implies f'(y) < 0.
This together with f(vy) = 0 shows that f < 0 immediately after v. But f is monic implies
f(00) = 00. Hence f has a zero after 7. So f has at least n — 1 real zeros. But f is degree n
and complex zeros come in pairs. So f has all real zeros.

Corollary 12.1.12. Let g1,...,gr be polynomials of degree n—1 and f a polynomial of degree
n. Suppose that for some i = t,g; has all real zeros. Let a; > 0 be a set of k real numbers. If
the zeros of f and g; interlace for all i, then the zeros of f and _ ayg; interlace.

Proof: Applying the preceding corollary to g; and f, shows that f has all real zeros. Hypoth-
esis implies g;/f is a decreasing function, off the zeros of f. Hence (> cg;)/f is a decreasing
function and the result follows.

Proposition 12.1.13. Fiz a sequence of monic orthogonal polynomials {p,}. Let aq, ..., ap
be the zeros of pn in increasing order, and B1,. . ., Bn_1 be the zeros of p,—1 in increasing order.
Then the a’s and the (’s interlace, i.e.

<P <ag << ap1 < fBho1 <apy

Proof: By [12.1.7, we know that the 2n — 1 numbers «;, 3; are all distinct. So by [12.1.5| and
12.1.9] it is enough to show that p,_1/py is a decreasing function, whenever it is defined. But
by [12.1.6

2f(o0) is a shorthand for lim, oo f()
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12.2. MATCHING POLYNOMIAL OF A GRAPH 141

Pn = (l' - an)pnfl — bppn—2
- Pn _ (CL’ _ an) B bnpn—Q
Pn—1 Pn—1

But induction hypothesis implies p,—2/pn—1 is a decreasing function. This together with
b, > 0 gives that p,/pn—1 is increasing function, or p,_1/py is a decreasing function.

12.2 Matching Polynomial of a graph

All graphs we consider will be undirected with no loops.

Definition 12.2.1. Let G = (V, E) be a graph. A k-matching is a set of k disjoint edges.
Let p(G, k) denote the number of k-matchings of G. Then the matching polynomial u(G, z) is
defined as

[n/2]

S (=) p(G, ka2

k=0

We will also denote the matching polynomial by u(G), if the variable is clear from the
context.

At first the definition may seem a bit strange, but note that n — 2k is the number of vertices
of the graph which are not covered by a k-matching. The matching polynomial is a variant of
the generating function of the number of k-matchings.

Example 12.2.2. u(K,) = 2"

Example 12.2.3. u(P,) = > (=1)"("")2"?". Think of the vertices of P, as going from left
to right. If we contract the edges of an r-matching towards the left, we get a path of length
n — r with r distinguished vertices. Hence P(P,,r) = (".").

Lemma 12.2.4.

) = (5

T

Proof: We need to show that P(K,,r) = (5.)27"(2r)!/rl. First choose the 2r vertices

of the matching and then a perfect matching of Ks,. Hence P(K,,r) = (;.)T(r), where
TT = P(KQT,T’).

Now T'(r) = (2r — 1)« T(r — 1) and T'(1) = 1, gives T'(r) = 27" (2r)!/rl.
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Many well known families of orthogonal polynomials arise as matching polynomials of
graphs. For example,

w(Cn,2x) = 2T,(x) Chebyshev first kind
(P, 2x) = Uy(z) Chebyshev 2nd kind

w(Ky,x) = Hy(x) Hermite Polynomial
W(Kpn,z) = (=1)"L,(z*) Laguerre Polynomial

12.3 Characteristic Polynomial of a graph

Definition 12.3.1. The adjacency matriz of a graph with n vertices is an n x n (0, 1)-matrix
(aij) where a;; = 1 if vertex i and vertex j are adjacent; and a;; = 0 otherwise.

Definition 12.3.2. Let G = (V, E) be an undirected simple graph with no loops, and let A be
its adjacency matrix. The characteristic polynomial ¢(G,x) is defined to be the characteristic
polynomial of A, i.e. ¢(G,x) =det(A — xI), where I is the identity matrix of the appropriate
size.

Exercise 12.3.3. Isomorphic graphs have the same characteristic polynomial. In particular,
(G, x) does not depend on the numbering of the vertices.

Definition 12.3.4. A principal (n — r) x (n — r) minor of a matrix A is the determinant
obtained by deleting rows iy, ...,%, and columns %1, ..., for some i1 < -+ < 1.

Lemma 12.3.5. Let G = (V, E) be a graph with adjacency matriz A. Then

$(G,z) =Y (~1)aua™"
r=0
where a, is the sum of all the principal r X r minors of A.
Proof: [Sketch] ¢(G,z) = det(z] — A). The coefficient of ™" corresponds to choosing x in

r diagonal elements and not choosing x for any of the others.

Proposition 12.3.6. Fiz a graph G = (V, E), and let $(G) be its charecteristic polynomial.
Then the coefficient of "~ " 1is

(_1)rar _ Z(_l)Comp(C)2Cyc(C)
C

where the sum is taken over all subgraphs C of G consisting of disjoint edges and cycles,
|C| =1r. Comp(C) is the number of components of C and Cyc(C) = number of cycles in C.
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Proof: Let B be any r x r principal submatrix of A. Then B is the adjacency matrix of a
subgraph Cf|of G, where |C| = r.

det(B) = [sgn(O)Hbm(z‘)]

oceSym(r)

Since B is a (0, 1)-matrix we see that each o contributes sgn(o) to det(B) iff (i,0(7)) is an
edge for each i. Suppose that

0'291...9[7'1...7']3

be the decomposition of ¢ into cycles, where the 7’s are 2-cycles and 6’s are cycles of length
> 3. Hence the subgraph C is the union of [ cycles and p disjoint edges.

Suppose v € Sym(r) is another permutation which gives rise to the same subgraph, then
the transpositions occurring in the cycle structure of v should be the same as that in 0. If § is a
cycle occurring in the cycle structure of +, then either § or ! occurs in the cycle structure of
o. Moreover, since o and 7 have the same cycle structure, they are conjugates in Sym(r) and
hence sgn(o) = sgn(7). So the subgraph C contributes exactly sgn(o)2¢¥*(®) towards det(B).

