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Chapter 1

Logic

1.1 Quantifier notation

Quantifier notation: ∀ - “universal quantifier,” ∃ - “existential quatifier.”

(∀x) is read as “for all x”

(∃x) is read as “there exists x such that”

(∀x, statement(x)) is read as “for all x such that statement(x) holds,. . . ”

Example. (∀x 6= 0)(∃y)(xy = 1) says that every x other than zero has a multiplicative inverse.
The validity of this statement depends on the universe over which the variables range. The
statement holds (is true) over R (real numbers) and Q (rational numbers) but does not hold
over Z (integers) or N (nonnegative integers). It holds over Zm (the set of residue classes
modulo m) if m is prime but not if m is composite. (Why?)

1.2 Problems

Several of the problems below will refer to the divisibility relation between integers.

Definition 1.2.1. Let a, b be integers. We say that a | b (“a divides b”) if (∃x)(ax = b). (The
universe of the quantifiers is Z, the set of integers (positive, negative, zero).)

From this definition we see that 7 | 21 (because x = 3 satisfies 7x = 21); 5 | −5 (because
x = −1 satisfies 5x = −5); 0 | 0 (because x = 17 (or any other x) satisfies 0x = 0).

Does our conclusion 0 | 0 violate the prohibition agains division by zero? By no means;
division by zero continues to be a no-no. But read the definition of divisibility: it involves
multiplication, not division. Nothing can stop us from multiplying a number by zero.
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2 CHAPTER 1. LOGIC

Remark. Most (but not all) Discrete Mathematics texts deliberately misstate the definition of
divisibility to exclude 0 | 0 from the definition. This abomination stems from many textbook
authors’ contempt for their readers’ intelligence; the result is a multitude of unnecessary case
distinctions, destroying a fundamental element of mathematical aesthetics. (To these authors,
for instance, x | x does not hold for all x; there is an exception: x = 0. And then, to them,
x−y does not always divide x2−y2; to them, the cases when x = y are exceptions.) We do not
follow this deplorable textbook trend; to us (as well as tpo any mathematician), (∀x)(x | x)
and (∀x)(∀y)(x− y | x2 − y2).

Exercise 1.2.2. Restate the following statements in plain English and prove them. The
universe is Z.

(a) (∀x)(x | x). In particular, 0 | 0.

(b) (∀x)(∀y)(x− y | x2 − y2).

(c) (∀x)(1 | x).

(d) (∀x)(x | 0).

(e) (∀x)( if (∀y)(x | y) then x = ±1).

(f) (∀x)( if (∀y)(y | x) then x = 0).

Definition 1.2.3. (Congruence) Let a, b,m be integers. We say that a ≡ b (mod m) (“a is
congruent to b modulo m”) if m | a− b.

Examples: 11 ≡ −10 (mod − 7) because −7 | 11 − (−10) = 21. Two integers are congruent
modulo 2 exactly if they have the same parity (both are even or both are odd).

Exercise 1.2.4. Prove the following statements. The universe is Z.

(a) (∀x)((∀y)(∀z)(y ≡ z (mod x))⇐⇒ x = ±1).

(b) (∀x)(∀y)(x ≡ y (mod 0) ⇐⇒ x = y).

(c) (∀x 6= ±1)(∀y)(∃z)(y 6≡ z (mod x)).

Exercise 1.2.5. Decide whether each of the following statements is true or false. State
and prove your answers. In these statements, the universe for the variables x, y, k is Z,
the set of integers. Warning: in interpreting the formulas, the order of the quantifiers mat-
ters! (∀x)(∀y)(P (x, y)) is the same as (∀y)(∀x)(P (x, y)); (∃x)(∃y)(P (x, y)) is the same as
(∃y)(∃x)(P (x, y)); but (∀x)(∃y)(P (x, y)) is NOT the same as (∃y)(∀x)(P (x, y))!

(a) (∀x)(∀y)(x+ y | x2 − y2).

(b) (∀x)(∀y)(x+ y | x2 + y2).

Last update: January 5, 2023



1.2. PROBLEMS 3

(c) (∃x)(∀y)(x+ y | x2 + y2).

(d) (∀x)(∃y)(x2 + y2 ≡ 1 (mod x+ y)).

(e) (∀x)(∀y)(∀k) (if k ≥ 1 then xk ≡ yk (mod x− y)).

(f) (∀x)(∃y)(x 6= y and x | y and x ≡ y (mod 7)).

(g) (∃y)(∀x)(x 6= y and x | y and x ≡ y (mod 7)).

(h) (∀x)(∀y)( if x | y and x 6= y then x < y).

Exercise 1.2.6. True or false (prove your answer):

(∀x)(∃y)(∀z)((x− 5y)z 6≡ 1 (mod 17)).

(The universe of the variables is the set of integers.)

Negation of quantified formulas. If A is a statement then ¬A denotes its negation; so ¬A
is true if and only if A is false. ⇔ denotes logical equivalence (“if and only if”).

Exercise 1.2.7. Let P (x) be a statement in variable x.

(a) Prove: ¬(∀x)(P (x))⇔ (∃x)(¬P (x)).

(b) Prove: ¬(∃x)(P (x))⇔ (∀x)(¬P (x)).

(c) LetQ(x, y) be a statement in two variables. Prove: ¬(∀x)(∃y)(Q(x, y))⇔ (∃x)(∀y)(¬Q(x, y)).

Exercise 1.2.8. Let P (x, y) be a statement about the variables x and y. Consider the following
two statements: A := (∀x)(∃y)(P (x, y)) and B := (∃y)(∀x)(P (x, y)). The universe is the set
of integers.

(a) Prove: (∀P )(B ⇒ A) (“B always implies A,” i. e., for all P , if B is true then A is true).

(b) Prove: ¬(∀P )(A⇒ B) (i. e., A does not necessarily imply B). In other words, (∃P )(A 6⇒
B). To prove this, you need to construct a counterexample, i. e., a statement P (x, y) such
that the corresponding statement A is true but B is false. Make P (x, y) as simple as
possible. Hint. Three symbols suffice. These include x and y.

Quantifier alternation and games.

Exercise 1.2.9. Digest and generalize the following. Consider a chess-puzzle which says “white
moves and wins in 2 moves.” Let W (x) denote the statement that the move x is available to
White; and B(x, y) that the move y is available to Black after White’s move x; and W (x, y, z)
the statement that move z is avaliable to White after White moved x and Black moved y.
Let C(x, y, z) denote the statement that after moves x, y, z, Black is checkmated. Now the
puzzle’s claim can be formalized in the following quantified formula:

(∃x,W (x))(∀y,B(x, y))(∃z,W (x, y, z))(C(x, y, z)).

Copyright c© 2003, 2020 by László Babai. All rights reserved.
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Asymptotic Notation
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6 CHAPTER 2. ASYMPTOTIC NOTATION
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2.1 Limit of sequence

Notation: exp(x) = ex.

In combinatorial contexts, the symbol [n] will be used to denote {1, 2, . . . , n}.

Definition 2.1.1 (finite limit of a sequence). Let {an} be a sequence of real or complex
numbers. We write limn→∞ an = c (or simply an → c) if

(∀ε > 0)(∃n0 ∈ N)(∀n ≥ n0)(|an − c| ≤ ε).

We say that a sequence converges if it has a finite limit.

Definition 2.1.2 (infinite limit of a sequence). Let an be a sequence of real or complex
numbers. We write limn→∞ an =∞ (or simply an →∞) if

(∀L)(∃n0 ∈ N)(∀n ≥ n0)(an ≥ L).

Exercise 2.1.3. What is limn→∞(1 + x/n)n ?

Exercise 2.1.4. (a) Consider the sequence {an} defined by the recurrence an+1 =
√

2
an

with the initial condition a0 = 1. Prove that limn→∞ an exists; find the limit.

(b) Prove that the previous statement becomes false if we replace
√

2 by 1.5. What is the
largest number (in place of

√
2) for which the sequence converges?

2.2 Asymptotic Equality and Inequality

THIS CHAPER HAS BEEN SUPESRSEDED. SEE SEPARATE SET
OF NOTES UNDER THE SAME TITLE

Often, we are interested in comparing the rate of growth of two functions, as inputs increase
in length. Asymptotic equality is one formalization of the idea of two functions having the
“same rate of growth.”

Definition 2.2.1. We say an is asymptotically equal to bn (denoted an ∼ bn) if limn→∞ an/bn =
1. For the purposes of this definition, we set 0/0 = 1.

Observation. If c 6= 0 is a constant then the statement an ∼ c (where c means the sequence
c, c, . . . ) is equivalent to an → c (where c means the number c).

Last update: January 5, 2023



2.2. ASYMPTOTIC EQUALITY AND INEQUALITY 7

Exercise 2.2.2. Prove: an ∼ 0 if and only if (∃n0)(∀n ≥ n0)(an = 0), i. e., an = 0 for all
sufficiently large n.

Exercise 2.2.3. Let S denote the set of sequences of real or complex numbers. Prove that ∼
is an equivalence relation on S, i. e., the relation “∼” is

(a) reflexive: an ∼ an;

(b) symmetric: if an ∼ bn then bn ∼ an; and

(c) transitive: if an ∼ bn and bn ∼ cn then an ∼ cn.

Exercise 2.2.4. Prove: if an ∼ bn and cn ∼ dn then ancn ∼ bndn. If, moreover, cndn 6= 0 for
all sufficiently large n then an/cn ∼ bn/dn. (Note that a finite number of undefined terms do
not invalidate a limit relation.)

Exercise 2.2.5. Consider the following statement.

If an ∼ bn and cn ∼ dn then an + cn ∼ bn + dn. (2.1)

1. Prove that (2.1) is false.

2. Prove: if ancn > 0 then (2.1) is true. Hint. Prove: if a, b, c, d > 0 and a/b < c/d then
a/b < (a+ c)/(b+ d) < c/d.

Exercise 2.2.6. 1. If f(x) and g(x) are polynomials with respective leading terms axn and
bxm then f(n)/g(n) ∼ (a/b)xn−m.

2. sin(1/n) ∼ ln(1 + 1/n) ∼ 1/n.

3.
√
n2 + 1− n ∼ 1/2n.

4. If f is a function, differentiable at zero, f(0) = 0, and f ′(0) 6= 0, then f(1/n) ∼ f ′(0)/n.
See that items 2 and 3 in this exercise follow from this.

Exercise 2.2.7. Find two sequences of positive real numbers, {an} and {bn}, such that an ∼ bn
but ann 6∼ bnn.

Next we state some of the most important asymptotic formulas in mathematics.

Theorem 2.2.8 (Stirling’s Formula).

n! ∼
(n

e

)n√
2πn.

Exercise 2.2.9. Prove:

(
2n

n

)
∼ 4n√

πn
.

Copyright c© 2003, 2020 by László Babai. All rights reserved.



8 CHAPTER 2. ASYMPTOTIC NOTATION

Exercise 2.2.10. Give a very simple proof, without using Stirling’s formula, that ln(n!) ∼
n lnn.

Theorem 2.2.11 (The Prime Number Theorem). Let π(x) be the number of primes less than
or equal to x.

π(x) ∼ x

lnx
,

where ln denotes the natural logarithm function.

Exercise 2.2.12. Let pn be the n-th prime number. Prove, using the Prime Number Theorem,
that pn ∼ n lnn.

Exercise 2.2.13. Feasibility of generating random prime numbers. Estimate, how many ran-
dom ≤ 100-digit integers should we expect to pick before we encounter a prime number? (We
generate our numbers by choosing the 100 digits independently at random (initial zeros are
permitted), so each of the 10100 numbers has the same probability to be chosen.) Interpret this
question as asking the reciprocal of the probability that a randomly chosen integer is prime.

Definition 2.2.14. A partition of a positive integer n is a representation of n as a sum of
positive integers: n = x1 + · · · + xk where x1 ≤ · · · ≤ xk. Let p(n) denote the number of
partitions of n.

Examples: p(1) = 1, p(2) = 2, p(3) = 3, p(4) = 5. The 5 representations of 4 are 4 = 4;
4 = 1 + 3; 4 = 2 + 2; 4 = 1 + 1 + 2; 4 = 1 + 1 + 1 + 1. One of the most amazing asymptotic
formulas in discrete mathematics gives the growth of p(n).

Theorem 2.2.15 (Hardy-Ramanujan Formula).

p(n) ∼ 1

4n
√

3
exp

(
2π√

6

√
n

)
. (2.2)

Definition 2.2.16. Let {an} and {bn} be sequences of real numbers. We say that an is greater
than or asymptotically equal to bn, denoted as an & bn if an ∼ max{an, bn}.

Exercise 2.2.17. Prove: an & bn if and only if bn ∼ min{an, bn}.

Exercise 2.2.18. Prove: if an ∼ bn then an & bn.

Exercise 2.2.19. Prove: if an & bn and bn & an then an ∼ bn.

Exercise 2.2.20. Prove: if an & bn and bn & cn then an & cn.

Exercise 2.2.21. Conclude from the preceding exercises that the “&” relation is a partial
order on the set of asymptotic equivalence classes of sequences of real numbers.

Exercise 2.2.22. Prove: an & 0 if and only if (∃n0)(∀n ≥ n0)(an ≥ 0), i. e., an ≥ 0 for all
sufficiently large n.

Last update: January 5, 2023



2.3. LITTLE-OH AND LITTLE-OMEGA NOTATION 9

Exercise 2.2.23. Prove: if an & bn ≥ 0 and cn & dn ≥ 0 then an + cn & bn + dn.

Exercise 2.2.24. (a) Let an, bn ≥ 0. Prove that an & bn if and only if (∀ε > 0)(∃n0)(∀n >
n0)(an ≥ bn(1− ε)).

(b) Show that the same formula does not define the relation “an & bn” if we omit the
condition an, bn ≥ 0.

Exercise 2.2.25. Assume bn → ∞ and an ≥ b2n ln bn. Prove: bn . c
√
an/ ln an, where c

is a constant. Determine the smallest value of c for which this statement follows from the
assumptions.

2.3 Little-oh and little-omega notation

Definition 2.3.1. We say that an = o(bn) (“an is little oh of bn”) if

lim
n→∞

an
bn

= 0.

Observation. So an = o(1) means limn→∞ an = 0.

Exercise 2.3.2. Show: if an = o(cn) and bn = o(cn) then an ± bn = o(cn).

Exercise 2.3.3. Consider the following statement:

If an = o(bn) and cn = o(dn) then an + cn = o(bn + dn). (2.3)

1. Show that statement (2.3) is false.

2. Prove that statement (2.3) becomes true if we assume bn, dn > 0.

Exercise 2.3.4. Show that an ∼ bn ⇐⇒ an = bn(1 + o(1)).

Exercise 2.3.5. Use the preceding exercise to give a second proof of (2.1) when an, bn, cn, dn >
0.

Exercise 2.3.6. Construct sequences an, bn > 1 such that an = o(bn) and ln an ∼ ln bn.

Exercise 2.3.7. Let an, bn > 1. (a) Prove that the relation an = o(bn) does NOT follow
from the relation ln an = o(ln bn). (b) If we additionally assume that bn →∞ then an = o(bn)
DOES follow from ln an = o(ln bn).

Definition 2.3.8. We say that an = ω(bn) (“an is little omega of bn”) if bn = o(an).

Copyright c© 2003, 2020 by László Babai. All rights reserved.



10 CHAPTER 2. ASYMPTOTIC NOTATION

2.4 Big-Oh, Omega, Theta notation (O, Ω, Θ)

Definition 2.4.1. We say that

1. an = O(bn) (an is “big oh” of bn) if |an/bn| is bounded (0/0 counts as “bounded”), i. e.,

(∃C > 0, n0 ∈ N)(∀n > n0)(|an| ≤ C|bn|).

2. an = Ω(bn) if bn = O(an), i. e., if |bn/an| is bounded (∃c > 0, n0 ∈ N)(∀n > n0)(|an| ≥
c|bn|)

3. an = Θ(bn) if an = O(bn) and an = Ω(bn), i. e.,

(∃C, c > 0, n0 ∈ N)(∀n > n0)(c|bn| ≤ |an| ≤ C|bn|).

Exercise 2.4.2. Suppose the finite or infinite limit limn→∞ |an/bn| = L exists. Then

(a) an = o(bn) if and only if L = 0; and

(b) an = Θ(bn) if and only if 0 < L <∞.

(c) an = ω(bn) if and only if L =∞;

Exercise 2.4.3. Construct sequences an, bn > 0 such that an = Θ(bn) but the limit lim
n→∞

an/bn

does not exist.

Exercise 2.4.4. Let an, bn > 0. Show: an = Θ(bn)⇐⇒ ln an = ln bn +O(1).

Exercise 2.4.5. Show: if an = O(cn) and bn = O(cn) then an + bn = O(cn).

Exercise 2.4.6. Consider the statement “if an = Ω(cn) and bn = Ω(cn) then an + bn = Ω(cn).
(a) Show that this statement is false. (b) Show that if we additionally assume anbn > 0
then the statement becomes true.