Since odd cycles are even permutations, we have that sgn(c) = (—1)%, where « is the
number of even cycles in 0. Let 3 denote the number of odd cycles in ¢. Since 22:1 length(0;)+
2p = r, we have that 3 =7 mod 2 and hence a=p+I1l—r=p+1+r mod 2.

Hence sgn(c)2! = (—1)"(=1)PH2l = (—1)7(—=1)Comr(©)2Cye(C)  Hence the result.

Lemma 12.3.7. If G is a forest (graph without cycles) then ¢(G,x) = M(G,x)ﬂ

Proof: By assumption G has no cycles, so coeffcient of 27" = 3 ,(—1)¢"P(C) | where C
runs over all sub-graphs of size r composed of disjoint edges (no cycles here). So we have
that r is even and Comp(C) = r/2, and that C is an r-matching of T. So coefficient of
T = (—1)’"/2p(G,7’/2).

[n/2]
(b(G,l’) = Z (_1)Tp(G7T)xni2T = M(Gﬂ :E)

r=0
Corollary 12.3.8. If G is a forest then p(G) has real zeros.
Proof: By previous lemma, u(G,z) = ¢(G,x). But ¢(G, z), is the characteristic polynomial

of a real symmetric matrix. Since real symmetric matrices have all real eigenvalues, ¢(G) has
all real zeros, and hence p(G) has all real zeros.

3not necessarily induced
“Infact ¢(G) = p(G) iff G is a forest
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Lemma 12.3.9 (Interlacing Theorem). Let A be a n x n real symmetric matriz with
etgenvalues Ay > -+ > A,. Let B be the matriz obtained by deleting the first row and column
of A, with eigenvalues vi > -+ > vp_1. Then Ay > v1 > Xo > - > vy 1 > Ap.

Proof: This result is an application of the spectral theorem in Linear Algebra. Let P; denote
the projection onto the eigenspace corresponding to A;. Then from the spectral theorem, we
have

1
I— A= P,

7

Let f, g denote the charecteristic polynomials of A and B, respectively. Then

T det(zI,—1 — B -
j(;((:c)) - dte(t(:clnl— A)) B [(xln -4 1} - Z T —1 Ai Pl

2

But the diagonal entries of P; are the inner product of some eigenvector of A with itself.
So the partial fraction expansion of ¢g/f has non-negative numerators. Hence by [12.1.9] the
zeros of f and g interlace.

Corollary 12.3.10. Let G be a forest, and v a vertex of G. Then the zeros of u(G) and
w(G — v) interlace.

Proof: Apply previous result to the adjacency matrix of G.

12.4 Matching Polynomials have real zeros

We have computed the matching polynomial for several kinds of graphs. Many of them give
rise to families of orthogonal polynomials. We have seen that orthogonal polynomials always
have real zeros, and the zeros of adjacent orthogonal polynomials interlace. If we consider
the matching polynomials of trees, then they equal their characteristic polynomials and hence
the matching polynomials of trees have real zeros. The interlacing theorem for real symmetric
matrices, shows that even in this case, the zeros of u(7T") and u(T —v) interlace. In this section,
we prove that the matching polynomials of all graphs have real zeros, and that the zeros of
1(G) and that of u(G — v) always interlace.

These central results were proved by Heilmann and Lieb, two statistical physicists, in a
paper about monomer-dimer systems[4]. They gave three proofs of this result. One of them
uses the theory of orthogonal polynomials, which we have developed. Another proof, due to
Godsil, reduces the problem to that for trees.

Before we get to any of these proofs, we need to establish some properties of these polyno-
mials.
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Proposition 12.4.1. Let G, H be two graphs and G + H be their disjoint union. Then u(G +
H) = w(G)u(H)

Proof: Any matching of G+ H is a (possibly empty) matching of G together with a (possibly
empty) matching of H. So p(G + H, k) = Zf:o p(G,r)p(H, k —r).

Proposition 12.4.2. Let G = (V, E) be a graph and e = {v,w} € E. Then u(G) = u(G —
e) — u(G—v—w).

Proof: Every k-matching of G either includes e, or does not include e. In the first case, it
gives a (k — 1)-mathcing of G —v —w. In the other case, it gives a k-matching of G —e. Hence

p(G,k) = p(G—ek)+p(G—v—wk—1)
Yo UM(G R = Y (1) (G e k)2

k
- Z(—l)k_lp(G — v —w, k — 1)z D72k
k

wG) = wG-e)—puG—-v-w).

Proposition 12.4.3. G = (V,E), v € V, and N(v) = {w1,...,wq}, where d = deg(v). Then
w(G) = zp(G —v) = L, u(G — v —wy).

Proof: Every k-matching either covers v or its does not. If it does not cover v, then we get

a k-matching of G — v. Otherwise the matching has to contain (v, w;) for some ¢, and hence
gives a k — 1-matching of G — v — w;. So

d
p(G, k) = p(G—v,k)—l—Zp(G—v—wi,k—l)
i=1

(=D*p(G, k)2 = 2(=1)"p(G — v, k)a" 17
— Z(—l)kilp(G — v —wi, k — 1)z""2 72k

WG = ap(G—v) =) uG—v—w)

Theorem 12.4.4. If G is any graph, u(G) has real zeros. Moreover, if v is any vertex of G,
then the zeros of u(G) and those of u(G — v) interlace.

Proof: Induction on the number of vertices. With the notation, as before, we have
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Figure 12.1: The graph F1

wG) o NG v )
p(G—v) Z (G —v)

By induction hypothesis the zeros of (G — v — w;) and that of u(G — v), interlace and
(G — ) has all real zeros. By we have (G — v —w)/u(G —v) is a decreasing function
and hence ;(G) /(G — v) is an increasing function. Hence, by we have that the zeros
of u(@) are real, and interlace those of u(G — v).