Exercise 2.4.7. Let an, bn > 1. Suppose an = Θ(bn). Does it follow that ln an ∼ ln bn?

1. Show that even ln an = Ω(ln bn) does not follow.

2. Show that if an →∞ then ln an ∼ ln bn follows.

Exercise 2.4.8. Let an, bn > 1. Suppose an = Ω(bn). Does it follow that ln an & ln bn?

1. Show that even ln an = Ω(ln bn) does not follow.

2. Show that if an →∞ then ln an & ln bn follows.

Last update: January 5, 2023



2.5. PRIME NUMBERS 11

Exercise 2.4.9. Let an, bn > 0. Consider the relations

(A) an = O(2bn) and (B) an = 2O(bn).

(a) Prove: the relation (B) does NOT follow from (A).

(b) Prove: if an > 0.01 and bn > 0.01 then (B) DOES follow from (A).

Note. an = 2O(bn) means that an = 2cn where cn = O(bn).

Exercise 2.4.10. Prove: if an = Ω(bn) and an = Ω(cn) then an = Ω(bn + cn).

Note. We say that the “statement A implies statement B” if B follows from A.

Exercise 2.4.11. (a) Prove that the relations an = O(bn) and an = O(cn) do NOT imply
an = O(bn + cn).

(b) Prove that if an, bn > 0 then the relations an = O(bn) and an = O(cn) DO imply
an = O(bn + cn).

Exercise 2.4.12. Prove:
∑n

i=1 1/i = lnn+O(1).

2.5 Prime Numbers

Exercise+ 2.5.1. Let P (x) denote the product of all prime numbers ≤ x. Consider the
following statement: lnP (x) ∼ x. Prove that this statement is equivalent to the Prime Number
Theorem.

Exercise+ 2.5.2. Prove, without using the Prime Number Theorem, that

lnP (x) = Θ(x).

Hint. For the easy upper bound, observe that the binomial coefficient
(

2n
n

)
is divisible by

the integer P (2n)/P (n). This observation yields P (x) ≤ 4x. For the lower bound, prove that
if a prime power pt divides the binomial coefficient

(
n
k

)
then pt ≤ n. From this it follows that(

2n
n

)
divides the product P (2n)P ((2n)1/2)P ((2n)1/3)P ((2n)1/4) . . . . Use the upper bound to

estimate all but the first term in this product.

2.6 Partitions

Exercise 2.6.1. Let p(n, k) denote the number of those partitions of n which have at most k
terms. Let q(n, k) denote the number of those partitions in which every term is ≤ k. Observe
that p(n, 1) = q(n, 1) = 1 and p(n, n) = q(n, n) = p(n). (Do!) Let p̃(n) =

∑n
i=0 p(i) and let

p̃(n, k) =
∑n

i=0 p(i, k).
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1. Prove: p(n, k) = q(n, k).

2. Compute p(n, 2). Give a very simple formula.

3. Compute p(n, 3). Give a simple formula.

4. Prove: p̃(n) ≤ p̃(n, k)2, where k = b
√
nc. Hint. Use part 1 of this exercise.

Exercise 2.6.2. Using the notation proved in Exercise 2.6.1, prove the following.

(a) p̃(n, k) <
(
n+k
k

)
(b) log p(n) = O(

√
n log n). Hint. Use (a) and part 4 of Exercise 2.6.1.

Exercise+ 2.6.3. Prove, without using the Hardy–Ramanujan formula, that

ln p(n) = Θ(
√
n).

Hint. ln p(n) = Ω(
√
n) is easy (2 lines). The upper bound is harder. Use the preceding

exercise, especially item 4. When estimating p(n,
√
n), split the terms of your partition into

sets {xi ≤
√
n}, {

√
n < xi ≤ 2

√
n}, {2

√
n < xi ≤ 4

√
n}, {4

√
n < xi ≤ 8

√
n}, etc.

Exercise+ 2.6.4. Let p′(n) denote the number of partitions of n such that all terms are primes
or 1. Example: 16 = 1 + 1 + 1 + 3 + 3 + 7. Prove:

ln p′(n) = Θ

(√
n

lnn

)
.

Exercise 2.6.5. Let r(n) denote the number of different integers of the form
∏
xi! where

xi ≥ 1 and
∑
xi = n. (The xi are integers.) Prove:

p′(n) ≤ r(n) ≤ p(n).

OPEN QUESTIONS. Is log r(n) = Θ(
√
n)? Or perhaps, log r(n) = Θ(

√
n/ log n)? Or

maybe log r(n) lies somewhere between these bounds?

2.7 Problems

Exercise 2.7.1. 1. (1 point) Describe in words what it means for a sequence an that an =
O(1) (big-Oh of 1).

2. (2 points) Suppose an = O(1). Does it follow that the sequence an has a limit? (Prove
your answer.)

3. (2 points) Suppose the sequence an has a finite limit. Does it follow that an = O(1)?
Prove your answer.
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Exercise 2.7.2. Let an, bn > 1. True or false: if an ∼ bn then ann = Θ(bnn). Prove your answer.

Exercise 2.7.3. Prove: if an, bn, cn, dn > 0 and an = O(bn) and cn = O(dn) then an + cn =
O(bn+dn). State the constant implicit in the conclusion as a function of the constants implicit
in the conditions.

Exercise 2.7.4. Using the fact that lnx = o(x), prove that (ln y)100 = o(
√
y). (x, y → ∞.)

Do not use calculus.

Exercise 2.7.5. True or false (prove your answer):

2(n2) ∼ 2n
2/2.

Exercise 2.7.6. Construct two sequences, {an} and {bn} such that an > 1, bn > 1, an ∼ bn,
and ann = o(bnn).

Exercise 2.7.7. Let {an} and {bn} be sequences of positive numbers. Prove: if an →∞ and
an = Θ(bn) then ln(an) ∼ ln(bn).

Exercise 2.7.8. Recall that a sequence {an} is polynomially bounded if (∃C)(an = O(nC)).
Decide whether or not each of the following sequences is polynomialy bounded. Prove your
answers.

1. n3 ln(n2 + 5)

2. 5lnn

3. blnnc!

Exercise 2.7.9. Construct two sequences, {an} and {bn} such that an > 1, bn > 1, an ∼ bn,
and ann = o(bnn).

Exercise 2.7.10. Let fn = (1 + 1/
√
n)n and gn = e

√
n. Prove: fn = Θ(gn) but fn 6∼ gn. Show

that in fact limn→∞ fn/gn = 1/
√

e.

Exercise 2.7.11. Consider the statement

limxy = 1 is “almost always true” as x, y → 0+.

Give a definition of “almost always” in this context, then prove the statement.

Exercise 2.7.12. Let {an} be a sequence of positive integers, and assume an → ∞. Let

bn =

(
an
3

)
. Prove that an ∼ c · bdn for some constants c, d. Determine the values of c and d.
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14 CHAPTER 2. ASYMPTOTIC NOTATION

Last update: January 5, 2023



Chapter 3

Convex Functions and Jensen’s
Inequality

15
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a           c                          b

f(x)

c = λa+ (1− λ)b

Figure 3.1: Definition of convexity

Definition 3.1.1. Let f(x) be a real function defined over a finite or infinite interval. We say
that f(x) is a convex function if for all a, b in its domain and all real numbers λ in the interval
0 ≤ λ ≤ 1, the inequality

f(λa+ (1− λ)b) ≤ λf(a) + (1− λ)f(b)

holds. The function g(x) is concave if −g(x) is convex. See Figure 3.

Exercise 3.1.2. Prove the following sufficient condition of convexity: If f(x) is twice differ-
entiable and its second derivative is always ≥ 0 then f(x) is convex.

Exercise 3.1.3. Prove the following sufficient condition of convexity: If f(x) is continuous

and the inequality f

(
a+ b

2

)
≤ f(a) + f(b)

2
holds for all a, b in its domain then f(x) is convex.

Exercise 3.1.4. (a) The functions x2,
(
x
2

)
, ex are convex. (b) The functions

√
x, lnx are

concave. (c) The function sinx is concave over the interval [0, π] and convex over the interval
[π, 2π].

Exercise 3.1.5. (a) A continuous convex function is unimodal: it decreases to its minimum
and then it increases. (b) If a continuous convex function is invertible then it is monotone
(increasing or decreasing). (c) The inverse of a monotone increasing continuous convex function
is concave. (d) The inverse of a monotone decreasing convex function is convex.

Theorem 3.1.6 (Jensen’s Inequality). If f(x) is a convex function then for any choice of real
numbers x1, . . . , xk from the domain of f ,

f

(∑k
i=1 xi
k

)
≤
∑k

i=1 f(xi)

k
.
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Exercise 3.1.7. Prove Jensen’s Ineqality. Hint. Induction on k.

Exercise 3.1.8. Prove the inequality between the arithmetic and quadratic means: for
all real x1, . . . , xk,

x1 + · · ·+ xk
k

≤

√
x2

1 + · · ·+ x2
k

k
.

Hint 1. Use the convexity of f(x) = x2 and Jensen’s Inequality.
Hint 2. Give a 1-line proof using the Cauchy–Schwarz Inequality.
Hint 3. Give a simple direct proof (do not use either Jensen’s Inequality or Cauchy–Schwarz).

Exercise 3.1.9. In the proof of the Kővári–Sós–Turán theorem (Exercise 6.1.41), we applied
Jensen’s Inequality to f(x) =

(
x
2

)
= x(x− 1)/2. Modify the proof so that Jensen’s Inequality

is avoided and the inequality between the arithmetic and quadratic means is used instead.

Exercise 3.1.10. Prove the inequality between the arithmetic and geometric means: if
x1, . . . , xk > 0 then

x1 + · · ·+ xk
k

≥ (x1x2 . . . xk)
1/k .

Hint. Use the concavity of the natural logarithm function, ln.

Copyright c© 2003, 2020 by László Babai. All rights reserved.
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Chapter 4

Basic Number Theory

4.1 Introductory Problems: g.c.d., congruences, multiplicative
inverse, Chinese Remainder Theorem, Fermat’s Little The-
orem

Notation: Unless otherwise stated, all variables in this chapter are integers. For n ≥ 0, [n] =
{1, 2, . . . , n}. The formula d |n denotes the relation “d divides n,” i. e., (∃k)(n = dk). We
also say “d is a divisor of n” or “n is a multiple of d.” Note that (∀a)(a | a), including 0 | 0
(even though we do not allow division by zero!). In fact 0 |n ⇐⇒ n = 0. Note also that
(∀k (n | k))⇐⇒ n = ±1.

Notation 4.1.1. Let div (n) denote the set of divisors of n.

Examples. div (6) = div (−6) = {±1,±2,±3,±6}; div (1) = {±1}; div (0) = Z.

Exercise 4.1.2. Prove: a | b ⇐⇒ div (a) ⊆ div (b).

Exercise 4.1.3. Prove: div (a) = div (b) ⇐⇒ b = ±a.

Congruence notation. We write a ≡ b (mod m) if m | (a− b) (“a is congruent to b modulo
m”).

For instance, 100 ≡ 2 (mod 7) (because 7 | 100 − 2 = 98 = 7 · 14); therefore, if today is
Monday then 100 days from now it will be Wednesday (Monday +2). This example expains
why modular arithemtic (calculations modulo m) are also referred to as “calendar arithmetic.”

Division Theorem. (∀a)(∀b ≥ 1)(∃q)(∃r)(0 ≤ r ≤ b− 1 and a = bq + r).

q is called the “integer quotient” and r the “remainder.”

19
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Exercise 4.1.4. Prove: r ≡ a (mod b).

Remainder notation. The remainder r is denoted by the expression (a mod b). (Exercise
4.1.4 explains this notation; the congruence relation and the mod function should not be
confused.) Examples: (100 mod 7) = 2; (−100 mod 7) = 5; (98 mod 7) = 0; (0 mod 7) =
0; (a mod 0) is undefined.

Common Divisor. The integer f is a common divisor of the integers a and b if f | a and
f | b.

Exercise 4.1.5. Prove: f is a common divisor of a and b ⇐⇒ div (f) ⊆ div (a) ∩ div (b).

Greatest Common Divisor. The integer d is a greatest common divisor of the integers a
and b if

• d is a common divisor of a and b;

• every common divisor of a and b divides d.

Exercise 4.1.6. Prove: d is a greatest common divisor of a and b⇐⇒ div (d) = div (a)∩div (b).

The existence of a greatest common divisor is not evident at all; it is an important basic
theorem. Often we need the additional fact that the greatest common divisor can be written
as a linear combination with integer coefficients: d = au+ bv.

Exercise+ 4.1.7. (∀a)(∀b)(∃u)(∃v)(au+ bv is a greatest common divisor of a and b).

Exercise 4.1.8. Prove: if d is a greatest common divisor of a and b then −d is also a greatest
common divisor of a and b and there are no other greatest common divisors.

G.c.d. notation. g.c.d.(a, b) will denote the (unique) nonnegative greatest common divisor
of the integers a and b.

Exercise 4.1.9. Prove: g.c.d.(0, 0) = 0.

Exercise 4.1.10. What are the common divisors of 0 and 0? Is 0 the “greatest”?

Exercise 4.1.11. (a) Prove: (∀a)(g.c.d.(a, a) = |a|).

(b) Prove: (∀a)(g.c.d.(a, 0) = |a|).
Note that each of these statements includes the fact that g.c.d.(0, 0) = 0.

The Euclidean algorithm, described in Euclid’s Elements around 350 B.C.E., is an effi-
cient method to calculate the g.c.d. of two positive integers. We describe the algorithm in
pseudocode.

Euclidean Algorithm

INPUT: integers a, b.

OUTPUT: g.c.d.(a, b).
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0 Initialize: A := |a|, B := |b|
1 while B ≥ 1 do
2 division: R := (A mod B)
3 A := B, B := R
4 end(while)
5 return A

The correctness of the algorithm follows from the following loop invariant:

g.c.d.(A,B) = g.c.d.(a, b).

Exercise 4.1.12. Prove that the statement above is indeed a loop invariant, i. e., prove that
if the statement “g.c.d.(A,B) = g.c.d.(a, b)” is true before an iteration of the while loop then
it remains true after the execution of the while loop.

In addition, at the end we use the fact that g.c.d.(A, 0) = A.

Exercise 4.1.13. The efficiency of the Euclidean the algorithm follows from the observation
that after every two rounds, the value of B is reduced to less than half. Prove this statement.

This implies that the number of rounds is ≤ 2n where n is the number of binary digits of b.
Therefore the total number of bit-operations is O(n3), so this is a polynomial-time algorithm.
(Good job, Euclid!)

Exercise 4.1.14. Use Euclid’s algorithm to determine the g.c.d. of the following pairs of
integers:

(a) (105; 480)

(b) (72,806; 13,587,574).

Exercise 4.1.15. Let n be a positive integer and let d(n) denote the number of positive divisors
of n. For instance, d(1) = 1, d(2) = d(3) = d(5) = 2, d(4) = 3, d(6) = 4. Prove your answers
to the following questions.

(a) For what values of n is d(n) = 2?

(b) For what values of n is d(n) = 3?

(c) Prove: (∀n)(d(n) < 2
√
n).

Exercise 4.1.16. (a) Let a, b > 0 and let us perform Euclid’s algorithm to find the g.c.d. of
a and b. Let r1, r2, . . . denote the successive remainders; let us use the notation r−1 = a
and r0 = b. Prove: (∀i ≥ −1)(ri+2 ≤ ri/2).
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(b) Prove: if a has n bits (digits in binary) then the algorithm will terminate in ≤ 2n rounds
(one round being a division to find the next remainder). Hint: use part (a).

Exercise 4.1.17. Recall that the multiplicative inverse of b modulo m, denoted by x = (b−1

(mod m)), is an integer x such that bx ≡ 1 (mod m). Find each of the following multiplicative
inverses, or prove that the multiplicative inverse does not exist. Among the infinitely many
values of the multiplicative inverse, find the smallest positive integer.

(a) 5−1 (mod 17)

(b) 39−1 (mod 403)

(c) 2−1 (mod 2k + 1) (where k is a given integer).

(d) k−1 (mod 2k + 1). Find the inverse in the range {0, 1, . . . , 2k}.

(e) k−1 (mod 3k + 1). Find the inverse in the range {0, 1, . . . , 3k}.

Exercise 4.1.18. Solve the following system of congruences:

x ≡ 7 (mod 16)

x ≡ 3 (mod 15)

x ≡ 1 (mod 11)

Exercise 4.1.19. Decide whether or not the following system of congruences is solvable. If
your answer is YES, find a solution. If your answer is NO, prove your answer.

x ≡ 7 (mod 13)

x ≡ 3 (mod 25)

x ≡ 20 (mod 39)

Exercise 4.1.20. Prove whether or not the following system of congruences is solvable.

x ≡ 7 (mod 18)

x ≡ 7 (mod 12)

x ≡ 1 (mod 6)

Exercise 4.1.21. Consider the statement “if a ≡ 1 (mod 5) and b ≡ 1 (mod 5) then
g.c.d.(a, b) ≡ 1 (mod 5).” Find infinitely many counterexamples.

Exercise 4.1.22. The Fibonacci numbers are defined as follows: F0 = 0, F1 = 1, and for
n ≥ 2, Fn = Fn−1 + Fn−2. So F2 = 1, F3 = 2, F4 = 3, F5 = 5, F6 = 8, F7 = 13, F8 = 21, etc.
Prove: for all n ≥ 1,

(a) gcd(Fn−1, Fn) = 1.
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(b) |F 2
n − Fn−1Fn+1| = 1.

(c) If gcd(m,n) = d then gcd(Fm, Fn) = Fd.

(d) If gcd(m,n) = d then gcd(am − 1, an − 1) = ad − 1.

Hint: For parts (a) and (b), use mathematical induction.

Exercise 4.1.23. Calculate (a mod m) where a = 3114,555 and m = 173. Recall that the
expression (a mod m) denotes the smallest nonnegative remainder of the division of a by m.
Hint. Fermat’s little Theorem (Theorem 4.2.18).

Exercise 4.1.24. (a) Prove: if m is a prime and x2 ≡ 1 (mod m) then x ≡ ±1 (mod m)
(i. e., either x ≡ 1 (mod m), or x ≡ −1 (mod m)).

(b) Prove that (a) becomes false if we omit the condition that m is a prime. (Give a coun-
terexample.)

(c) Prove that (a) is false for every m of the form m = pq where p, q are distinct odd
primes. In other words, show that (∀p, q)(∃x)( if p, q are distinct odd primes then x2 ≡ 1
(mod pq) but x 6≡ ±1 (mod pq)). Hint. Observe that a ≡ b (mod pq) ⇔ a ≡ b (mod p)
and a ≡ b (mod q). Work separately modulo each prime; combine your results using the
Chinese Remainder Theorem.

Exercise 4.1.25. Prove: ∀x(x2 6≡ −1 (mod 419)).
Hint. Proof by contradiction. Use Fermat’s little Theorem (Theorem 4.2.18). (419 is a prime.)

Exercise 4.1.26. (a) Prove: if g.c.d.(a, 85) = 1 then a33 ≡ a (mod 85)). Hint. 85 = 5 · 17,
so two numbers are congruent modulo 85 if and only if they are congruent modulo 5 as
well as modulo 17. Prove the stated congruence modulo 5 and modulo 17.

(b) True or false (prove your answer): if 85 does not divide a then a32 ≡ 1 (mod 85)).

Exercise 4.1.27. True or False. If False, give a counterexample.

1. If gcd(a, b) = 0 then a = b = 0.

2. If l.c.m. (a, b) = 0 then a = b = 0.

3. If a ≡ b (mod 24) then a ≡ b (mod 6) and a ≡ b (mod 4).

4. If a ≡ b (mod 6) and a ≡ b (mod 4) then a ≡ b (mod 24).

Exercise 4.1.28. Consider the following statement:

Statement. a15 is a multiplicative inverse of a modulo 17.

1. Define what it means that “x is a multiplicative inverse of a modulo m.”

Copyright c© 2003, 2020 by László Babai. All rights reserved.
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2. Give infinitely many counterexamples to the statement above.

3. State a very simple necessary and sufficient condition for the statement to be true. Prove
your answer.

Exercise 4.1.29. Prove: (∀a)(a37 ≡ a (mod 247)). Hint. 247 = 13 · 19.

Exercise 4.1.30. Prove: if a is an odd integer then

a67 ≡ a (mod 12, 328).

Hint. 12, 328 = 8 · 23 · 67.

Exercise 4.1.31. Prove: the congruence x2 ≡ −1 (mod 103) has no solution. (103 is a prime
number.) Hint. F`T.

Exercise 4.1.32. Let 1 ≤ a1 < · · · < an+1 ≤ 2n be n+ 1 distinct integers between 1 and 2n.
Prove:

(a) (∃i, j)(i 6= j and g.c.d.(ai, aj) = 1).

(b) (∃i, j)(i 6= j and ai | aj). Hint. Pigeon-hole principle.

Exercise 4.1.33. Let p be a prime number. Find all solutions to the following congruence.
Prove your answer.

xp ≡ x3p (mod p).

Exercise 4.1.34. In this problem, the universe of the variable x is the set of integers. Prove:

(∀x)(x21 ≡ x (mod 55)).

4.2 Gcd, congruences

Exercise 4.2.1. Prove that the product of n consecutive integers is always divisible by n!.
Hint. One-line proof.

Exercise 4.2.2. (The Divisor Game) Select an integer n ≥ 2. Two players alternate
naming positive divisors of n subject to the following rule: no divisor of any previously named
integer can be named. The first player forced to name “n” loses. Example: if n = 30 then the
following is a possible sequence of moves: 10, 3, 6, 15, at which point it is the first player’s
move; he is forced to say “30” and loses.

1. Find a winning strategy for the first player when n is a prime power; or of the form pqk;
pkqk; pqr; or pqrs, where p, q, r, s are prime and k is a positive integer.
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2. Prove: ∀n ≥ 2, the first player has a winning strategy. (Hint: prove, in two or three
lines, the existence of a winning strategy.)

Notation 4.2.3. Let Div (n) denote the set of positive divisors of n.

Exercise 4.2.4. Prove, for all a, b ∈ Z,

(Div (a) ⊆ Div (b)) ⇐⇒ a | b.

Exercise+ 4.2.5. Prove: (∀a, b)(∃d)(Div (a) ∩ Div (b) = Div (d)). A nonnegative d satisfying
this statement is called the g.c.d. of a and b. Note that gcd(a, b) = 0 ⇐⇒ a = b = 0. Define
l.c.m. analogously. When is l.c.m. (a, b) = 0?

Exercise 4.2.6. Prove: gcd(ak − 1, a` − 1) = ad − 1, where d = gcd(k, `).

Definition 4.2.7. The Fibonacci numbers are defined by the recurrence Fn = Fn−1 + Fn−2,
F0 = 0, F1 = 1.

Exercise+ 4.2.8. Prove: gcd(Fk, F`) = Fd, where d = gcd(k, `).

Exercise 4.2.9. Prove: if a ≡ b (mod m) then gcd(a,m) = gcd(b,m).

Exercise 4.2.10. Prove: if a, b ≥ 0 then gcd(a, b) · l.c.m. (a, b) = ab.

Exercise 4.2.11. Prove: congruence modulo m is an equivalence relation on Z. The equiv-
alence classes are called the residue classes mod m. There are m residue classes modulo m.
Under the natural operations they form the ring Z/mZ. The additive group of this ring is
cyclic.

Exercise 4.2.12. Prove that the sequence of Fibonacci numbers mod m is periodic. The
length of the period is ≤ m2 − 1.

Exercise 4.2.13. An integer-preserving polynomial is a polynomial f(x) such that (∀a ∈
Z)(f(a) ∈ Z). Prove that f(x) is integer-preserving if and only if it can be written as

f(x) =

n∑
i=0

ai

(
x

i

)
(4.1)

with suitable integer coefficients ai. Here(
x

i

)
=
x(x− 1) . . . (x− i+ 1)

i!
;

(
x

0

)
= 1.

Exercise 4.2.14. A congruence-preserving polynomial is an integer-preserving polynomial such
that (∀a, b,m ∈ Z)(a ≡ b (mod m)⇒ f(a) ≡ f(b) (mod m)). Prove that f(x) is congruence-
preserving if and only if (∀i)(ei | ai) in the expression (4.1), where ei = l.c.m. (1, 2, . . . , i).

Exercise 4.2.15. A multiplicative inverse of a modulo m is an integer x such that ax ≡ 1
(mod m); notation: x = a−1 mod m. Prove: ∃a−1 mod m⇐⇒ gcd(a,m) = 1.
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Exercise 4.2.16. (Wilson’s theorem) Prove: (p − 1)! ≡ −1 (mod p). Hint: match each
number with its multiplicative inverse in the product (p− 1)!

Exercise 4.2.17. Prove: if gcd(a, p) = 1 then
∏p−1
j=1 j ≡

∏p−1
i=1 (ai). Hint. Match terms on the

right hand side with terms on the left hand side so that corresponding terms satisfy j ≡ ai
(mod p).

Theorem 4.2.18 (Fermat’s little Theorem). If gcd(a, p) = 1 then ap−1 ≡ 1 (mod p).

Exercise 4.2.19. Infer Fermat’s little Theorem from Exercise 4.2.17.

Exercise 4.2.20. Use the same idea to prove the Euler–Fermat theorem: if gcd(a,m) = 1
then aϕ(m) ≡ 1 (mod m). (ϕ is Euler’s ϕ function, see Definition 4.3.1).

Exercise 4.2.21. Prove: if p is a prime and f is a polynomial with integer coefficients then
f(x)p ≡ f(xp) (mod p). Here the congruence of two polynomials means coefficientwise con-
gruence.

The multiplicative group (Z/mZ)× consists of the mod m residue classes relatively prime
to m. Its order is ϕ(m). For a review of related concepts in abstract algebra, see Chapter ??
(cf. especially Exercise ??).

Exercise+ 4.2.22. Prove: if p is a prime then (Z/pZ)× is cyclic (see Definition ??). A
generator of this group is called a primitive root mod p.

Exercise+ 4.2.23. Prove: if p is an odd prime then (Z/pkZ)× is cyclic.

Exercise+ 4.2.24. If k ≥ 2 then the group (Z/2kZ)× is not cyclic but the direct sum of a
cyclic group of order 2 and a cyclic group of order 2k−2.

4.3 Arithmetic Functions

Definition 4.3.1 (Euler’s Phi Function).

ϕ(n) =
∣∣∣{k ∈ [n] : gcd(k, n) = 1

}∣∣∣
= number of positive integers not greater than n which are relatively prime to n

Exercise 4.3.2. Show that the number of complex primitive n-th roots of unity is ϕ(n). Show
that if d|n then the number of elements of order d in a cyclic group of order n is ϕ(d).

Exercise 4.3.3. Show ∑
d |n

ϕ(d) = n.
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Exercise+ 4.3.4. Let Dn = (dij) denote the n× n matrix with dij = gcd(i, j). Prove:

detDn = ϕ(1)ϕ(2) · · ·ϕ(n).

(Hint. Let Z = (zij) be the matrix with zij = 1 if i | j and zij = 0 otherwise. Consider
the matrix ZTFZ where F is the diagonal matrix with entries ϕ(1), . . . , ϕ(n) and ZT is “Z-
transpose” (reflection in the main diagonal).)

Definition 4.3.5 (Number of [positive] divisors).

d(n) =
∣∣∣{d ∈ N : d |n}

∣∣∣
Exercise 4.3.6. Prove: d(n) < 2

√
n.

Exercise+ 4.3.7. Prove: (∀ε > 0)(∃n0)(∀n > n0)(d(n) < nε). (Hint. Use a consequence of
the Prime Number Theorem (Theorem 4.4.6 in the next section).) Prove that d(n) < nc/ ln lnn

for some constant c. The best asymptotic constant is c = ln 2 + o(1).

Exercise+ 4.3.8. Prove that for infinitely many values of n the reverse inequality d(n) >
nc/ ln lnn holds (with another constant c > 0). (Again, use the PNT.)

Exercise+ 4.3.9. Let D(n) = (1/n)
∑n

i=1 d(i) (the average number of divisors). Prove:
D(n) ∼ ln(n). (Comment. If we pick an integer t at random between 1 and n then D(n) will
be the expected number of divisors of t. – Make your proof very simple (3 lines). Do not use
the PNT.)

Exercise+ 4.3.10. Prove: (1/n)
∑n

i=1 d(i)2 = Θ((lnn)3).

Definition 4.3.11 (Sum of [positive] divisors).

σ(n) =
∑
d |n

d

Definition 4.3.12 (Number of [distinct] prime divisors). Let n = pk11 · · · pkrr where the pi are
distinct primes and ki > 0. Set ν(n) = r (number of distinct prime divisors; so ν(1) = 0). Set
ν∗(n) = k1 + · · ·+ kr (total number of prime divisors; so ν∗(1) = 0).

Exercise+ 4.3.13. Prove that the expected number of distinct prime divisors of a random
integer i ∈ [n] is asymptotically ln lnn :

1

n

n∑
i=1

ν(i) ∼ ln lnn.

How much larger is ν∗? On average, not much. Prove that the average value of ν∗ is also
asymptotic to ln lnn.

Definition 4.3.14. n is square-free if (∀p prime )(p2 - n).
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Definition 4.3.15 (Möbius Function).

µ(n) =


1 n = 1
(−1)k n = p1 · · · pk where the pi are distinct (n is square-free)
0 if (∃p)(p2 |n)

Exercise 4.3.16. Let δ(n) =
∑

d|n µ(d). Evaluate δ(n).

Definition 4.3.17 (Riemann zeta function). For s > 1 define the zeta function ζ(s) =
∞∑
n=1

1

ns
.

Exercise 4.3.18. Prove Euler’s identity:

ζ(s) =
∏

p prime

1

1− 1
ps
.

Exercise 4.3.19. Prove:
1

ζ(s)
=
∞∑
n=1

µ(n)

ns
.

Exercise 4.3.20. Prove:

(ζ(s))2 =
∞∑
n=1

d(n)

ns
.

Exercise 4.3.21. Prove:

ζ(s)(ζ(s)− 1) =
∞∑
n=1

σ(n)

ns
.

Exercise∗ 4.3.22. (Euler) Prove: ζ(2) = π2/6.

Exercise 4.3.23. Give a natural definition which will make following statement sensible and
true: “the probability that a random positive integer n satisfies n ≡ 3 (mod 7) is 1/7.” Our
choice of a “random positive integer” should be “uniform” (obviously impossible). (Hint.
Consider the integers up to x; then take the limit as x→∞.)

Exercise 4.3.24. Make sense out of the question “What is the probability that two random
positive integers are relatively prime?” Prove that the answer is 6/π2. Hint. To prove that
the required limit exists may be somewhat tedious. If you want to see the fun part, assume
the existence of the limit, and prove in just two lines that the limit must be 1/ζ(2).

Definition 4.3.25. Let F be a field. f : N→ F is called multiplicative if

(∀a, b)(gcd(a, b) = 1⇒ f(ab) = f(a)f(b)).

f is called completely multiplicative if

(∀a, b)(f(ab) = f(a)f(b)).

f is called additive if

(∀a, b)(gcd(a, b) = 1⇒ f(ab) = f(a) + f(b)).
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Exercise 4.3.26. Show that

1. ϕ, σ, d, and µ are multiplicative but not completely multiplicative

2. ν is additive and ν∗ is completely additive. Log is completely additive.

Exercise 4.3.27. Show

1. ϕ
(
pk
)

= pk − pk−1 = (p− 1)pk−1

2. d
(
pk
)

= k + 1

3. σ
(
pk
)

=
pk+1 − 1

p− 1

Exercise 4.3.28. Show

1. ϕ

(
r∏
i=1

pkii

)
=

r∏
i=1

(pi − 1)pki−1
i

2. d

(
r∏
i=1

pkii

)
=

r∏
i=1

(ki + 1)

3. σ

(
r∏
i=1

pkii

)
=

r∏
i=1

pki+1
i − 1

pi − 1

Exercise 4.3.29. Show

ϕ(n) = n
∏
p |N

p prime

(
1− 1

p

)

Let F be a field and f : N→ F. Define

g(n) =
∑
d |n

f(d).

Exercise 4.3.30 (Möbius Inversion Formula). Show

f(n) =
∑
d |N

g(d)µ
(n
d

)
.

Exercise 4.3.31. Use the Möbius Inversion Formula together with Exercise 4.3.3 for a second
proof of Exercise 4.3.29.

Exercise 4.3.32. Prove that the sum of the complex primitive n-th roots of unity is µ(n).
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Definition 4.3.33. The n-th cyclotomic polynomial Φn(x) is defined as

Φn(x) =
∏
ω

(x− ω)

where the product ranges over all complex primitive n-th roots of unity. Note that the degree of
Φn(x) is ϕ(n). Also note that Φ1(x) = x−1, Φ2(x) = x+1, Φ3(x) = x2 +x+1, Φ4(x) = x2 +1,
Φ5(x) = x4 + x3 + x2 + x+ 1, Φ6(x) = x2 − x+ 1.

Exercise 4.3.34. Prove that Φn(x) has integer coefficients. What is the coefficient of xϕ(n)−1?

Exercise 4.3.35. Prove: if p is a prime then Φp(x) = xp−1 + xp−2 + · · ·+ x+ 1.

Exercise 4.3.36. Prove:
Φn(x) =

∏
d|n

(xd − 1)µ(n/d).

Exercise+ 4.3.37. (Bateman) Let An denote the sum of the absolute values of the coef-
ficients of Φn(x). Prove that An < nd(n)/2. Infer from this that An < exp(nc/ ln lnn) for
some constant c. Hint: We say that the power series

∑∞
n=0 anx

n dominates the power series∑∞
n=0 bnx

n if (∀n)(|bn| ≤ an). Prove that the power series∏
d|n

1

1− xd

dominates Φn(x).