Proposition 12.4.5. Let G be a graph, v € V, and N(v) = {w1,...,wq}. Let H =G —wv. Let
H;(i=1...d) be graphs isomorphic to H. Let F} = G+ Hao+ - -+ Fy. Let w;(H;) denote the
vertezx corresponding to w; in H;. Let Fy be the graph obtained by adding the edges (v, w;(H;))
to the graph v+ Hy + ---+ Hy. Then p(Fy) = p(Fy).

Proof: By [12.4.3| we have,

w(Fy) =xp(Hy) ... w(Hg) — p(Hy) ... w(Hyg) Z M(qu—(g;)(ﬂz))

Again by [12.4.3] and [12.4.1] we have,
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Figure 12.2: The graph F2
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p(Fr) = p(Hz) ... p(Ha) [zp(H1) — p(Hy — wi)]

Since isomorphic graphs have the same matching polynomial, the result follows.

As a corollary, we have that p(G) divides p(F3). In the process of going from G to Fy,
we have eliminated all cycles based at v. If we could repeat this process and unwind all the
cycles, then we would have constructed a tree 7', such that u(G) divides p(7T'). Since u(T') has
real zeros, we can conclude that p(G) has real zeros.

If we unwind the graph all the way starting at v, we get a tree T'(G, v) called the path-tree
of G.

Definition 12.4.6. Let G be an undirected graph, and v € V. By a path 7 in G, we mean a
sequence of distinct vertices such that consecutive members are adjacent in G. T(G,v) is the
graph, whose vertices are paths in GG, which start at v. Two paths m; and 7y are adjacent if
one is a maximal proper subpath of the other.

Clearly T(G,v) depends only on the component of G' containing v. We often identify the
path in T'(G,v) consisting of only the vertex v, with the vertex v.

Proposition 12.4.7. Fix any graph G, and v € V.

e T(G,v) is a tree.

e if G is a tree then T(G,v) is isomorphic to G.

Proof:

e If 7 is any vertex of T'(G, v), then there is a unique path in T'(G, v) from v to 7, consisting
of sub-paths of .

e The map from G to T'(G,v) taking w to the unique path from v to w, gives the required
isomorphism.

Proposition 12.4.8. Let G be a graph, and v € V. Put T = T(G,v). Then

wG) (T

w(G—v) (T —v)

and more over p(G) divides p(T).

Proof: By induction on the number of vertices. If G is a tree then the result trivially holds.
So the result holds if the n < 2. Let N be the set of neighbours of v in G, and H = G — v.

Then by
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WG _ ap(H) = 3 ey p(H — w)
p(H) p(H)

R G R

B ,L;V pu(H)

R M(T(H,w)—w)
=T 2 T w)

Now T'(H,w) = T(G — v, w) is isomorphic to the component of T'(G,v) — v which contains
the path (u,v) in G. Therefore we have,

wT(H,w) —w) T(G,v)—uv

uT(Hw) — w(T(G,v)

Hence we have

pG) - pT(G ) — vw)

p(H) E;v w(T(G,v) —v)
wT(G,v))
u(T(G,v) —v)

This proves the first part of the theorem. Since T'(G — v, w) is isomorphic to a component
of T(G,v) — v, u(T(G — v,w)) divides u(T(G,v) — v). Induction hypothesis gives u(G — v)
divides pu(T(G —v,w)). Hence we have u(G — v) divides pu(T —v). This together with the first
part of the theorem proves the second part.
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Chapter 13

Set Systems

TO BE WRITTEN.

13.1 Problems

Definition 13.1.1. Let F be a family of subsets of a universe of size n. We say that F is
a Sperner family if there do not exist Ay, Ay € F such that Ay C As. In other words, the
elements of F are pairwise incomparable with respect to inclusion.

The next result falls under the heading of Extremal Set Theory.

Theorem 13.1.2 (Sperner’s Theorem). The largest Sperner family in a universe of size n
has size (Ln72J)' Moreover, there are at most two Sperner families of this size: all subsets of

size |n/2], and all subsets of size [n/2].

Exercise 13.1.3. We say that a Boolean function f is monotone if

(V.’Ifl,. - Ty Y1y - - 7yn)( if (VZ)(QZ‘Z > yl) then f(xla v 7xn) > f(yla oo 7.%))

Let M (n) denote the number of monotone Boolean functions in n variables. Let S(n) denote
the number of Sperner families of subsets of a universe of size n (ordered by inclusion). Prove:
M(n) = S(n).

Exercise 13.1.4. Let aq,...an,b be given positive real numbers. Let p denote the probability

that > x;a; = b, where each x; is 0 or 1, chosen at random by independent unbiased coin flips.

Prove: p = O(1/4/n), i.e., prove that there exists a constant C' such that p < C/\/n,
regardless of the values of the a; and b.

Determine, moreover, the smallest value of ¢ such that the following is true: there exists a
sequence ¢, — ¢ such that p < ¢,/y/n regardless of the values of the a; and b. (So ¢ and the
¢n, must not depend on the a; or b.) Hint. Sperner’s Theorem.
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154 CHAPTER 13. SET SYSTEMS

Exercise 13.1.5. (“Littlewood-Offord problem”) Let ay,...a, be given unit vectors in
the plane (i. e., vectors of unit length). Let p denote the probability that the vector > x;a; has
length < 1/10, where each x; is 0 or 1, chosen at random by independent unbiased coin flips.

Prove: p = O(1/+/n). — You are not requested to find the smallest constant implied by the
big-Oh notation.

Definition 13.1.6. A set T is a transversal of a set system F = {A;,..., Ay}, if T “hits”
each A;, i.e., if (Vi)(T N A; #0). (T is also called a “hitting set” or a “cover” for F.) The
transversal number (a.k.a. hitting number, covering number) 7(F) is the size of the smallest
transversal. (Note that if ) € F then no transversal exists and 7(F) = 00.) — “77 is the Greek
letter “tau.”

Definition 13.1.7. A matching in a set system F is a subset of F whose elements A; are
pairwise disjoint sets (so that each element of the universe belongs to at most one element of
the matching). The matching number v(F) is the cardinality of the largest matching in F. —
“v” is the Greek letter “nu.”