Note: Erdős proved that this bound is tight, apart from the value of the constant: for
infinitely many values of n, An > exp(nc/ ln lnn) for another constant c > 0.

Exercise+ 4.3.38. (Hermite) Let f(x) =
∑n

i=0 aix
i be a monic polynomial of degree n (i. e.,

an = 1) with integer coefficients. Suppose all roots of f have unit absolute value. Prove that all
roots of f are roots of unity. (In other words, if all algebraic conjugates of a complex algebraic
number z have unit absolute value then z is a root of unity.)

4.4 Prime Numbers

Exercise 4.4.1. Prove:
n∑
i=1

1

i
= lnn+O(1).

Exercise 4.4.2. Prove: ∏
p≤x

1

1− 1/p
=
∑′ 1

i
,

where the product is over all primes ≤ x and the summation extends over all positive integers i
with no prime divisors greater than x. In particular, the sum on the right-hand side converges.
It also follows that the left-hand side is greater than lnx.
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Exercise 4.4.3. Prove:
∑

1/p = ∞. (Hint. Use the preceding exercise. Take natural
logarithms; use the power series expansion of ln(1 − z). Conclude that

∑
p≤x 1/p > ln lnx +

O(1). (In other words,
∑

p≤x 1/p− ln lnx is bounded from below.))

Exercise+ 4.4.4. Prove:
∑

p≤x 1/p = ln lnx + O(1). (In other words, |
∑

p≤x 1/p− ln lnx| is
bounded.)

Exercise+ 4.4.5. Prove ϕ(n) = Ω
( n

ln lnn

)
and find the largest implicit asymptotic constant.

Let π(x) the number of primes less than or equal to x.

Theorem 4.4.6 (Prime Number Theorem)(Hadamard and de la Vallée Poussin, 1896).

π(x) ∼ x

lnx

Exercise 4.4.7. Use the PNT to show that lim
n→∞

pn+1

pn
= 1, where pn is the n-th prime.

Exercise 4.4.8. Use the PNT to prove pn ∼ n · lnn.

Exercise 4.4.9. Prove
∏
p≤x

p prime

p = exp
(
x(1 + o(1))

)
. Prove that this result is in fact equivalent

to the PNT.

Exercise 4.4.10. Let en = l.c.m. (1, 2, . . . , n). Prove: en = exp
(
n(1 + o(1))

)
. Prove that this

result is in fact equivalent to the PNT.

Exercise 4.4.11. Prove:
∑

p≤x p ∼ x2/(2 lnx). (Use the PNT.)

Definition 4.4.12. A permutation is a bijection of a set to itself. The permutations of a
set form a group under composition. The symmetric group of degree n is the group of all
permutations of a set of n elements; it has order n!. The exponent of a group is the l.c.m. of
the orders of all elements of the group.

Exercise 4.4.13. Prove: the exponent of Sn is en.

Exercise+ 4.4.14. Let m(n) denote the maximum of the orders of the elements in Sn. Prove:
m(n) = exp(

√
n lnn(1 + o(1))).

Exercise∗ 4.4.15. Let a(n) denote the “typical” order of elements in Sn. Prove that ln a(n) =
O((lnn)2). (“Typical” order means that 99% of the elements has order falling in the stated
range. Here “99” is arbitrarily close to 100.) Hint. Prove that a typical permutation has
O(lnn) cycles.

Erdős and Turán proved in 1965 that in fact ln a(n) ∼ (lnn)2/2.
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Exercise 4.4.16. Prove from first principles:
∏
p<x

p prime

p < 4x. (Hint: if n < p ≤ 2n then p |
(

2n
n

)
.)

Exercise 4.4.17. Prove: if p >
√

2n then p2 -
(

2n
n

)
.

Exercise 4.4.18. Prove: if q is a prime power dividing
(

2n
n

)
then q ≤ n. (Hint. Give a

formula for the highest exponent of a prime p which divides
(

2n
n

)
. First, find a formula for the

exponent of p in n!.)

Exercise 4.4.19. Prove from first principles:
∏
p<x

p prime

p > (2 + o(1))x. (Hint. Consider the

prime-power decomposition of
(
x
x/2

)
. Show that the contribution of the powers of primes ≤

√
x

is negligible.)

Exercise 4.4.20. Paul Erdős was an undergraduate when he found a simple proof of Cheby-
shev’s theorem based on the prime factors of

(
2n
n

)
. Chebyshev’s theorem is a precursor of the

PNT; it says that

π(x) = Θ
( x

lnx

)
.

Following Erdős, prove Chebyshev’s Theorem from first principles. The proof should be only
a few lines, based on Exercises 4.4.16 and 4.4.19.

Exercise 4.4.21. Prove: for all integers x, either x2 ≡ 0 (mod 4) or x2 ≡ 1 (mod 4). (Hint.
Distinguish two cases according to the parity of x [parity: even or odd].)

Exercise 4.4.22. a2 + b2 6≡ −1 (mod 4).

Exercise 4.4.23. (a) Make a table of all primes ≤ 100. Next to each prime p write its
expression as the sum of two squares if p can be so represented; otherwise write “NONE”
next to p.

(b) Discover and state a very simple pattern as to which primes can and which primes cannot
be represented as the sum of two squares. Your statement should go like this: “It seems
from the table that a prime p can be represented as the sum of two squares if and only
if either p = 2 or ***” where “***” stands for a very simple rule (less than half a line).

(c) Give a simple proof that the primes you believe cannot be represented as a sum of two
squares indeed cannot. Hint. Use the previous exercise.

Exercise 4.4.24. Prove: if p is a prime number and p ≥ 5 then p ≡ ±1 (mod 6). Hint. There
are only 6 cases to consider. (What are they?)
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4.5 Quadratic Residues

Definition 4.5.1. a is a quadratic residue mod p if (p - a) and (∃b)(a ≡ b2 mod p).

Exercise 4.5.2. Prove: a is a quadratic residue mod p⇐⇒ a(p−1)/2 ≡ 1 (mod p).

Definition 4.5.3. a is a quadratic non-residue mod p if (∀b)(a 6≡ b2 mod p).

Exercise 4.5.4. Prove: a is a quadratic non-residue mod p⇐⇒ a(p−1)/2 ≡ −1 (mod p).

Definition 4.5.5 (Legendre Symbol).(
a

p

)
=


1 if a is a quadratic residue mod p
−1 if a is a quadratic non-residue mod p
0 if p | a

Let Fq be a finite field of odd prime power order q.

Definition 4.5.6. a ∈ Fq is a quadratic residue if a 6= 0 and (∃b)(a = b2).

Exercise 4.5.7. Prove: a is a quadratic residue in Fq ⇐⇒ a(q−1)/2 = 1.

Definition 4.5.8. a ∈ Fq is a quadratic non-residue if (∀b)(a 6= b2).

Exercise 4.5.9. Prove: a is a quadratic non-residue in Fq ⇐⇒ a(q−1)/2 = −1.

Exercise 4.5.10. Prove: in Fq, the number of quadratic residues equals the number of
quadratic non-residues; so there are (q − 1)/2 of each. (As before, q is an odd prime power.)

Definition 4.5.11. Let q be an odd prime power. We define the quadratic character
χ : Fq → {0, 1,−1} ⊂ C by

χ(a) =


1 if a is a quadratic residue

−1 if a is a non-residue

0 if a = 0

Note that if q = p (i.e. prime and not prime power) then χ(a) =

(
a

p

)
.

Exercise 4.5.12. Prove χ is multiplicative.

Exercise 4.5.13. The Legendre Symbol is completely multiplicative in the numerator.

Exercise 4.5.14. Prove that −1 is a quadratic residue in Fq if and only if q ≡ 1 (mod 4).
Hint. Exercise 4.5.7.

Exercise 4.5.15. Prove that
∑

a∈Fq
χ(a(a− 1)) = −1. Hint. Divide by a2.

Exercise 4.5.16. Prove that each of the four pairs (±1,±1) occur a roughly equal number of
times (≈ q/4) as (χ(a), χ(a− 1)) (a ∈ Fq). “Roughly equal” means the difference is bounded
by a small constant. Moral: for a random element a ∈ Fq, the values of χ(a) and χ(a− 1) are
nearly independent.

Exercise 4.5.17. Let f(x) = ax2 + bx + c be a quadratic polynomial over Fq (a, b, c ∈ Fq,
a 6= 0). Prove: if b2 − 4ac 6= 0 then |

∑
a∈Fq

χ(f(a))| ≤ 2. What happens if b2 − 4ac = 0?
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4.6 Lattices and diophantine approximation

Definition 4.6.1. An n-dimensional lattice (grid) is the set L of all integer linear combina-
tions

∑n
i=1 aibi of a basis {b1, . . . ,bn} of Rn (ai ∈ Z). The set of real linear combinations

with 0 ≤ ai ≤ 1 (ai ∈ R) form a fundamental parallelepiped.

Exercise 4.6.2. The volume of the fundamental parallelepiped of the lattice L is det(L) :=
|det(b1, . . . ,bn)|.

Exercise∗ 4.6.3. (Minkowski’s Theorem) Let L be an n-dimensional lattice and let V be
the volume of its fundamental parallelepiped. Let A ⊂ Rn be an n-dimensional convex set,
symmetrical about the origin (i. e., −A = A), with volume greater than 2nV . Then A∩L 6= {0},
i. e., A contains a lattice point other than the origin.
Hint. Linear transformations don’t change the proportion of volumes, and preserve convexity
and central symmetry. So WLOG L = Zn with {bi} the standard basis. The fundamental
parallelepiped is now the unit cube C. Consider the lattice 2L = (2Z)n. Then the quotient
space Rn/(2Z)n can be identified with the cube 2C which has volume 2n. Since A has volume
> 2n, there exist two points u, v ∈ A which are mapped to the same point in 2C, i. e., all
coordinates of u− v are even integers. Show that (u− v)/2 ∈ A ∩ L.

Exercise 4.6.4. Finding “short” vectors in a lattice is of particular importance. Prove the
following corollary to Minkowski’s Theorem:

(∃v ∈ L)
(

0 < ‖v‖∞ ≤ (detL)1/n
)
.

Definition 4.6.5. Let α1, . . . , αn ∈ R. A simultaneous ε-approximation of the αi is a sequence
of fractions pi/q with a common denominator q > 0 such that (∀i)(|qαi − pi| ≤ ε).

Exercise+ 4.6.6. (Dirichlet) (∀α1, . . . , αn ∈ R)(∀ε > 0)(∃ an ε-approximation with the
denominator satisfying 0 < q ≤ ε−n).
Hint. Apply the preceding exercise to the (n+ 1)-dimensional lattice L with basis e1, . . . , en, f
where f =

∑n
i=1 αiei + εn+1en+1 and {e1, . . . , en+1} is the standard basis.

The following remarkable result was first stated by Albert Girard (1540–1632) who may
have found it on an empirical basis; there is no evidence that he could prove it. The first person
to claim to have a proof was Pierre de Fermat (1601–1665). Fermat, however, never published
anything mathematical and, while he claimed many discoveries in his correspondence or on
the margins of his copy of Diophantus’ Arithmetic (those marginal notes were later found and
published by his son Samuel), there is no trace of proofs, except for one, in his entire extensive
surviving correspondence. A century later Leonhard Euler (1707–1783) took great pride in
providing proofs of Fermat’s theorems, including this one. We give a more recent, devilishly
clever proof, based on Minkowski’s Theorem and found by Paul Turán (1910–1976).

Exercise∗ 4.6.7 (Girard-Fermat-Euler). Prove: a prime p can be written as the sum of two
squares if and only if p = 2 or p ≡ 1 (mod 4).
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Hint. Necessity was established in Exercise 4.4.23. For sufficiency, assume p ≡ 1 (mod 4).

Then

(
−1

p

)
= 1 by Exercise 4.5.14 and therefore (∃a)(p | a2 + 1). Consider the lattice (plane

grid) L ⊂ Z2 consisting of all integral linear combinations of the vectors (a, 1) and (p, 0).
Observe that if (x, y) ∈ L then p |x2 +y2. Moreover, the area of the fundamental parallelogram
of the lattice is p. Apply Minkowski’s Theorem to this lattice to obtain a nonzero lattice point
(x, y) satisfying x2 + y2 < 2p.
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Chapter 5

Counting

5.1 Binomial coefficients

Exercise 5.1.1. For n ≥ 5, let Sn =
(

5
5

)
+
(

6
5

)
+ · · ·+

(
n
5

)
. Prove that

Sn =

(
n+ 1

6

)
.

Hint: mathematical induction. Make your proof very simple. You should not need any calcu-
lations, just use what we learned in class about binomial coefficients.

Exercise 5.1.2. Prove: if p is a prime number and 1 ≤ k ≤ p− 1 then p divides the binomial

coefficient

(
p

k

)
.

Exercise 5.1.3. Give closed form expressions (no product symbols or dot-dot-dots) of the
binomial coefficients below, using “old” binomial coefficients:

(a)

(
−1

k

)

(b)

(
−1/2

k

)
where k is a positive integer.

Exercise 5.1.4. Let On denote the number of odd subsets of an n-set and En the number of
even subsets of an n-set. For n ≥ 1, prove that On = En. Give

(a) a bijective (combinatorial) proof;

37
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(b) an algebraic proof. (Use the Binomial Theorem for the algebraic proof.)

Exercise 5.1.5. Give a closed form expression for(
n

0

)
+

(
n

2

)
+

(
n

4

)
+

(
n

6

)
+ . . . .

Exercise+ 5.1.6. Give a closed form expression for(
n

0

)
+

(
n

4

)
+

(
n

8

)
+

(
n

12

)
+ . . . .

Hint. Apply the Binomial Theorem to (1 + x)n; substitute 1, i,−1,−i for x (where i =
√
−1).

Exercise 5.1.7. Prove:
(

2n
n

)
< 4n. Do NOT use Stirling’s formula. Your proof should be just

one line.

Exercise 5.1.8. Let n ≥ 7. Count those strings of length n over the alphabet {A,B} which
contain at least n− 3 consecutive A’s.
Hint. Inclusion–exclusion.

Exercise 5.1.9. Prove: if 1 ≤ k ≤ n then(
n

k

)
≥
(n
k

)k
.

Your proof should be no more than a couple of lines.

Exercise 5.1.10. Prove: if 1 ≤ k ≤ n then(
n

k

)
<
(en

k

)k
.

Hint. Use the Binomial Theorem and the fact that (∀x 6= 0)(ex > 1 + x). (Note that Stirling’s
formula is of no use; it would only prove things for “large enough n.”)

Exercise+ 5.1.11. Prove: if 1 ≤ k ≤ n then

k∑
j=0

(
n

j

)
<
(en

k

)k
.

Hint. As in the previous exercise.

Exercise 5.1.12. (a) Evaluate the sum Sn =

∞∑
i=0

(
n

i

)
2i. Your answer should be a very

simple closed-form expression (no summation symbols or dot-dot-dots).

(b) Let bn be the largest term in the sum Sn. Prove: bn = Θ(Sn/
√
n).
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Exercise 5.1.13. An airline wishes to operate m routes between a given set of n cities. Count
the number of possibilities. (A “route” is a pair of cities between which the airline will operate
a direct flight. The cities are given, the routes need to be selected. There are no “repeated
routes.”) Your answer should be a very simple formula.

Exercise 5.1.14. Evaluate the following sums. In each case, your answer should be a simple
closed-form expression.

1.
n∑
i=1

4n−i

2.

n∑
i=1

(
n

i

)
4n−i

Exercise 5.1.15. Out of n candidates, an association elects a president, two vice presidents,
and a treasurer. Count the number of possible outcomes of the election. (Give a simple
expression. State, do not prove.)

Exercise 5.1.16. State your answers as very simple expressions.

1. Count the strings of length 3 (3-letter “words”) over an alphabet of n characters.

2. What is the answer to the previous question if no repeated letters are allowed?

Exercise 5.1.17. Evaluate the expression

(
0.4

2

)
. Give your answer as a decimal.

Exercise 5.1.18. Pascal’s Identity states that

(
n+ 1

k + 1

)
=

(
n

k

)
+

(
n

k + 1

)
. Give a combina-

torial proof.

Exercise 5.1.19. We have 5 red beads and 11 blue beads. Count the necklaces that can be
made out of these 16 beads. A “necklace” is an arrangement of the beads in a circle. The
necklace obtained by rotating the circle does not count as a different necklace. Give a simple
expression; do not evaluate.

Exercise 5.1.20. Use the idea of the preceding problem to prove that if a and b are relatively
prime then a+ b |

(
a+b
a

)
.

Exercise 5.1.21. Let a1, . . . , ak be positive integers. Prove: the least common multiple L =
l.c.m. (a1, . . . , ak) can be expressed through g.c.d’s of subsets of the ai as follows:

L =
∏
I⊆[k]

(gcd(ai : i ∈ I))(−1)|I|+1

.