Recall that F is k-uniform if (Vi)(|A;] = k). Graphs can be viewed as 2-uniform set-
systems (the set of edges); the above concepts can then be applied to graphs. For instance,
if C,, denotes the cycle of length n, then 7(C,) = [n/2] and v(C,) = |n/2]; 7(K,) =n — 1,
v(K,) = |n/2| (DO: verify these statements!).

Exercise 13.1.8. Prove: if M is a mazrimal matching in a (not necessarily bipartite) graph
G then |M| > v/2, where v denotes the size of a mazimum matching in G. (A matching is
“maximal” if no further edge can be added to it; it is “maximum?” if it has largest size among
all matchings in G. The “size” |M| of a matching M is the number of edges in M.) What can
be proven for k-uniform set systems?

Exercise 13.1.9. (a) Let K,(lk) be the “complete k-uniform set-system” on n points, i.e.,
the set of all k-subsets of an n-set (so m = (})). Determine 7(F).

(b) Prove: v(F) < 7(F).

—
o
~

Prove: if F is k-uniform then 7(F) < kv(F).

(d) For every positive integer ¢, construct a graph Gy such that v(Gy) = ¢ and 7(Gy) = 2¢.
Give a one-line solution to this problem, even though it is a special case of the next one.

(e) For every pair of positive integers k, ¢, construct a k-uniform set-system F;, such that
v(Fy) = £ and 7(Fy) = kL. Prove your answer.

Exercise 13.1.10. (Konig’s Theorem) Prove: if G is a bipartite graph then v(G) = 7(G).

Exercise 13.1.11. Let £ be a projective plane of order n. Prove: 7(£) = n + 1. (Here we
view L as the set-system consisting of the lines.) (2 points for 7 < n + 1 and 5 points for
T > n.) Hint to the 5-point part: counting.
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Exercise 13.1.12. Let F be a k-uniform family of subsets of an n-set X. Prove: 7(F) <
[(n/k)lnm], where m = |F|. Hint. Let t = [(n/k)lnm]. Pick a sequence of ¢t points
independently at random (permitting repetitions). Prove that with positive probability, this
sequence will hit each A;. Along the way, use the inequality 1+ z < e® (which is true for every
real number z # 0).

Definition 13.1.13. Let F = {4;,..., A} be a family of subsets of a universe of size n. A
system of distinct representatives, or SDR for F is a set {z1,..., %}, where z; € A; for all
1 <4 <m, and such that z; # z; forall 1 <7 < j <m.

Exercise 13.1.14. Let F = {4;,..., Ay} be a family of n subsets of [n]. Let M denote the
incidence matrix of this family (so M is an n x n (0,1)-matrix.) True or false (prove each
answer):

1. If det(M) # O then F has an SDR.
2. If det(M) = 0 then F has no SDR.

Exercise 13.1.15. (Systems of Distinct Representatives) Beyond the seven seas there
is a tiny island, 6 square miles in all. The island is inhabited by six native tribes and by six
turtle species. Each tribe and each turtle species occupies one square mile of territory; the
territories of the tribes don’t overlap with one another; nor do the territories of the different
turtle species.

Each tribe wishes to select a totem animal from among the turtle species found in the tribe’s
territory; and each tribe must have a different totem animal. Prove that such a selection is
always possible.

Comments. Your solution should be clear and simple, with reference to a result stated in
class. State the result, then define the variables in terms of the problem on hand. If your
solution refers to certain finite sets, make sure you clearly specify what the elements of each
set are. WARNING: the territory of a tribe is not a finite set.

Let L(n) denote the number of n x n Latin squares. Use the result that log L(n) ~ n?logn
To solve the following problem:

Exercise 13.1.16. Two Latin Squares are isomorphic if one of them can be obtained from
the other by permuting the rows, columns, and relabeling the entries. Prove: almost all Latin
Squares are not isomorphic to a symmetric matrix.

Hint. Give an easy upper bound on the number of symmetric matrices with entries from
[n], and another easy upper bound on the number of Latin Squares isomorphic to a given Latin
Square. All these numbers should be dwarfed by L(n).

Definition 13.1.17. Let A = (a;;) be an n x n matrix. The permanent of A, per(A), is

defined as .
per(A4) = Z H Qo (1)

o =1
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where o ranges over all permutations of [n] = {1,...,n} (i.e., all one-to-one functions from [n]
to [n]).

Remark 13.1.18. Note that this is just like the definition of the determinant, except without
the sign terms (£1).

Definition 13.1.19. Let A = (a; ;) be a real n x n matrix. If all the entries are non-negative
and all the row sums and column sums equal 1, then we call A a doubly stochastic matrix.

Theorem 13.1.20 (Permanent Inequality) (Egorychev-Falikman Theorem, formerly
van der Waerden’s Permanent Conjecture). Let A be a doubly stochastic matriz. Then
n!
per(A4) = o
Exercise 13.1.21. (a) Prove: 2 > exp(—n). Do not use Sterling’s formula. Hint: Use the
power series of exp(x).

(b) Use the Permanent Inequality to prove that a regular bipartite graph of degree r > 3 has
at least (r/e)™ perfect matchings, where n is half the number of vertices.

(c) Use part (b) to show that log L(n) ~ n?logn, where L(n) is the number of Latin squares
of order n.

(d) Two Latin Squares are isomorphic if one of them can be obtained from the other by
permuting the rows, columns, and relabeling the entries. Prove: almost all Latin Squares
are not isomorphic to a symmetric matrix.

Definition 13.1.22. A sunflower with s petals is a family of (not necessarily distinct) sets
Bi,...,Bg such that (Vi # j)(B; N Bj =, Bk)-

Exercise 13.1.23. Let Ay, ..., A, be not necessarily distinct sets of size |A;| < r. Prove: if
m > r!(s — 1)"*! then there is a sunflower with s petals among the A;, i.e., (Ji1,...,is)(1 <
i1 <ig < --- <ig) such that A;,,..., A4;, form a sunflower.

Definition 13.1.24. A Steiner triple system ...

Exercise 13.1.25. Let S = (P, L,I) be a STS (Steiner triple system) with n = |P| points.
Let S; = (P1, L1, 11) be a sub-STS, i.e., P, C P, L1 C L,and I} = I N (P, x Ly); and 5] is
also a STS. (So if two points of a line belong to S then the third point also belongs to S.)
Prove: if P; # P then |Pi| < (n —1)/2.

Exercise 13.1.26. Let f(z1,...,2,) = C1 A--- A Cy, be a 3-CNF formula, i.e., each clause
C; is an “OR” (“V”) of three literals (Boolean variables and their negations). Prove: there
exists a substitution (assignment of (0, 1)-values to the x;) which will satisfy at least 7m/8 of
the m clauses. Hint. Try a random substitution (flip a coin for each x;). What is the expected
number of clauses that are satisfied by this substitution? (A clause is “satisfied” if it evaluates
to 1.)
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Chapter 14

Miscellaneous Exercises

14.1 2002 Midterm 1

Exercise 14.1.1. Let T, denote the set of strings of length n over the alphabet {A, B} (so
|T,,| = 2™). Consider the following subsets of T},:

E, : strings with an even number of A’s.

M, : strings with at least as many A’s as B’s.

)
)
(¢) Cy: strings without consecutive A’s.
) Dy, : strings without consecutive A’s, having exactly k A’s.
)

A, i, : strings with k alternations. (The string AABBBBABBBAA has 4 alternations,
the string BB A has one alternation, the string AAAA has zero alternations.)

Count each set. Your answers should be a simple closed-form expressions (no summa-
tion or product symbols, no dot-dot-dots) using binomial coefficients and Fibonacci numbers.
Indicate the proofs of your answers.

Exercise 14.1.2. A monomial is a product of powers of the variables, for instance x2y%z is
a monomial of degree 9. Count the monomials of degree k over a set of n variables. The
monomials you count need not involve all variables. For instance, if k = 2 and n = 3 then we
have the 6 monomials 2, zy, xz, y?, yz, 2. Your answer should be a very simple formula.

Definition 14.1.3. Let F be a field, and xz,y € F"”. The inner product of x and y, often
denoted (z,y) or x -y, is an element of F defined by Y | z;y;. We say x and y are orthogonal
if their inner product equals the zero element of F.

Definition 14.1.4. Let U be a subset of F*. The perpendicular subspace UL is defined as
Ut ={yeF": (Vz e U)(x-y=0)}. (Check that U+ is indeed a subspace of F"!)
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Exercise 14.1.5. Let U, V, W be pairwise perpendicular subspaces of F" where F' is a field.

(a) Prove: dim(U) + dim (V') + dim(W') < 3n/2.

(b) Prove that equality is possible for every even value of n. (For this part, you choose F.
Name the field you choose.)

(c) Prove: if F =R then dim(U) + dim(V') + dim(W) < n.

Exercise 14.1.6. (Reverse Oddtown) A town has n citizens and m clubs. Each club has
an even number of members, and each pair of clubs shares an odd number of members.

1. Prove: m <n+1.
2. Prove: if n is odd then m < n.

Exercise 14.1.7. Let R® denote the space of R — R functions. Let S = {sin(z 4+ a) : a €
R} C RE. Prove that the rank of S is 2.

Exercise 14.1.8. Consider the space R[z] of polynomials in one variable over R. Let f(z) =
(xgl) Note that f(x) is a polynomial of degree n.

(a) Prove that the polynomials f;(x) = f(z)/(x — i) are linearly independent (i =1,...,n).

(b) Prove that every polynomial of degree < n — 1 can be written as a linear combination of
the fz

Exercise 14.1.9. (Fisher’s inequality) If A;,..., A, C [n] and for all i # j, |A; N A = A
then m < n. Assume A > 1 and (V7)(]A4;| > A).

14.2 2002 Midterm 2

Exercise 14.2.1. (a) Prove: for all graphs, 7(G) < 2v(G). (Recall Definitions and
7(G) is the minimum cover [minimum size of a subset of the vertices which hits
every edge]; v(G) is the size of a maximum matching, i.e., the maximum number of
disjoint edges in G). This result is actually a special case of part (c) of Exercise

(b) Prove: for every € > 0, for almost all graphs G, 7(G) > (2 — €)v(G). Hint. Relate T to
. What inequality did we prove in class about a(G) for almost all graphs G

Exercise 14.2.2. Recall: § C R" is called a “2-distance set” if at most two numbers occur
as distances between pairs of distinct points in S. Let mg(n) denote the maximum size of a
2-distance set in R™.

(a) Prove: ma(n) > ().
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(b) Prove: may(n) > (";1)
(c) Prove: ma(n) < (n+1)(n+4)/2.
(d) Define m3(n) analogously. Prove: ms(n) = ©(n?).

Exercise 14.2.3. (a) For even n, show that there exists a mazimal set of Oddtown clubs
consisiting of only 2 clubs. (Of course for n > 2 such a set will not be mazimum.) How
large is the smallest maximal set of Oddtown clubs for odd n?

(b) Show that every maximal set of clubs in Eventown is maximum.

14.3 2002 Midterm 3

Exercise 14.3.1. Let A be a k x n matrix over R; let b € R¥, ¢ € R", and let 2 = (z1,...,2,)
be an n-tuple of real variables. Consider the linear programming problem

max{c’z | Az <b, x> 0}.
T

(a) We refer to the above problem as the “primal” problem. How many variables does the
dual problem have? Denote the vector of dual variables by y = (y1,...). State the dual
problem.

(b) Prove the easy part of the Duality Theorem, namely, that if both the primal and the
dual problems are feasible (the constraints are satisfiable) then the primal optimum is <
the dual optimum.

(c) State a sufficient condition discussed in class, under which the primal problem is guar-
anteed to have an integral optimum (where all the x; are integers).

(d) Prove that the signed (£1) incidence matrix of a digraph is totally unimodular (i.e., the
determinant of every square submatrix is 0 or £1).

(e) State two important “combinatorial duality theorems” (where the max of a quantity is
equal to the min of a “dual” quantity). The first result should be about bipartite graphs,
the second about network flows. State the theorems, not just their names. Define the
concepts involved. You do not need to define “bipartite graph” but do define “network
flow.”