Before attempting to solve this problem for all k, write down the expressions you get for k = 2
and k = 3 (without the product sign).
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5.2 Recurrences, generating functions

Exercise 5.2.1. Let Fn denote the n-th Fibonacci number. (F0 = 0, F1 = 1, Fn = Fn−1 +
Fn−2.) Prove: F0 + F1 + · · ·+ Fn = Fn+2 − 1.

Exercise 5.2.2. Let a0 = 3, a1 = 1, and an = an−1 +an−2 (n ≥ 2) (Fibonacci recurrence with
different initial values).

(a) Give a closed-form expression for the generating function f(x) =
∑∞

n=0 anx
n.

(b) Using the generating function, find a closed-form expression for an. Show all your work.

Exercise 5.2.3. Let b0 = 1 and bn = 3bn−1 − 1 (n ≥ 1).

(a) (4 points) Give a closed-form expression for the generating function g(x) =
∑∞

n=0 bnx
n.

(b) (4 points) Using the generating function, find a closed-form expression for bn. Show all
your work.

Exercise 5.2.4. What is the generating function of each of the following sequences? Give a
closed-form expression. Prove your answers.

(a) an = n.

(b) bn =
(
n
2

)
.

(c) cn = n2.

(d) dn = 1/n!.

(e) en = 1/n.

Exercise 5.2.5. If the generating function of the sequence {an} is f(x), what is the generating
function of the sequence bn = nan? Your answer should be a very simple expression involving
f(x) (less than half a line).

Exercise 5.2.6. Let m0 = 1, m1 = 2, and mn = mn−1 +mn−2 + 1. Express mn through the
Fibonacci numbers. Your expression should be very simple, less than half a line. Do not use
generating functions. Hint. Tabulate the sequence. Compare with the Fibonacci numbers.
Observe the pattern, prove by induction. Watch the subscripts.

Exercise 5.2.7. The sequence {an} satisfies the recurrence an = 5an−1− 6an−2. Suppose the
limit L = limn→∞ an/an−1 exists. Determine L.

Exercise 5.2.8. Let the sequence {bn} be defined by the recurrence bn = (bn−1 + 1)/n with
initial value b0 = 0. Let f(x) =

∑∞
n=0 bnx

n be the generating function of the sequence. Write
a differential equation for f : express f ′(x) in terms of f(x) and x. Your expression should be
very simple and closed-form.
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Exercise 5.2.9. Let rn be the number of strings of length n over the alphabet {A,B} without
consecutive A’s (so r0 = 1, r1 = 2, r2 = 3). Prove: rn ∼ cγn where γ = (1 +

√
5)/2 is the

golden ratio. Determine the constant c. Prove your answers.
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Chapter 6

Graphs and Digraphs

6.1 Graph Theory Terminology

WARNING: There are significant variations in graph theoretic terminology in the lit-
erature. Bear this in mind when using web-sources; please always consult the definitions in
this chapter when interpreting a problem or writing a solution. In particular, our terminology
significantly differs from that of Rosen’s text. We indicate the main differences below. All
concepts below refer to a (“simple”) graph G = (V,E).

Exercises. The unmarked exercises are routine, the exercises marked with a “plus” (+) are
creative, those marked with an asterisk (*) are challenging; those marked with two asterisks
are gems of mathematical ingenuity.

Terminology 6.1.1.

• A graph (in Rosen’s text: simple graph) is a pair G = (V,E) where V is the set of
vertices and E is the set of edges. An edge is an unordered pair of distinct vertices.
We also write V (G) for the set of vertices and E(G) for the set of edges of the graph G.
Two vertices joined by an edge are said to be adjacent. (So a vertex is never adjacent
to itself.) A vertex u and an edge {v, w} are incident if u ∈ {v, w}. Two vertices are
neighbors if they are adjacent (so they are the two vertices incident with an edge). The
degree deg(v) of vertex v is the number of its neighbors. A graph is regular of degree
r if all vertices have degree r.

• The complement G of the graph G is the graph G = (V,E) where E is the complement

of E with respect to the set

(
V

2

)
, the set of all unordered pairs of vertices. So G has

the same set of vertices as G; two distinct vertices are adjacent in G if and only if they
are not adjacent in G.
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• G = (V,E) is a bipartite graph is there is a partition of V into two (disjoint) sets, V1

and V2 (so V = V1∪̇V2) such that there are no edges within either set Vi (so every edge
joins a vertex in V1 to a vertex in V2).

Notation 6.1.2. The adjacency relation is denoted ∼: we write u ∼ v to indicate that u
and v are adjacent, and we write u ∼G v if the graph G needs to be specified.

Exercise 6.1.3. The adjacency relation is symmetric and irreflexive.

Definition 6.1.4 (Isomorphism). An isomorphism between the graphs G = (V,E) and H =
(W,F ) is a bijection f : V → W from V to W which preserves adjacency, i. e., (∀x, y ∈
V )(x ∼G y ⇔ f(x) ∼H f(y) The graphs G and H are isomorphic if there exists a G → H
isomorphism. We denote this circumastance by G ∼= H.

Exercise 6.1.5. Isomorphism of graphs (understood as the relation of being isomorphic) is
an equivalence relation on the class of graphs.

Exercise 6.1.6. (a) Draw two non-isomorphic regular graphs with the same number of vertices
and the same degree. Make the graphs as small as possible: smallest number of vertices, and
given that number of vertices, the smallest number of edges. Prove that your graphs are not
isomorphic. Do not prove that they are smallest. (b) Same as part (a) with the additional
requirement that both the graphs and their complements be connected.

Notation 6.1.7. Unless expressly stated otherwise, the number of vertices will be denoted by
n, and the number of edges by m. If we wish to emphasize the graph G to which the notation
refers, we write nG and mG for these quantities.

Exercise 6.1.8 (Handshake Theorem).
∑

v∈V deg(v) = 2m.

Exercise 6.1.9. Observe: 0 ≤ m ≤
(
n
2

)
.

Exercise 6.1.10. Observe: mG +mG =
(
n
2

)
.

Exercise 6.1.11. A graph is self-complementary if it is isomorphic to its complement. (a)
Construct a self-complementary graph with 4 vertices. (b) Construct a self-complementary
graph with 5 vertices. (c) Prove: if a graph with n vertices is self-complementary then n ≡ 0
or 1 (mod 4).

Exercise 6.1.12. (a) Let bn = 2(n2) and an = bn/n! . Prove: log2 an ∼ log2 bn.

(b) Let G(n) denote the number of non-isomorphic graphs on n vertices.
Prove: an ≤ G(n) ≤ bn.

(c)∗ Prove: G(n) ∼ an. Hint. Reduce this question to the following: The expected number
of automorphisms of a random graph in 1 + o(1). (Automorphism = self-isomorphism,
i. e., an adjacency-preserving permutation of the set of vertices.)

Terminology 6.1.13 (Paths, cycles, cliques, bipartite cliques, hypercubes).
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Figure 6.1: P5, the path of length 4.

Figure 6.2: C5, the cycle of length 5.

• The path Pn of length n − 1 (n ≥ 1) edges has n vertices, V (Pn) = {v1, . . . , vn}, and
n− 1 edges, E(Pn) = {{vi−1, vi} | 2 ≤ i ≤ n}. We say that this path connects v1 to vn.
See Figure 6.1.

• The cycle Cn of length n (n ≥ 3) has n vertices, V (Cn) = {v1, . . . , vn}, and n edges,
E(Cn) = {{vi−1, vi} | 2 ≤ i ≤ n} ∪ {{vn, v1}. The cycle C3 is called a triangle and Cn
is called an n-cycle. See Figure 6.2.

• In a complete graph, all pairs of vertices are adjacent. A complete graph is also called
a clique. The complete graph on n vertices (the “n-clique”) is denoted by Kn. It has(
n
2

)
edges. See Figure 6.3.

• The vertices of a complete bipartite graph are split into two subsets V = V1∪̇V2; and
E = {{x, y} : x ∈ V1, y ∈ V2} (each vertex in V1 is adjacent to every vertex in V2, and
there are no edges within either Vi). If k = |V1| and ` = |V2| then we obtain the graph
Kk,`. This graph has n = k + ` vertices and m = k` edges. A complete bipartite graph
is also called a bipartite clique. See Figure 6.4.

• The d-dimensional cube graph has n = 2d vertices, labeled by the 2d (0, 1)-sequences.
Two such sequences, (a1, . . . , ad) and (b1, . . . , bd) (ai, bi ∈ {0, 1}, are adjacent of they
differ in exactly one coordinate, i. e., if

∑d
i=1 |ai − bi| = 1.

Figure 6.3: The complete graph K5.
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Figure 6.4: The complete bipartite graph K3,3.

Exercise 6.1.14. Note that K1
∼= P1

∼= K1,0
∼= Q0, K2

∼= P2
∼= K1,1

∼= Q1, K3
∼= C3,

P3
∼= K2,1, C4

∼= K2,2
∼= Q2, Kn,0

∼= Kn.

Exercise 6.1.15. Prove: Qd is bipartite.

Terminology 6.1.16 (Subgraphs).

• The graph H = (W,F ) is a subgraph of G = (V,E) if W ⊆ V and F ⊆ E.
Notation: H ⊆ G.

• H = (W,F ) is a spanning subgraph of G if H ⊆ G and V = W .

• H is an induced subgraph of G if H ⊆ G and (∀x, y ∈ W )(x ∼H y ⇔ x ∼G y). (So
to obtain an induced subgraph, we may delete some vertices and the edges incident with
the deleted vertices but no more edges.) Notation: H = G[W ]. This notation expresses
the fact that the graph G and the set W ⊆ V determine H.

Exercise 6.1.17. Observe: (a) Every graph on n vertices is a spanning subgraph of Kn.
(b) Every bipartite graph is a spanning subgraph of a complete bipartite graph.

Exercise 6.1.18. (a) All induced subgraphs of a clique are cliques.
(b) All induced subgraphs of a bipartite clique are bipartite cliques.

Exercise 6.1.19. Let G be a graph with n vertices and m edges. Then G has 2n induced
subgraphs and 2m spanning subgraphs.

Exercise 6.1.20. Count those spanning subgraphs of Kn which have exactly m edges. Give
a simple closed-form expression in terms of binomial coefficients.

Exercise+ 6.1.21. Count the subgraphs of the path Pn. Your answer should be a very simple
expression in terms of a familiar sequence.

Exercise 6.1.22. (a) All paths are bipartite. (b) The cycle Cn is bipartite if and only if n is
even. (c) Consequently, a bipartite graph cannot contain an odd cycle.

Exercise+ 6.1.23. A graph is bipartite if and only if it contains no odd cycles.

Exercise 6.1.24. Let G be a bipartite graph. Prove: m ≤ bn2/4c.

Definition 6.1.25. A graph G is triangle-free if it contains no triangles, i. e., K3 6⊆ G.
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Figure 6.5: The trees on 6 vertices (complete list).

Exercise+ 6.1.26. (Willem Mantel, 1907) Prove: If G is a triangle-free graph (K3 6⊆ G)
then m ≤ bn2/4c. Show that this bound is tight for every n. Hint. State a lemma about the
sum the degrees of a pair of adjacent vertices. Then proceed by induction in increments of 2.

Terminology 6.1.27 (Walks, paths, connected componets, cycles, trees). This is the area
where our terminology most differs from Rosen’s.

• walk (in Rosen: path) of length k: a sequence of k + 1 vertices v0, . . . , vk such that vi−1

and vi are adjacent for all i.

• trail (in Rosen: simple path): a walk without repeated edges.

• path in a graph (this all-important concept has no name in Rosen’s text): a subgraph
that is a path. (Note that the terms “path” and even “simple path” in Rosen’s text allow
vertices to be repeated.)

• closed walk (in Rosen: circuit or cycle) of length k: a walk v0, . . . , vk where vk = v0.

• cycle in a graph (this all-important concept has no name in Rosen’s text): a subgraph
that is a cycle.

• vertex t is accessible from vertex s if there exists an s . . . t walk.

• a graph G is connected if every vertex is accessible from each vertex.

• a tree is a connected graph without cycles. See Figure 6.5.

• H is a spanning tree of G if H is a spanning subgraph of G that is a tree.
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Exercise 6.1.28. The accessibility relation is an equivalence relation on V . The equivalence
classes are called the connected components of the graph.

Exercise 6.1.29. If the vertex t is accessible from the vertex s then there is a path connecting
s to t. Consequently, two vertices are in the same connected component if and only if there is
a path connecting them.

Exercise 6.1.30. Prove: if a vertex v has odd degree in the graph G then there exists another
vertex w, also of odd degree, in the same connected component.

Exercise 6.1.31. Prove that every tree with n ≥ 2 vertices has at least two vertices of degree
1. Hint. Prove that the endpoints of a longest path in a tree have degree 1.

Exercise 6.1.32. Prove that every tree has n− 1 edges. Hint. Induction. Use the preceding
exercise.

Exercise 6.1.33. Prove: if G is a connected graph then G has at least n−1 edges. Moreover,
G is a tree if and only if G is connected and has exactly n− 1 edges.

Exercise 6.1.34. Draw all non-isomomrphic trees with 7 vertices. Avoid three kinds of mis-
takes: (a) missing a tree (b) duplicating a tree (drawing two isomorphic trees) (c) drawing a
graph that does not belong (it is not a 7-vertex tree). Clearly state the number of trees you
found. Hint. List the trees in some systematic fashion.

Exercise 6.1.35. Prove: in a tree, all longest paths have a common vertex.

Exercise+ 6.1.36. Let d1, . . . , dn be positive integers such that
∑n

i=1 di = 2n − 2. Consider
those spanning trees of Kn which have degree di at vertex i. Count these spanning trees; show
that their number is

(n− 2)!∏n
i=1(di − 1)!

.

Exercise∗ 6.1.37. (Cayley) The number of spanning trees of Kn is nn−2. Hint. This
amazingly simple formula is in fact a simple consequence of the preceding exercise. Use the
Multinomial Theorem.

Exercise 6.1.38. Let t(n) denote the number of non-isomorphic trees on n vertices. Use
Cayley’s formula to prove that t(n) > 2.7n for sufficiently large n (i. e., (∃n0)(∀n > n0)(t(n) >
2.7n)).

Exercise+ 6.1.39. Find a constant C such that t(n) ≤ Cn.

Exercise 6.1.40. Count the 4-cycles in the complete bipartite graph Km,n. (You need to count
those subgraphs which are isomorphic to C4.) (Comment. Check two small cases: K2,2

∼= C4

has exactly one 4-cycle, and K2,3 has three 4-cycles. Your answer should be a very simple
formula, consistent with these initial values.)
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Exercise+ 6.1.41. (Kővári–Sós–Turán) Prove: if G has no 4-cycles (C4 6⊆ G) then m =
O(n3/2). Show that this bound is tight (apart from the constant implied by the big-Oh nota-
tion). Hint. Count the paths of length 2 in G in two ways.

Terminology 6.1.42 (Cliques, distance, diameter, chromatic number).

• A k-clique in G is a subset W ⊆ V of size k such that the induced subgraph G[W ] is a
clique (i. e., the vertices in W are pairwise adjacent). The clique number of G, denoted
ω(G), is the size of the largest clique in G.

• An independent set or anti-clique of size k in G is a set of k pairwise non-adjacent
vertices. In other words, an independent set in G is a clique in G. The independence
number of G, denoted α(G), is the size of the largest independent set in G. In other
words, α(G) = ω(G).

• The distance dist(x, y) between two vertices x, y ∈ V is the length of a shortest path
between them. If there is no path between x and y then their distance is said to be
infinite: dist(x, y) =∞.

• The diameter of a graph is the maximum distance between all pairs of vertices. So if a
graph has diameter d then (∀x, y ∈ V )(dist(x, y) ≤ d) and (∃x, y ∈ V )(dist(x, y) = d).

• The girth of a graph is the length of its shortest cycle. If a graph has no cycles then its
girth is said to be infinite.

• A legal k-coloring of a graph is a function c : V → [k] = {1, . . . , k} such that adjacent
vertices receive different colors, i. e., u ∼ v ⇒ c(u) 6= c(v). A graph is k-colorable
if there exists a legal k-coloring. The chromatic number of G, denoted χ(G), is the
smallest k such that G is k-colorable.

• A Hamilton cycle is a cycle of length n, i. e., a cycle that passes through all vertices.
G is Hamiltonian if it has a Hamilton cycle.

• A Hamilton path is a path of length n−1, i. e., a path that passes through all vertices.

Exercise 6.1.43 (Girth). Verify: for n = 3, the clique Kn has girth 3; the icosahedron graph
has girth 3; the bipartite clique Kk,` has girth 4 if k, ` ≥ 2; the k × ` grid (Figure 6.6) has
girth 4, assuming k, ` ≥ 2; the d-dimensional cube Qd has girth 4 (d ≥ 2); the Petersen graph
(Figure 6.8) and the dodecahedron graph have girth 5; the incidence graphs of finite projective
planes have girth 6; trees have infinite girth.

Exercise∗ 6.1.44. (a) For every g ≥ 3 find a trivalent graph (a regular graph of degree 3) of
girth ≥ g. (b) For every g ≥ 3 and d ≥ 3 find a d-regular graph of girth ≥ g.

Exercise 6.1.45. Verify: the diameter (a) of Pn is n − 1; (b) of Cn is bn/2c; (c) of Kn is 1;
(d) of Kk,` is 2 (assuming k` ≥ 2); (e) of Qd is d.
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s s s s s s s s s s
s s s s s s s s s s
s s s s s s s s s s
s s s s s s s s s s

u

u

Figure 6.6: The 4× 10 grid, with a shortest path between opposite corners highlighted.

Exercise 6.1.46. (a) Disprove the following statement: “the diameter of a graph is the length
of its longest path.” (b) For every n, find the maximum ratio between the length of the longest
path and the diameter. (c) Prove that the statement is true for trees: the diameter is the
length of the longest path.

Exercise 6.1.47. The k × ` grid has k` vertices (Figure 6.6). Count its edges.

Exercise 6.1.48. Verify that the diameter of the k × ` grid is k + `− 2.

Exercise 6.1.49. Let u and v be two opposite corners of the k × ` grid. Count the shortest
paths between u and v. Your answer should be a very simple expression in terms of binomial
coefficients.

Exercise 6.1.50. A graph is bipartite if and only if it is 2-colorable.

Exercise 6.1.51. We color the vertices of a bipartite graph G red and blue (legal coloring).
Assume G has 30 red vertices (all other vertices are blue). Suppose each red vertex has degree
6 and each blue vertex has degree 5. What is the number of blue vertices? Prove your answer.

Exercise 6.1.52. Let us pick 3 distinct vertices at random in a bipartite graph G with n
vertices. Prove that the probability that we picked an independent set is ≥ 1/4 − o(1) (as
n→∞).

Exercise 6.1.53. For every n ≥ 1, name a graph with n vertices, at least (n2 − 1)/4 edges,
and no cycles of length 5.

Exercise 6.1.54. Prove: if every vertex of a graph has degree ≤ d then the graph is d + 1-
colorable (i. e., χ(G) ≤ d+ 1).

Exercise 6.1.55. For every n, construct a 2-colorable graph with n vertices such that every
vertex has degree ≥ (n− 1)/2. (Moral: low degree is a sufficient but not a necessary condition
of low chromatic number.)

Exercise 6.1.56. (Chromatic number vs. independence number) Prove: α(G)χ(G) ≥ n.

Exercise 6.1.57. χ(G) ≥ ω(G). So graphs that contain large cliques have large chromatic
number.
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Figure 6.7: Graph of knight moves on a 4× 4 chessboard

But are large cliques the only reason for large chromatic number?

Exercise 6.1.58. (a) Find the smallest graph G such that χ(G) 6= ω(G). (b) Find the
smallest graph G such that χ(G) ≥ 4 and ω(G) = 3.

Exercise+ 6.1.59. Construct a graph G on 11 vertices such that G is triangle-free (K3 6⊆ G)
and G is NOT 3-colorable. Prove that your graph has the stated properties. Hint. Draw your
graph so that it has a rotational symmetry of order 5 (rotation by 2π/5 does not change the
picture).

Exercise∗ 6.1.60. Prove: (∀k)(∃G)(χ(G) ≥ k and G is triangle-free.)

The following celebrated result is one of the early triumphs of the “Probabilistic Method.”
You can find the elegant proof in the book by Alon and Spencer.

Theorem 6.1.61. (Erdős, 1959) Prove: (∀k, g)(∃G)(χ(G) ≥ k and G has girth ≥ g.)

Exercise 6.1.62. Count the Hamilton cycles in the complete graph Kn.

Exercise 6.1.63. Count the Hamilton cycles in the complete bipartite graph Kr,s. (Make
sure you count each cycle only once – note that K2,2 has exactly one Hamilton cycle.)

Exercise 6.1.64. Prove that all grid graphs have a Hamilton path.

Exercise 6.1.65. Prove: the k × ` grid is Hamiltonian if and only if k, ` ≥ 2 and k` is even.
(Your proofs should be very short, only one line for non-Hamiltonicity if k` is odd.)

Exercise 6.1.66. Prove that the dodecahedron graph is Hamiltonian. (Lord Hamilton enter-
tained his guests with this puzzle; hence the name.)

Exercise 6.1.67. (a) Prove: the graph of the knight’s moves on a 4 × 4 chessboard (Fig-
ure 6.7) has no Hamilton path. Find an “Ah-ha!” proof: just “one line” after the
following Lemma.

(b) Lemma. If a graph has a Hamilton path then after deleting k vertices, the remaining
graph has ≤ k + 1 connected components.
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Exercise 6.1.68. We have a standard (8× 8) chessboard and a set of 32 dominoes such that
each domino can cover two neighboring cells of the chessboard. So the chessboard can be
covered with the dominoes. Prove: if we remove the top left and the bottom right corner cells
of the chessboard, the remaining 62 cells cannot be covered by 31 dominoes. Find an “Ah-ha!”
proof (elegant, no case distinctions.)

Exercise 6.1.69. A mouse finds a 3× 3× 3 chunk of cheese, cut into 27 blocks (cubes), and
wishes to eat one block per day, always moving from a block to an adjacent block (a block
that touches the previous block along a face). Moreover, the mouse wants to leave the center
cube last. Prove that this is impossible. Find two “Ah-ha!” proofs; one along the lines of the
solution of Exercise 6.1.67, the other inspired by the solution of Exercise 6.1.68.

Exercise 6.1.70. Prove that the Petersen graph (Figure 6.8) is not Hamiltonian; its longest
cycle has 9 vertices. (No “Ah-ha!” proof of this statement is known.)

Exercise 6.1.71. Prove: if G is regular of degree r and G has girth ≥ 5 then n ≥ r2 + 1. (n
is the number of vertices.) Show that n = r2 + 1 is possible for r = 1, 2, 3.

Exercise 6.1.72. (a) Prove: if a graph G with n vertices is regular of degree r and has
diameter 2 then n ≤ r2 + 1.

(b) Prove that if G is as in part (a) and n = r2 + 1 then G has girth 5.

(c) Show that there exists a graph G satisfying the conditions of part (a) and the equation
n = r2 + 1 if r = 2 or r = 3 (what is the name of your graph?). Remark. n = r2 + 1
is possible also if r = 7 (the “Hoffman–Singleton graph”). It is known (Hoffman–
Singleton, 1960) that the only values of r for which n = r2 +1 is conceivable are 2, 3, 7,
and 57. The proof is one of the gems of the applications of linear algebra (the Spectral
Theorem) to graph theory. The question whether r = 57 can actually occur remains
open.

Exercise 6.1.73. An automorphism of the graph G is a G→ G isomorphism. (a) Count the
automorphisms of Kn, Cn, Pn, Qn. (b)+ Show that the dodecahedron has 120 automorphisms.
(c)+ Show that the Petersen graph has 120 automorphisms.

6.2 Planarity

A plane graph is a graph drawn in the plane so that the lines (curves) representing the edges do
not intersect (except at their end vertices). A graph is planar if it admits a plane drawing; such
plane drawings are the plane representations of the graph. Of course a planar graph may also
have drawings that are not plane graphs (e. g., K4 is a planar graph - a plane representation
is a regular triangle with its center, with their conecting straight line segments; a drawing of
K4 which is not a plane graph is the square with all sides and diagonals–see Figure 6.10).
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Figure 6.8: The Petersen graph.

Figure 6.9: Is this graph isomorphic to Petersen’s?

Figure 6.10: K4 drawn two different ways. Only one is a plane graph.
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The regions of a plane graph are the regions into which the drawing divides the plane;
so two points of the plane belong to the same region if they can be connected so that the
connecting line does not intersect the drawing. Note that the infinite “outer region” counts as
a region.

WARNING: It is incorrect to speak of regions of a planar graph; only a plane graph has regions.
A planar graph may have many inequivalent plane representations; the sizes of the regions may
depend on the representation.

Exercise 6.2.1. Prove: every plane representation of a tree has just one region. Hint. Induc-
tion (use the fact that the tree has a vertex of degree 1).

We need the following, highly nontrivial result.

Theorem 6.2.2. (Jordan’s Curve Theorem) Every plane representation of a cycle has two
regions.

Exercise 6.2.3. (Euler’s formula) For a connected plane graph, let n, m, r denote the set
of vertices, edges, and regions, respectively. Then n −m + r = 2. Note that this statement
includes Jordan’s Curve Theorem and the exercise before that. Hint. Induction on m. Unless
the graph is a tree, delete an edge contained in a cycle; verify that this reduces the number of
regions by 1. Trees are the base case.

Exercise 6.2.4. Verify that the Platonic solids satisfy Euler’s formula.

Exercise 6.2.5. Let rk denote the number of k-sided regions of a plane graph. (In a plane
graph, an edge has two sides, and it is possible that both sides are incident with the same
region. In such a case this edge contributes 2 to the number of sides of the region. See
Figure 6.11.) Prove:

∑n
k=3 rk = 2m.

Exercise 6.2.6. Prove: in a plane graph, 3r ≤ 2m.

Exercise 6.2.7. Prove: in a plane graph without triangles, 2r ≤ m.

Exercise 6.2.8. Prove: a planar graph with n ≥ 3 vertices has m ≤ 3n− 6 edges. Hint. Use
Euler’s formula and the inequality 3r ≤ 2m.

Exercise 6.2.9. Prove: a triangle-free planar graph with n ≥ 3 vertices has m ≤ 2n−4 edges.
Hint. Use Euler’s formula and the inequality 2r ≤ m.

Exercise 6.2.10. Prove: the graphs K5 and K3,3 are not planar. Hint. Use the preceding
two exercises.

Definition 6.2.11. A subdivision of a graph is obtained by subdividing some of its edges
by new vertices. For instance, the cycle Cn is a subdivision of the triangle C3; the path Pn
is a subdivision of an edge. Two graphs are homeomorphic if both of them is a subdivision
of the same graph. For instance, all cycles (including C3) are homeomorphic. Homeomorphic
planar graphs have identical plane drawings.
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Figure 6.11: The numbers indicate the number of sides of each region of this plane graph.

Kuratowski’s celebrated theorem gives a good characterization of planarity.

Theorem 6.2.12. A graph is planar if and only if it does not contain a subgraph homeomorphic
to K3,3 or K5.

The two minimal non-planar graphs, K3,3 and K5, are referred to as the Kuratowski graphs.

Exercise 6.2.13. Draw a BIPARTITE graph G which is NOT planar and does NOT contain
a subdivision of K3,3. Make a clean drawing; your graph should have no more than 20 edges.
Prove that your graph has all the required properties.

Exercise 6.2.14. Prove: (a) If a connected graph G has n vertices and n + 2 edges then G
is planar. (b) Show that for every n ≥ 6, statement (a) becomes false if we replace n + 2 by
n+ 3. (You must construct an infinite family of counterexamples, one graph for each n ≥ 6.)

Exercise 6.2.15. Prove that every planar graph has a vertex of degree ≤ 5. Hint. m ≤ 3n−6.

Exercise 6.2.16. Prove that every planar graph is 6-colorable. Hint. Induction, using the
preceding exercise.

The famous 4-Color Theorem of Appel and Haken asserts that every planar graph is 4-
colorable. The proof considers hundreds of cases; no “elegant” proof is known.

Exercise 6.2.17. Prove: if a planar graph G has n vertices then α(G) ≥ n/6. (Recall that
α(G) denotes the maximum number of independent vertices in G.) Hint. Use the preceding
exercise.

Prove that every triangle-free planar graph has a vertex of degree ≤ 3. Hint. m ≤ 2n− 4.

Exercise 6.2.18. Prove that every triangle-free planar graph is 4-colorable.

Copyright c© 2003, 2020 by László Babai. All rights reserved.
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6.3 Ramsey Theory

The Erdős–Rado arrow symbol n → (k, `) denotes the statement that every graph on n
vertices either has a clique of size ≥ k or an independent set of size ≥ `. In other words, if we
color the edges of Kn red and blue, there will either be an all-red Kk or an all-blue K`.

Exercise 6.3.1. Prove: (a) 6→ (3, 3); (b) 5 6→ (3, 3) (c) n→ (n, 2).

Exercise 6.3.2. (Erdős–Szekeres, 1933)(
r + s

r

)
→ (r + 1, s+ 1).

Hint. Induction on r + s.

Exercise 6.3.3. The Erdős–Szekeres theorem tells us that 10→ (4, 3). Strengthen this: prove
9→ (4, 3).

Exercise 6.3.4. Prove: n→ (k, k) where k = dlog2 n/2e.

Exercise 6.3.5. Define and prove: 17→ (3, 3, 3).
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6.4 Digraph Terminology

Definition 6.4.1. A directed graph (digraph, for short), is a pair G = (V,E), where V is
the set of “vertices” and E is a set of ordered pairs of vertices called “edges:” E ⊆ V × V.

Exercise 6.4.2. If G has n vertices and m edges then m ≤ n2.

Definition 6.4.3 (Adjacency). We say that u is adjacent to v, denoted u→ v, if (u, v) ∈ E.
Self-adjacency may occur; an edge (u, u) ∈ E is called a loop.

Definition 6.4.4 (Representation of graphs as digraphs). “Graphs,” also referred to as undi-
rected graphs, can be represented as digraphs by introducing a pair of directed edges, (u, v)
and (v, u), for every undirected edge {u, v} of a graph. (So the digraph G corresponding to
the graph G0 has twice as many edges as G0.) Note that the digraph representing a graph will
have no loops (self-adjacencies) (v 6→ v) (in other words, the adjacency relation is irreflexive.

Definition 6.4.5. The converse of a digraph G = (V,E) is the digraph Gtr = (V,Etr) where
Etr consists of all edges of G reversed: Etr = {(v, u) : (u, v) ∈ E}. Note that G is undirected
if and only if G = Gtr. – The superscript “tr” refers to “transpose,” for a reason to be clarified
below.

Definition 6.4.6 (Orientations of a graph). Let G0 = (V,E0) be a graph. We say that
the digraph G = (V,E) is an orientation of G0 if (i) E0 = {{u, v} | (u, v) ∈ E}, and for each
edge {u, v} ∈ E0, exactly one of (u, v) and (v, u) belongs to E. In other words, we put an
arrow on every edge of G).

Exercise 6.4.7. If a graph has m edges then it has 2m orientations.

Definition 6.4.8. Tournaments are orientations of complete graphs.

So in a tournament G = (V,E), for every pair of vertices u, v ∈ V , exactly one of the following
holds: (a) u = v; (b) u→ v; (c) v → u. We can think of the vertices of a tournament as players
in a round-robin tournament without ties or rematches. Each player plays against every other
player exactly once; u→ v indicates that player u beat player v.

Exercise 6.4.9. Count the tournaments on a given set of n vertices. Is the similarity with
the number of graphs a coincidence?

Definition 6.4.10 (Neighbors). If u→ v in a digraph then we say that v is an out-neighbor
or successor of u; and u is an in-neighbor or predecessor of v.

Definition 6.4.11. Degrees. The out-degree deg+(v) of vertex v is the number of its
out-neighbors; the in-degree deg−(v) of v is the number of its in-neighbors.

Exercise 6.4.12 (Directed Handshake Theorem). Prove: if the digraph G = (V,E) has n
vertices and m edges then ∑

v∈V
deg+(v) =

∑
v∈V

deg−(v) = m.
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Exercise 6.4.13. Prove: if every vertex of a digraph G has the same out-degree d+ and the
same in-degree d− then d+ = d−.

Definition 6.4.14. An isomorphism between the digraphs G = (V,E) and H = (W,F ) is
a bijection f : V → W from V to W which preserves adjacency, i. e., (∀x, y ∈ V )(x →G y ⇔
f(x) →H f(y). Two digraphs are isomorphic if there exists an isomorphism between them.
This circumstance is denoted G ∼= H.

Terminology 6.4.15 (Directed walks, paths, cycles).

• (directed) walk (in Rosen’s text: path) of length k: a sequence of k + 1 vertices,
v0, . . . , vk, such that (∀i)(vi−1 → vi).

• (directed) trail (in Rosen: simple path): a walk without repeated edges.

• (directed) path: (this all-important concept has no name in Rosen): a walk without
repeated vertices. (Note that the terms “path” and even “simple path” in Rosen allow
vertices to be repeated.) ~Pk+1 denotes a directed path of length k (it has k+ 1 vertices)

• closed (directed) walk (in Rosen: circuit or cycle) of length k: a (directed) walk
v0, . . . , vk where vk = v0.

• (directed) cycle of length k or k-cycle: (this all-important concept has no name
in Rosen): a closed walk of length k with no repeated vertices except that v0 = vk.
Notation: ~Ck.

• a vertex v is accessible from a vertex u if there exists a u→ · · · → v directed path.

Exercise 6.4.16. (a) Prove: If there is a directed walk from vertex s to vertex t then there is
a directed path from s to t. (b) Prove that accessibility is a transitive relation.