Exercise 14.3.2. Let G be a graph. Let my(G) denote the number of k-matchings in G, i.e.,
the number of ways one can select k independent edges in G. Example: if G = tK (the graph

is a set of ¢ disjoint edges) then my = (Z)

(a) Let G = P, (the path of length n — 1; so P, has n vertices and n — 1 edges). Find the
value of my(P,). Your answer should be a very simple expression involving a binomial
coefficient.

Copyright (©) 2003 by Laszl6 Babai. All rights reserved.



160 CHAPTER 14. MISCELLANEOUS EXERCISES

(b) Find the quantity a, = Z,EZ/OQ ! mg(Py). Your answer should be a very simple expression
involving a well-known sequence.

(¢) The polynomial
[n/2]
po(@) = 3 (~1)Fmy(@)am2

k=0
is called the matchings polynomial of G. A major result, published in 1972 by physicists
O.J.Heilmann and E.H. Lieb, states that all roots of the matchings polynomial are
real. Use this result and a result stated in a homework to prove that the sequence
mo(G), m1(G), ... is unimodal (increases until its maximum and then decreases).

Exercise 14.3.3. Prove that the expected number of k-cycles in a random permutation is
1/k.

14.4 2003 Midterm 1

Exercise 14.4.1. Find the number of solutions to the equation xy + - - - + zx = n in integers
x; satisfying the constraints (Vi)(x; > 2). Your answer should be a very simple expression in
terms of n and k (a binomial coefficient).

Exercise 14.4.2. Calculate the chromatic polynomials of the following graphs. Prove your
answers. Your solutions should be very simple, just a couple of lines.

1. The complete graph K,.
2. The path P, of length n — 1 (P, has n vertices).

3. The graph K, , the graph obtained from K,, by removing an edge. (K, has n vertices.)

Exercise 14.4.3. 1. Let © denote the set of strings of length n over the alphabet {A, B, C'}.
What is the probability that the letter A occurs exactly k& times in a random string from
Q? Your answer should be a simple closed-form expression (no summation or product
symbols, no ellipses (dot-dot-dots).

2. What is the probability that the number of occurrences of A in a random string from {2
is divisible by 3?7 Your answer should be a very simple closed-form expression involving
complex numbers. You do not need to get rid of the complex numbers.

14.5 2003 Midterm 2

14.6 2003 Midterm 3

Exercise 14.6.1. 1. Construct n 4+ 1 vectors in general position in F3. (Every n of the
vectors must be linearly independent over Fy.)
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2. Prove: no set of n + 2 vectors in [y is in general position.

Exercise 14.6.2. Prove: for almost all graphs G on n vertices, a(G) < 1+2logy n. Here a(G)
denotes the size of the largest independent set in G.

14.7 Misc Misc

Exercise 14.7.1. Let vy,...,v, € Z™ be integral vectors. Prove: if the v; are linearly inde-
pendent over o then they are linearly independent over R.
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Chapter 15

Solutions

15.1 2003 Midterm 1 Solutions

Solution to Exercise [14.4.1] Find the number of solutions to the equation x1+---+xr =n
in integers x; satisfying the constraints (Vi)(x; > 2). Your answer should be a very simple
expression in terms of n and k (a binomial coefficient).

Answer. Let y; = x; — 1. Now y; > 1 and Ele y; = n — k. The integral solutions (y1,...,yx)

of this system are in 1-1 correspondence with the solutions (z, ..., xy) of the original system.
The solutions (y1,...,yx) can be represented by k — 1 dividers placed in the n — k — 1 slots
between n — k balls; so the number of solutions is (n;ffl)

Solution to Exercise [1.6.26] Let a,, b, be sequences of real numbers.

1. Define the relation a,, ~ b, (asymptotic equality).
Answer. lim, o a, /b, = 1. For the purposes of this definition, we consider 0/0 to be 1.

2. Define the relation a, 2 b, (greater than or asymptotically equal).

Y
Answer. a, ~ max{a,,by}.

Comment 15.1.1. The handouts are your most important reading. Please review the
“Asymptotic notation” handout (and all other handouts). Here are some incorrect an-
swers. “limy, o0 @ /by > 1.7 One problem with this definition is that this limit may not
exist even while a,, > b,. This difficulty is eliminated by using the concept “lim inf”
instead of “lim.” The resulting definition will be correct if a,,b, > 0. But if we permit
negative terms in the sequence, we run into trouble: the constant sequences a,, = —2,
b, = —1 satisfy this definition, even though we certainly do not want to say that “—2 is
greater than or asymptotically equal to —1.”
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2 b, and b, 2 a, then a, ~ by,.

~

3. Based on your definitions, prove: if a,

Answer. Let ¢, = max{a,,b,}. Then by definition we have a, ~ ¢, ~ by, therefore
an ~ by, by the transitivity of the ~ relation.

4. Assume b, — oo and a, > b,% Inb,. Prove: b, < cy/an/Ina,, where c is a constant.
Determine the smallest value of ¢ for which this statement follows from the assumptions.

Answer. Since a, — 00, we have a, > 0 for n > ng. For n > ng, let z, be the
unique solution to the equation a, = x2 Inx,. The solution exists because the function
f(x) = 2%Inx is continuous and goes from 0 to oo while 0 < z < oco. The solution is
unique because f(z) is strictly increasing. For the same reason, b, < x, and therefore
Ty, — OO.

Taking logarithms, we obtain Ina, = 2Inz, + Inlnx, ~ 2Inz, (because Inx,, — o).

Therefore a,, ~ 22 In a,, /2, hence b, < z,, ~ \/2a,/Ina, and therefore b, < /2a,/Ina,.

So ¢ = /2 works, and nothing less could work since b,, can be chosen to equal z,.

Solution to Exercise [13.1.23 Recall that a sunflower with s petals is a family of (not
necessarily distinct) sets By, ..., By such that (Vi # j)(B; N Bj = (N Bx).

Let Ay,..., Ay, be not necessarily distinct sets of size |A;| < r. Prove: if m > rl(s —1)"+1

then there is a sunsflower with s petals among the A;, i.e., (Jiy, ..., is)(1 < iy <ig < -+ <)
such that A4;,,..., A;, form a sunflower.