Exercise 6.4.17. Prove that the relation “u and v are mutually accessible from each other”
is an equivalence relation on the set of vertices of the digraph G.

Terminology 6.4.18.

• The strong components of G are the equivalence classes of this relation, i. e., the
maximal subsets of the vertex set consisting of mutually accessible vertices. The vertex
set of G is the disjoint union of the strong components. In other words, each vertex
belongs to exactly one strong component. The vertices u and v belong to the
same strong component if and only if they are mutually accessible from each other.

• a digraph G is strongly connected if there is a (directed) path between each pair of
vertices, i. e., all vertices belong to the same strong component. (There is just one strong
component.)

• an undirected walk (path, cycle, etc.) in a digraph is a walk (path, cycle, etc.) in the
undirected graph obtained by ignoring orientation.
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• a digraph is weakly connected if there is an undirected path between each pair of
vertices.

Exercise 6.4.19. Prove that a weakly connected digraph has ≥ n − 1 edges; a strongly
connected digraph has ≥ n edges.

Exercise+ 6.4.20. Prove: if (∀v ∈ V )(deg+(v) = deg−(v)) and G is weakly connected then
G is strongly connected.

Terminology 6.4.21 (Hamiltonicity).

• A Hamilton cycle in a digraph is a (directed) cycle of length n, i. e., a cycle that passes
through all vertices. G is Hamiltonian if it has a Hamilton cycle.

• A Hamilton path in a digraph is a (directed) path of length n − 1, i. e., a path that
passes through all vertices.

Exercise 6.4.22. Prove that every tournament has a Hamilton path.

Exercise+ 6.4.23. Prove that every strongly connected tournament is Hamiltonian.

Terminology 6.4.24 (DAGs, topological sort).

• A DAG (directed acyclic graph) is a digraph with no directed cycles.

• A topological sort of a digraph is an ordering of its vertices such that all edges go
“forward:” if u→ v then u precedes v in the ordering.

Exercise 6.4.25. Prove that a digraph G has a topologically sort if and only if G is a DAG.
– Note that this is a good characterization: the existence of an object (topological sort) is
shown to be equivalent to the nonexistence of another (directed cycle).

Exercise 6.4.26. If V = {1, 2, . . . , n} and u → v means u 6= v and u | v (u divides v) then
the natural ordering of integers is a topological sort; but it is not the only possible topological
sort of this digraph.)

Exercise 6.4.27. Prove that the “divisibility digraph” described in the preceding exercise has
at least bn/2c! topological sorts.

Exercise 6.4.28. Prove that for every n, there exists exactly one tournament (up to isomor-
phism) which is a DAG.

Definition 6.4.29 (Adjacency matrix). Let G = (V,E) be a digraph; assume V = [n] =
{1, 2, . . . , n}. Consider the n × n matrix AG = (aij) defined as follows: aij = 1 if i → j; and
aij = 0 otherwise. AG is the adjacency matrix of G.
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Exercise 6.4.30. Prove: The adjacency matrix of the Gtr (the converse of G) is AtrG (the
transpose of AG. In particular, the digraph G is undirected if and only if AG is a symmetric
matrix.

Exercise+ 6.4.31. (Counting walks) For k ≥ 0, let aijk denote the number of directed
walks of length k from vertex i to vertex j. Consider the matrix AG(k) which has aijk as its
entry in row i, column j. Prove: AG(k) = AkG. Hint. Induction on k.

Exercise 6.4.32. Let T be a tournament with n vertices. Prove: if all vertices have the same
out-degree then n is odd.

Exercise 6.4.33. List the strong components of the digraph in the figure below. State the
number of strong components. Recall that two vertices x and y belong to the same strong
component if either x = y or there exists x → y and y → x directed walks. The strong
components are the equivalence classes of this equivalence relation, so each strong component
is either a single vertex or a maximal strongly connected subgraph.

1

5

7

2

3

4

6

Exercise 6.4.34. Let p1, . . . , pk be distinct prime numbers and let n =
∏k
i=1 pi. Let D denote

the set of positive divisors of n.

1. Determine |D| (the size of D). (Your answer should be a very simple formula.)

2. We define a digraph G with vertex set V (G) := D by setting i → j if j | i and i/j is
a prime number (i, j ∈ D). Determine the number of directed paths from n to 1 in G.
(Again, your answer should be a very simple formula.)

3. Prove that this digraph is self-converse (isomorphic to the digraph obtained by reversing
all arrows). (You need to state a bijection f : D 7→ D which reverses all arrows. You
should define f by a very simple formula.)

Definition 6.4.35. Let v be a vertex in a directed graph. The period of v is defined as the
gcd of the lengths of all closed walks containing v.

Exercise 6.4.36. Let G be a directed graph. Prove: if v, w ∈ V are two vertices in the same
strong component of G then their periods are equal.
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6.4.1 Paradoxical tournaments, quadratic residues

Let p be a prime. An integer z is a quadratic residue modulo p if z 6≡ 0 (mod p) and
(∃x)(x2 ≡ z (mod p)).

Exercise 6.4.37. List the quadratic residues modulo 5 and modulo 7.

Exercise 6.4.38. Prove that if p is an odd prime then the number of non-congruent quadratic
residues modulo p is (p− 1)/2.

Exercise+ 6.4.39. Prove: −1 is a quadratic residue mod p if and only if p = 2 or p ≡ 1
(mod 4).

Paley graphs/tournaments. Let p be an odd prime. Let V = {0, 1, . . . , p− 1}. Let us set
u→ v if u− v is a quadratic residue mod p. (0 ≤ u, v ≤ p− 1.)

Exercise 6.4.40. Prove: the preceding construction defines a tournament (the Paley tour-
nament) if p ≡ −1 (mod 4); and it defines a graph (the Paley graph) if p ≡ 1 (mod 4).

A digraph is self-converse if it is isomorphic to its converse.

Exercise+ 6.4.41. Prove: (a) The Paley tournaments are self-converse. (b) The Paley
tournaments are self-complementary.

Exercise∗ 6.4.42. (Erdős.) We say that a tournament is k-paradoxical if to every k players
there exists a player who beat all of them. Prove that if n > 2k22k then there exists a k-
paradoxical tournament on n vertices. Hint. Use the probabilistic method: prove that almost
all tournaments are k-paradoxical.

Exercise∗∗ 6.4.43. (Graham – Spencer) If p is a prime, p ≡ −1 (mod 4) and p > 2k24k

then the Paley tournament on p vertices is k-paradoxical. Hint. The proof uses André Weil’s
character sum estimates.
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Chapter 7

Finite Probability Spaces

Part of chapter from
László Babai: “Discrete Mathematics” (Lecture notes, 2003, 2020, 2021)
Last updated December 30, 2022.

7.1 Notation: sets, functions, strings, closed-form expressions

Notation 7.1.1. We write N = {1, 2, 3, . . . } for the set of natural numbers (positive integers)
and N0 = {0, 1, 2, . . . } = {0} ∪ N for the set of non-negative integers. For n ∈ N0 we write
[n] = {1, 2, . . . , n}. So [3] = {1, 2, 3}, [1] = {1}, [0] = ∅. If A and B are sets then BA denotes
the set of functions f : A → B (functions with domain A and codomain B). |A| denotes the
cardinality (size) of the set A (the number of elements of A). For instance, for n ∈ N0 we have
|[n]| = n. A set of size k is referred to as a k-set. A k-subset of a set A is the set of those
subsets of A that are k-sets. For a set A we write P(A) = {B | B ⊆ A} for the powerset of A
(set of all subsets of A). If A is a set and k ∈ N0 then we write(

A

k

)
= {B ⊆ A : |B| = k} (7.1)

(the set of k-subsets of A).

Notation 7.1.2 (Strings). The sequences of length n of elements from a set Σ are functions
f : [n] → Σ. We can represent such a function as a string (or a word) of length n over the
“alphabet” Σ. (Any finite set can be used as the alphabet.) For instance, if Σ = {2, 5, 7} then
f = 727752 is a string of length 6 over Σ. It denotes the function f : [6] → Σ defined by
f(1) = 7, f(2) = 2, f(3) = 7, f(4) = 7, f(5) = 5, f(6) = 2. The overline serves to distinguish
this string from the product 7 · 2 · 7 · 7 · 5 · 2. But we omit the overline when it is clear from
the context that we are talking about a string rather than a product of numbers. The empty
string is denoted by Λ; this is the unique string of length 0. For n ∈ N0, we write Σn to denote
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the set of strings (words) of length n over the alphabet Σ. For example, if Σ = {a,X, 7}
then XaX777aa ∈ Σ8. The set Σn is in a natural 1-to-1 correspondence with the set Σ[n] of
functions [n]→ Σ.

We call B = {0, 1} the Boolean alphabet. Boolean strings, also called (0, 1)-strings, are
strings over B. So Bn denotes the set of (0, 1)-strings of length n. For instance, B3 =
{000, 001, 010, 011, 100, 101, 110, 111}.
We can think of the Boolean strings of length n as representing the outcomes of the experiment
where we flip n coins; the outcome of each coin flip is either “Heads” (H) or “Tails” (T). So,
for instance, we interpret the string 011 as THH.

Exercise 7.1.3. (a) Prove: If A and B are finite sets then
∣∣BA

∣∣ = |B||A| .
(b) Let n, k ∈ N0. Let A be set of size n. We define the binomial coefficient

(
n
k

)
by the

equation (
n

k

)
=

∣∣∣∣(Ak
)∣∣∣∣ . (7.2)

Note that we did not assume n ≥ k. It follows from the definition that if n < k then
(
n
k

)
= 0.

(c) Prove: P(A) = 2|A|.
(d) Prove: |Σn| = |Σ|n.

Definition 7.1.4. A closed-form expression is an arithmetic expression that does not
involve summation (

∑
) or product (

∏
) symbols or ellipses (dot-dot-dots) and is made up of a

“standard” set of basic functions and operations. In this course, our standard set will consist
of the four arithmetic operations, taking powers, the factorial function, binomial coefficients,
and the constants 0, 1, e, π. Complex roots of unity are also included (as powers of 1). The
next exercises provide examples of non-closed-form expressions that can also be written as
closed-form expressions.

Exercise 7.1.5. Let n ∈ N0. Let S(n, 2) :=
(
n
0

)
+
(
n
2

)
+
(
n
4

)
+ · · · =

∑∞
k=0

(
n
2k

)
. (An infinite

sequence of zeros adds up to zero.) Express S(n, 2) as a simple closed-form expression.
Hint. Experiment with small values of n, arrive at a conjecture, prove your conjecture.

Exercise 7.1.6. Prove: (a)
∑∞

k=0

(
n
k

)
= 2n .

(b) (Vandermonde’s identity)
∑∞

k=0

(
n
k

)2
=
(

2n
n

)
.

(c) Let T (n, k) =
(
n
n

)
+
(
n+1
n

)
+ · · ·+

(
n+k
n

)
. Give a simple closed-form expression for T (n, k).

Definition 7.1.7. The Fibonacci numbers F0, F1, . . . are defined by the recurrence Fn =
Fn−1 + Fn−2 (for n ≥ 2) and the initial values F0 = 0, F1 = 1. So the sequence is
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, . . . . For instance, F5 = 5, F10 = 55, F12 = 144.

Exercise 7.1.8. Let n, k ∈ N0 and let d = gcd(n, k). Prove: gcd(Fn, Fk) = Fd.

Exercise 7.1.9. Let φ = (1 +
√

5)/2 (the golden ratio) and φ = (1 −
√

5)/2 (the algebraic
conjugate of φ). Prove:

Fn =
φn − φn√

5
. (7.3)
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So we have a closed-form expression for the Fibonacci numbers. This also means that we can
add the Fibonacci numbers to our “standard set” without changing the set of functions that
admit a closed-form expression.

Exercise 7.1.10. For n ∈ N0, let bn denote the number of (0, 1)-strings of length n with-
out consecutive zeros. So for instance, the string 10011101 does not count, while the string
10111011 does count toward b8.
Show that bn can be expressed as a closed-form expression.

Exercise 7.1.11. For n ∈ N0, prove:

bn/2c∑
k=0

(
n− k
k

)
= Fn+1 . (7.4)

Exercise 7.1.12. (a) For n ∈ N0, express the sum S(n, 4) :=
∑∞

k=0

(
n
4k

)
as a closed-form

expression. (b) Determine, for what values of n does S(n, 4) = 2n−2 hold.

7.2 Finite probability space, events

Definition 7.2.1 (Probability distribution). Let Ω be a non-empty finite set. A function
f : Ω→ R is called a probability distribution on Ω if it satisfies the following two conditions:

(i) (∀a ∈ Ω)(f(a) ≥ 0) and

(ii)
∑
a∈Ω

f(a) = 1 .

We say that this probability distribution is uniform if

(∀a ∈ Ω)

(
f(a) =

1

|Ω|

)
. (7.5)

Definition 7.2.2. A finite probability space is a pair P = (Ω,Pr) where Ω is a non-empty
finite set and Pr : Ω→ R is a probability distribution on Ω. We say that the probability space
is uniform if Pr is the uniform distribution on Ω.

We refer to the set Ω as the sample space and think of it as the set of possibe outcomes of
an experiment. We refer to the elements of Ω as elementary events.

Examples 7.2.3. 1. For s = X1 . . . Xn ∈ Bn let k(s) =
∑n

i=1Xi , the number of Heads in
the coin flip sequence. Let us fix a real number p in the interval 0 ≤ p ≤ 1. Let us define
the function Prp : Bn → R by the formula

Prp(s) = pk(s) · (1− p)n−k(s) . (7.6)

This equation defines a probability distribution on Bn (prove!).
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2. Let C52 denote the set of 52 cards of the standard deck. A poker hand is an element

of

(
C52

5

)
, i. e., a set of 5 cards. When referring to poker hands, we always consider the

uniform distribution on

(
C52

5

)
.

Exercise 7.2.4. (a) Prove that Eq. (7.6) defines a probability distribution on Bn. (b) For
what value of p is Prp the uniform distribution on Bn? (c) The number of poker hands is(

52
5

)
.

Definition 7.2.5 (Events). Given a finite probability space (Ω,Pr), an event is a subset of
Ω. We identify the elementary event a ∈ Ω with the event {a}.

For the event A ⊆ Ω, we define the probability of A to be

Pr(A) :=
∑
a∈A

Pr(a) . (7.7)

In particular, for elementary events we have Pr({a}) = Pr(a).

Exercise 7.2.6. Prove: Pr(∅) = 0 and Pr(Ω) = 1.

Definition 7.2.7. The trivial events are those with probability 0 or 1.

Exercise 7.2.8. Prove: the number of trivial events is a power of 2.

Exercise 7.2.9. In a uniform probability space, calculation of probabilities amounts to count-
ing:

Pr(A) =
|A|
|Ω|

. (7.8)

This is the naive notion of probability: “number of good cases divided by the number of all
cases.”

CONVENTION [Unspecified distribution assumed uniform] Let Ω be a non-empty finite set.
If we say “pick an element at random from Ω” without specifying a probability distribution on
Ω, we mean the uniform distribution, so for any a ∈ Ω, the probability that a is being picked
is 1/|Ω|.

Exercise 7.2.10 (Full house). A poker hand is a “full house” if it consists of three cards of a
kind (say three Kings) and two cards of another kind (say two 7s). We define the event “full
house” as the subset of Ω =

(
C52

5

)
consisting of the poker hands that are full house. Calculate

the probability of the full house event. Give a simple formula involving binomial coefficients.

Exercise 7.2.11 (Coin flips). Let 0 ≤ p ≤ 1. Consider the probability space (Bn,Prp) where
the probability distribution Prp is defined by Eq. (7.6). (a) Show that (a1) (∀i)(Pr(Xi = 1) = p)
(a2) (∀i 6= j)(Pr(Xi = 1 and Xj = 1) = p2) (a3) (∀I ⊆ [n])(Pr((∀i ∈ I)(Xi = 1)) = p|I|)
(b) Determine the probabilities of the following events: (b1) X1 = X2 (b2) X1 6= X2 (b3)∑n

i=1Xi = k . Your answers should be simple closed-form expressions of the input variables
n, p, and k.
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Exercise+ 7.2.12. (Continued) (i)
∑n

i=1Xi is even. (Again, your answer should be a
simple closed-form expression.)
(ii) For what values of p is this probability greater than (1/2)(1 + 3−n) ?

Exercise 7.2.13 (Bridge). In the card game of bridge, the standard deck of 52 cards is evenly
distributed among four players called North, East, South, and West. What sample space does
each of the following questions refer to: (a) What is the probability that North holds all the
aces? (b) What is the probability that each player holds one of the aces? – These questions
refer to uniform probability spaces. Calculate the probabilities.

The rest of this section refers to a fixed finite probability space P = (Ω,Pr).

Exercise 7.2.14 (Modular equation). Let A,B ⊆ Ω be events. Prove:

Pr(A ∪B) + Pr(A ∩B) = Pr(A) + Pr(B). (7.9)

Definition 7.2.15. Events A and B are disjoint if A∩B = ∅. Events A and B are almost
disjoint if Pr(A ∩B) = 0.