Answer. In class we proved the Erdés—Rado Theorem which states that if all the A; are distinct
and m > r!(s — 1)" then there exists a sunflower with s petals among the A;. We outline two
solutions to the midterm problem: one that adapts the proof method given in class; the other
uses the result proved in class.

First solution. As in class, we proceed by induction on r. The base case is different: for » = 1 we
now have m > (s— 1) but not all the singletons A; are different. By the pigeon hole principle,
either there is an A; which is repeated > s times (so we have a sunflower of s identical sets), or
there are s distinct and therefore disjoint singletons, again giving us a sunflower with s petals.
— The inductive step is identical with that given in class.

Second solution. We do not use induction, so r is any positive integer. If there are s identical
sets among the A; then they form a subflower with s petals. If every set occurs at most
s — 1 times then (again by the pigeon hole principle) there are at least m/(s — 1) > rl(s — 1)"
distinct sets among the A;, so a sunflower with s petals exists among these distinct sets by the
FErdés—Rado Theorem.

Solution to Exercise [4.2.11L What is the expected number of runs of k heads in a string of
n coin-flips? (A “run of k£ heads” means a string of k£ consecutive heads. Example: the string
HHTHTTHHHT has 3 runs of 2 heads.) Prove your answer! Hint. Indicator variables.
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Answer. (To be discussed in class.)

Solution to Exercise [14.4.2] Calculate the chromatic polynomials of the following graphs.
Prove your answers. Your solutions should be very simple, just a couple of lines.

1. The complete graph K,.

Answer. Once the first j vertices have been colored (with j distinct colors), the number of

choices for the color of the next vertex is n—j. So pg, (z) = z(z—1)-- - (z—n+1) = n!(?).

2. The path P, of length n — 1 (P, has n vertices).

Answer. There are x choices for the color of the first vertex; all subsequent vertices will
have one color to avoid, so pp, (r) = x(x — 1)" L.

3. The graph K, the graph obtained from K, by removing an edge. (K, has n vertices.)

Answer. Let e be an edge of K,,; note that K, /e = K,,_1. Now, applying the recurrence
PG = PG—e — PG /e 1O G = K,,, we obtain

Pr =Py APk = (@ — 1) (@ —nt D ba(e 1) (@ —nt2) =

Solution to Exercise [13.1.3l 1. Define Boolean functions in n variables.
Answer. A Boolean function in n variables is a function f: {0,1}" — {0,1}.
2. Count the Boolean functions in n variables.
Answer. 22",

3. (G only, 4 points) We say that a Boolean function f is monotone if

Va1, .o Ty Yty - Yn) (I (V0) (25 > ;) then f(z1, ..., 20) > f(y1,. .., Yn)).

Let M (n) denote the number of monotone Boolean functions in n variables. Let S(n)
denote the number of Sperner families of subsets of a universe of size n. Prove: M(n) =

S(n).

Answer. For A C [n] let us set f(A) = f(x4) where 4 is the indicator vector of A, i.e.,
(xa)i=1ifi € Aand (z4); = 0 otherwise. A min-term of a monotone Boolean function
is a set A C [n] such that f(A) =1 but f(B) = 0 for all proper subsets of A. It is clear
by definition that the set of min-terms of f is a Sperner family; and every Sperner family
is the set of min-terms of a unique Boolean function, namely, the function defined by
setting f(A) =1 if and only if A contains a min-term.
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Solution to Exercise [14.4.3l 1. Let 2 denote the set of strings of length n over the
alphabet {A, B, C'}. What is the probability that the letter A occurs exactly k times in
a random string from Q7 Your answer should be a simple closed-form expression (no
summation or product symbols, no ellipses (dot-dot-dots).

<Z> 2"k /3n,

2. What is the probability that the number of occurrences of A in a random string from 2
is divisible by 37 Your answer should be a very simple closed-form expression involving
complex numbers. You do not need to get rid of the complex numbers.

Answer.

Answer. (3" + (24+w)™ + (2+w?)") /3", where w is a primitive 3rd root of unity. (Why
is this so?)

15.2 2003 Midterm 2 Solutions

Solution to Exercise [4.4.16. You and the bank play the following game: you flip n coins:
if ¢ of them come up “Heads,” you receive 2¢ dollars.

1. You have to buy a ticket to play this game. What is the fair price of the ticket? (Hint:
it is the expected amount you will receive.

Answer. £ = > | 0; where 6; indicates the event that the i-th die came up “Heads.”
Therefore 2¢ =[], 2%. Now the variables 2% are independent and E(6;) = (2°+2!)/2 =
3/2; therefore E(¢) = [[1_, F(2%) = (3/2)", using the fact that the expected value of
independent variables is multiplicative.

2. Prove: the probability that you break even (receive at least your ticket’s worth) is expo-
nentially small. Hint: At least how many “heads” do you need for you to break even?

Answer. To break even, you need 2¢ > (3/2)". Taking logarithms, we obtain ¢ >
n(log3 —1). Now log3 —1 > 1/2 because log3 > 3/2 because 2log3 = log9 > log8 = 3.
Let log3d —1 =1/24¢; so ¢ > 0. (¢ = 0.08496.) Now P({ > n/2 + cn) decreases
exponentially by Chernoff’s inequelity, as seen in class. Here is a review. Let ; = 20, — 1,
so ¢; = 1 if the i-th coin shows “Heads,” and (; = —1 otherwise. Now > ", (; =2 — n,
so the event “¢ > n/24cn” is the same as the event > | ¢; > 2¢n; by Chernoff’s bound,
the probability of this event is less than e~ (2en)?/2n — o=2¢%n

3. Calculate the standard deviation of the variable 2¢. Your answer should be a simple

formula. Evaluate it asymptotically; obtain an even simpler formula.
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Answer.
n

B((26)?) = B@%) = [[ F@™) = (Z)

Moreover, (F(25)?) = ((3/2)")? = (9/4)". Therefore Var(2¢) = (5/2)" — (9/4)" and the
standard deviation of 2¢ is /(5/2)" — (9/4)" ~ (5/2)"/2.

4. State what the “weak law of large numbers” would say for the variable 2¢. Prove that
the Law does NOT hold for this variable. Hint. This law talks about the probability
that 2¢ is not within (1 = €)-times its expectation.)

Answer. The law would say that for all € > 0, the quantity P(|2¢—(3/2)"| > €(3/2)") goes
to zero as n — o0o. But in fact in our case this quantity goes to 1 at an exponential rate
for every € < 1 because 2™/ = 0((3/2)") (why?) and the values of ¢ are (exponentially)
concentrated around n/2 by Chernoff’s bound, so the event “2¢ > (1 — €)(3/2)"" is
exponentially unlikely (why?).

Solution to Exercise Let f(x1,...,2zy) = C1 A--- A Cyp, be a 3-CNF formula,
i.e., each clause C; is an “OR” (“V”) of three literals (Boolean variables and their negations).
Prove: there exists a substitution (assignment of (0, 1)-values to the x;) which will satisfy at
least 7m /8 of the m clauses. Hint. Try a random substitution (flip a coin for each z;). What is
the expected number of clauses that are satisfied by this substitution? (A clause is “satisfied”
if it evaluates to 1.)

Answer. The probability that a random substitution does not satisfy an “OR” of k literals is
1/2% (because each literal must take value 0). Therefore, each C; is satisfied with probability
7/8. Let 6; denote the indicator variable of the event that the clause C; is satisfied; then
E(9;) = 7/8. If £ denotes the number of clauses satisfied by a random substitution then
€ =>"",0; and therefore E(¢) =Y _", E(6;) = 7m/8. Consequently the event “¢ > 7m/8” is
not empty (otherwise E(§) would be less than 7m/8). In other words, “¢ > 7m/8” is possible,
i.e., there exists an elementary event (assigment of the variables) which makes & > 7m/8.

Comment 15.2.1. This is a probabilistic proof of the existence of an appropriate assignment.
The proof does not tell us how to find such an assignment more efficiently than by brute force
(try all possibilities). DO: find such an assignment in polynomial time, i.e., the number of
steps must be bounded by mc°nst,

Solution to Exercise A vertex z is a “common neighbor” of vertices x and y in a graph
G if both x and y are adjacent to z in G. Let N(z,y) denote the number of common neighbors
of x and y. Prove that the following statement is true for almost all graphs G = (V, E) with
n vertices:

(Vo #y € V)(0.24n < N(z,y) < 0.26n).
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In other words, if p,, denotes the probability of the event described by the displayed formula
then lim, o pp = 1.

Answer. Let us first fix x and y and for all other vertices z, let 6, indicate the event that z is
a common neighbor of x and y. Then N(z,y) = Z#m’y f,. The variables 6, are independent,
therefore, by the standard Chernoff argument (see details below), for every e > 0, the quantity
qn = P(IN(z,y) — (n — 2)/4| > en) approaches zero at an exponential rate. Consequently
(;)qn — 0 (exponential decay beats polynomial growth). But for any ¢ < 0.01, we have
1—p, < (g)qn—>0, so p, — 1.

Here is the “standard Chernoff argument.” FE(6,) = 1/4, therefore we consider the variable
C: = (4/3)(0,—1/4). Then the ¢, are independent, F((.) = 0 and |(;| < 1 so Chernoft’s estimate
applies to the sum ¢ = )" (.. It follows that for every 6 > 0, P(|| > §(n—2)) < 2e—0%(n=2)/2,
(Why (n—2)?7) Now ¢ = 3. C. = (4/3) 5.(6- — 1/4) = (4/3)(N(z,) — (n — 2)/4). Now if
N (z,y) is not between 0.24n and 0.26n then for any € < 0.01, for sufficiently large n, we have
IN(z,y)—(n—2)/4] > e(n— 22 and therefore || > (4/3)e(n—2). Setting 6 = (4/3)e we obtain
the bound 1 — p,, < 2e~(16/9°(n=2)/2 which goes to zero at an exponential rate, as desired.

Solution to Exercise Let P(n) be the number of projective planes of order n. Prove:
P(n) < (ne)™*V? . Hint. first prove that

Pin) < < ("5 >

n24+n+1

Answer. The formula given in the Hint should be clear: to specify a projective plane of order
n, we fix a set of n2 + n + 1 points; each line is a subset of size n + 1; so we select n? +

n + 1 out of the ("Qnﬁl;“l) subsets of size n + 1. Using the estimate ({) < (ea/b)’, we obtain

(nijf;r " < (e(n + 1/n))"™! and therefore, using the straightforward estimate (§) < a’, we

obtain P(n) < (e(n + 1/n))+D0*+n+1) - We claim that this number is less than (en)®+1?,
Taking (n + 1)-st roots, the inequality claimed is
(e(n + 1/m))"™ "1 < (en)™ F2MH = (en)" (en)™ F1HL.

Dividing the left hand side by the right hand side we obtain

(14 n 2"t  (en) ™ < (14 n"2)2" (en) ™.

Now (14 n72)2"" < e2; so the quotient above is less than e ™2™ < p < 1.
Solution to Exercise Let us consider the Galois plane PG(2,5) (over the field of 5

elements).

1. How many points does this plane have, and what is the number of points per line?

Answer. The number of points is 524541 = 31; the number of points per line is 541 = 6.
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2. Points are given by “homogeneous coordinates.” Determine whether or not the points
given by a = [1,4,0], b = [3,2,2], and ¢ = [4, 1, 2] are collinear (belong to the same line).
(Coordinates are mod 5.) Prove your answer.

Answer. They are collinear.

Proof. Three points are collinear if and only if the corresponding vectors are linearly
dependent. Notice that in our case a + b = ¢ (computation mod 5), so the three points
are collinear.

. If you did not notice that a +b = ¢, you can try the determinant: the three vectors are
linearly dependent if and only if their determinant is zero (mod 5). This can be done by
Gaussian elimination.

A simpler solution follows if we replace 4 by —1 and 3 by —2: a = [1,—1,0], b = [-2,2,2],
¢ =[-1,1,2]. Now we notice that the second column is (—1)-times the first column, so
the determinant is zero.
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