Exercise 7.2.16 (Union bound). Let A1, . . . , Ak ⊆ Ω be events. Prove:

Pr(A1 ∪ · · · ∪Ak) ≤
k∑
i=1

Pr(Ai). (7.10)

Prove also that equality holds if and only if the Ai are pairwise almost disjoint.

7.3 Conditional probability, probability of causes

Definition 7.3.1 (Conditional probability). If A and B are events and Pr(B) > 0 then the
“probability of A, given B,” denoted Pr(A | B), is given by the equation

Pr(A | B) =
Pr(A ∩B)

Pr(B)
. (7.11)

(B is the condition.)

In all exercises involving conditional probabilities, we assume that the condition has positive
probability.

Exercise 7.3.2. Let B ⊆ Ω with Pr(B) > 0. For a ∈ Ω, let Pr′(a) = Pr(a | B).
(a) Prove: (Ω,Pr′) is probability space. Moreover, for all A ⊆ Ω we have Pr′(A) = Pr(A | B).
(b) Prove: (B,Pr′|B) is probability space. Moreover, for all A ⊆ B we have Pr′(A) = Pr(A | B).

(Here, Pr′|B) is the restriction of the function Pr′ to B.)
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Note that
Pr(A ∩B) = Pr(A | B) Pr(B) . (7.12)

Exercise 7.3.3 (Bayes’s equation).

Pr(B | A) =
Pr(A | B) · Pr(B)

Pr(A)
. (7.13)

Exercise 7.3.4. Prove: Pr(A ∩B ∩ C) = Pr(A | B ∩ C) Pr(B | C) Pr(C).

Exercise 7.3.5. We roll three dice. Each die shows a number from 1 to 6. (a) What is the
probability that the first die shows 5? (b) What is the probability that the sum of the three
numbers shown is 9? (c) What is the probability that the first die shows 5 given that the
sum of the three numbers shown is 9? (d) What is the probability space in this problem?
How large is the sample space? (In accordance with our convention, the distribution under
consideration is uniform.)

Definition 7.3.6. A partition of Ω is a set of pairwise disjoint events H1, . . . ,Hk of positive
probability, covering Ω:

Ω = H1 ∪ . . . ∪Hk, Hi ∩Hj = ∅, (∀i)(Pr(Hi) 6= 0) . (7.14)

The sets Hi are the blocks (or parts) of the partition.

In computer technology, blocks of a partition have also come to be called “partitions.” In this
course, please avoid this confusing terminology.

Exercise 7.3.7 (Theorem of Complete Probability). Let (H1, . . . ,Hk) be a partition of Ω
and let A ⊆ Ω be an event. Then

Pr(A) =

k∑
i=1

Pr(A | Hi) Pr(Hi). (7.15)

The significance of this formula is that the conditional probabilities are sometimes easier
to calculate than the left-hand side.

Exercise 7.3.8 (Probability of causes). Diseases A and B have similar symptoms. Let W
be the population of all patients showing these symptoms. The two diseases can only be
differentiated by costly tests. We know (from sampling the population and performing these
costly tests) that 70% of W have disease A, 25% have disease B, and 5% have some other
disease. We consider the effectiveness of treatment T . We know that 60% of the patients with
disease A respond to T , while only 12% of the patients with disease B respond to treatment
T . From the rest of the population W , 40% respond to treatment T . Answer the following
questions. State the exact value of each required probability as a fraction reduced to it lowest
terms (i. e., the numerator and the denominator are relatively prime).

Last update: January 5, 2023



7.4. INDEPENDENCE, POSITIVE ANDNEGATIVE CORRELATIONOF A PAIR OF EVENTS69

(a) A new patient arrives at the doctor’s office. The doctor determines that the patient
belongs to W . What is the probability that the patient will respond to treatment T?

(b) The patient’s insurance will not pay for the expensive tests to differentiate between the
possible causes of the symptoms. The doctor bets on treatment T . A week later it is
found that the patient did respond to the treatment. What is the probability that the
patient had disease A? Show all the intermediate results you need to compute.

(c) What is the probability space to which the discussion above refers?

Warning: Your answer to (c) needs to be simple. You cannot base it on calculations you
performed in (a) and (b); those calculations don’t make sense without having previously defined
a probability space. So answering (c) has to precede answering (a) and (b).

7.4 Independence, positive and negative correlation of a pair
of events

Definition 7.4.1. Events A and B are independent if Pr(A ∩B) = Pr(A) · Pr(B).

The intuitive meaning of this definition is supported by the following observation.

Exercise 7.4.2. Assume Pr(B) > 0. Then A and B are independent⇐⇒ Pr(A | B) = Pr(A).

Definition 7.4.3. The complement of the event A is the event A = Ω \A.

Exercise 7.4.4 (Independence of complement). If A and B are independent events then A
and B are also independent.

Exercise 7.4.5 (Independence of a trivial event). Let A be any event and B a trivial event.
Show that A and B are independent.

Exercise 7.4.6. If we roll a die, are the following events independent: “the number shown is
odd”; “the number shown is a square”?

The following result is at the heart of the proof of the Fundamental Theorem of Arithmetic
(positive integers have unique prime factorization), first proved in Euclid’s Elements about
2300 years ago.

Theorem 7.4.7 (Euclid’s Lemma). If a prime number p divides a product ab where a and b
are integers then p divides a or p divides b.

Exercise 7.4.8. Let us consider a uniform probability space over a sample space whose cardi-
nality is a prime number. Prove that no two non-trivial events can be independent. Explicitly
use Euclid’s Lemma.
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70 CHAPTER 7. FINITE PROBABILITY SPACES

Exercise 7.4.9. Assume there exist two nontrivial independent events in our probability space.
Prove: |Ω| ≥ 4.

Definition 7.4.10 (Positively/negatively correlated events). The events A and B are said to
be positively correlated if Pr(A ∩ B) > Pr(A) Pr(B). They are negatively correlated if
Pr(A ∩B) < Pr(A) Pr(B).

Exercise 7.4.11. Let A,B ⊆ Ω. Assume Pr(B) > 0. Then A and B are positively (negatively)
correlated if and only if Pr(A | B) > Pr(A) (Pr(A | B) < Pr(A), resp.).

Exercise 7.4.12. Pick a number x at random from [n] = {1, . . . , n}. Consider the following
two evens: An is the event that x is even; Bn is the event that x is divisible by 3. Determine
whether An and Bn are positively correlated, independent, or negatively correlated. Your
answer should be a function of (n mod 6) (you need to list 6 cases). – What is the probability
space for this experiment?

Exercise 7.4.13. Let A ⊆ B ⊆ Ω. If A and B are independent then one of them is trivial.

Exercise 7.4.14. Let A,B be events. Suppose A ∩ B and A ∪ B are independent. Does it
follow that A or B must be trivial? If true, give a short proof. If false, minimize the size of
the sample space of your counterexample.

Exercise 7.4.15. Let A be an event. Prove: A and A are independent if and only if A is a
trivial event. If A is nontrivial then A and A are positively correlated.

7.5 Independence of multiple events

Definition 7.5.1. Events A1, . . . , Ak are pairwise independent if (∀i 6= j)(Ai and Aj are
independent).

Definition 7.5.2 (Independence of 3 events). Events A,B,C ⊆ Ω are (fully) independent
if

(i) A,B,C are pairwise independent

(ii) Pr(A ∩B ∩ C) = Pr(A) · Pr(B) · Pr(C).

If we say “A,B,C are independent,” it means they are fully independent. The term “fully”
can be added to emphasize that we are not talking about pairwise independence. Another
term for independence of A,B,C is that they are mutually independent.

Exercise 7.5.3 (Independence of complement). If A,B, and C are independent events then
A,B and C are also independent.

Exercise 7.5.4 (Independence of trivial event). If A,B are independent and C is a trivial
event then A,B,C are indepenedent.

Last update: January 5, 2023



7.5. INDEPENDENCE OF MULTIPLE EVENTS 71

Exercise 7.5.5 (Independence of intersection, union). If A,B,C are independent events then
the following pairs of events are also independent: (a) A ∩B,C (b) A ∪B,C.

Exercise 7.5.6. Assume there exist three nontrivial independent events in our probability
space. Prove: |Ω| ≥ 8.

Exercise 7.5.7. (a) Show that if three events are pairwise but not fully independent then none
of them is trivial. (b) Define a probability space and three events in it that are pairwise but
not fully independent. Compute the relevant probabilities. Make your sample space as small
as possible.

Definition 7.5.8. A balanced event is an event of probability 1/2.

Exercise 7.5.9. (a) Define a probability space and three events, A,B,C, in it that satisfy
Pr(A ∩ B ∩ C) = Pr(A) · Pr(B) · Pr(C) but are not independent. Compute the relevant
probabilities. Make your sample space as small as possible. (b) Same as (a) with the
additional requirement that the events be balanced.

We now wish to define, for a list of k events, what it means to be independent. Defini-
tion 7.5.2 suggests the following inductive definition. A k-subset is a subset of size k.

Definition 7.5.10. We say that the events A1, . . . , An are k-wise independent if for all
k-subsets I ⊆ [n], the list (Ai | i ∈ I) of events is independent.

Definition 7.5.11 (Independence: inductive definition). Let k ≥ 3. We say that the events
A1, . . . , Ak are independent if

(i) A1, . . . , Ak are (k − 1)-wise independent

(ii) Pr
(⋂k

i=1Ai

)
=
∏k
i=1 Pr(Ai)

This definition is inductive: once we know what it means for k−1 events to be independent,
the definition tells us what it means for k events to be independent. The base case is k = 2.
But we could even take go further: we declare that any event alone (k = 1) is indepoendent;
this would be the base case, and then Def. 7.5.11 will take effect for k ≥ 2.

Next we give an alternative, non-inductive definition.

Definition 7.5.12 (Independence: explicit definition). Events A1, . . . , Ak are independent
if for all subsets I ⊆ [k] we have

Pr

(⋂
i∈I

Ai

)
=
∏
i∈I

Pr(Ai) . (7.16)
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72 CHAPTER 7. FINITE PROBABILITY SPACES

For this definition to make sense, we need to understand what
⋂
i∈I Ai means when I = ∅.

If we intersect more sets, we get a smaller set, so it is natural to define the intersection of an
empty list of sets to be as large as possible. So this definition needs to refer to a “largest set”
which we call the “universe”; all sets we consider are subsets of the universe. In the context
of events in a probability space (Ω,Pr), this universe is, naturally, the sample space Ω.

Let us now review the definition of intersection of a list of sets.

Definition 7.5.13 (Intersection of a list of sets). Let us fix a set Ω, to be referred to as the
“universe.” Let I be a (possibly empty) set and let (Ai | i ∈ I) be a list of subsets of the
universe. Then ⋂

i∈I
Ai = {x ∈ Ω | (∀i ∈ I)(x ∈ Ai)} (7.17)

Exercise 7.5.14. Based on Def. 7.5.13, verify the following.

(a)
⋂
i∈∅Ai = Ω

(b) If I = {j} (so |I| = 1) then
⋂
i∈I Ai = Aj .

Exercise 7.5.15 (Equivalence of definitions of independence). Show that our two definitions
of independence of k events, Def 7.5.11 and Def 7.5.12, are equivalent.

How many conditions do we need to verify to establish that a list of k events is independent?
Definition 7.5.12 tells us that we need to verify a condition for each subset I ⊆ [k]. This means
2k conditions. In fact, a bit fewer will suffice: k + 1 of these are automatically satisfied, as
stated in the following exercise.

Exercise 7.5.16. Show that for |I| ≤ 1, Eq. (7.16) always holds, so in verifying the indepen-
dence of a list of events, we only need to verify Eq. (7.16) for |I| ≥ 2. This means verifying
2k − k − 1 conditions.

Again, for emphasis, independent events are also called fully independent, or mutually
independent.

Exercise 7.5.17 (Independence of complements-1). Prove: if A1, A2, . . . , Ak are independent
events then A1, A2, . . . , Ak are independent events.

Exercise 7.5.18 (Independence of complements-2). For an event A define A1 = A and A−1 =
A. Prove: if A1, . . . , Ak are independent events and ε1, . . . , εk ∈ {1,−1} then Aε11 , . . . , A

εk
k are

independent events.

Exercise 7.5.19. Assume there exist k nontrivial independent events in our probability space.
Prove: |Ω| ≥ 2k.

Exercise 7.5.20. For all n ≥ 2, construct a probability space and n balanced events (events of
probability 1/2) such that the events are not independent but they are (n−1)-wise independent.
Minimize the size of the sample space.
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The size of the sample space is a resource in computer science, which we wish to minimize.
If we need pairwise independence only, rather than full independence, we can do much better
than the 2k size of the sample space. By the size of a probability space we mean the size
of its sample space.

Exercise∗ 7.5.21 (Small sample space for pairwise independent events-1).

(a) Let k ≥ 3. Construct a probability space of size k + 1 and k pairwise independent
nontrivial events in that space.

(b) Let k ≥ 1. Construct a probability space of size ≤ 2k and k pairwise independent
balanced events (events of probability 1/2) in that space.

The following exercise may help solve Ex. 7.5.21 (b).

Exercise∗ 7.5.22 (Small sample space for pairwise independent events-2). Let ` ≥ 1.

(i) For k = 2` − 1, construct a uniform probability space of size k + 1 with k pairwise
independent balanced events.

(ii) Same for k a prime number of the form k = 4t− 1.

Exercise∗∗ 7.5.23 (Lower bound for pairwise independent events). Assume there exist k
pairwise independent nontrivial events in our probability space. Prove: |Ω| ≥ k + 1. Note:
Ex. 7.5.21 (a) shows that this bound is tight.

Exercise∗ 7.5.24. Let 1 ≤ k ≤ n− 1.

(a) Construct a sample space Ω and n events that are k-wise independent but no k + 1 of
the events are independent.

(b) Solve item (a) under the additional constraint that each of the n events be balanced.

(Hint for part (a). Take a k-dimensional vector space W over a finite field of order q ≥ n.
Select n vectors from W so that any k are linearly independent. Let W be the sample space.)

Exercise 7.5.25 (Independence of Boolean combinations of groups of events). Prove: if the
five events A,B,C,D,E are independent then the three events A \ B, C ∪ D, and E are
independent as well. Formulate a general statement, for n events grouped into blocks.

Exercise 7.5.26 (A trick problem). We have n balls colored red, blue, and green (each ball has
exactly one color and each color occurs at least once). We select k of the balls with replacement
(independently, with uniform distribution). Let A denote the event that the k balls selected
have the same color. Let pr denote the conditional probability that the first ball selected is
red, assuming condition A. Define pb and pg analogously for blue and green outcomes. Assume
pr + pb = pg. Prove: k ≤ 2. Show that k = 2 is actually possible.

Copyright c© 2003, 2020 by László Babai. All rights reserved.
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7.6 Random graphs: The Erdős–Rényi model

Let Γn denote the set of graphs with vertex set V = [n].

Exercise 7.6.1. |Γn| = 2(n2)

In the next sequence of problems we consider the uniform probability space over the sample
space Γn. This is called the uniform Erdős–Rényi model of “random graphs.”

Exercise 7.6.2 (Random graphs). Let A(i, j) denote the event that vertices i and j are
adjacent (1 ≤ i, j ≤ n, i 6= j). Note that A(i, j) = A(j, i) so we are talking about

(
n
2

)
events.

(a) Determine Pr(A(i, j)).

(b) Prove that these
(
n
2

)
events are independent.

(c) What is the probability that the degrees of vertex 1 and vertex 2 are equal? Give a
simple closed-form expression.

(d) If pn denotes the probability calculated in item (c), prove that pn
√
n tends to a finite

positive limit and determine its value.

(e) How are the following two events correlated: An =“vertex 1 has degree 3”; Bn =“vertex
2 has degree 3”? Find the limit of the ratio Pr(An | Bn)/Pr(An) as n→∞.

Definition 7.6.3. Let G = (V,E) be a graph. The distance dist(u, v) of vertices u and v is
the length of a shortest path between them. The diameter of G is the maximum distance:

diam(G) = max
u,v∈V

dist(u, v) . (7.18)

If G is disconnected, we say that diam(G) =∞.

Exercise 7.6.4. Prove: almost all graphs have diameter 2.

Explanation. Let pn denote the probability that a random graph on n vertices has a certain
property. We say that almost all graphs have the property if limn→∞ pn = 1.

7.7 Asymptotic evaluation of sequences

In exercises like those about random graphs, one often has to estimate binomial coefficients.
The following result comes in handy.

Stirling’s formula.
n! ∼ (n/e)n

√
2πn. (7.19)
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Here the ∼ notation refers to asymptotic equality: for two sequences of numbers an and bn
we say that an and bn are asymptotically equal and write an ∼ bn if limn→∞ an/bn = 1.

To “evaluate a sequence an asymptotically” means to find a simple expression describing
a function f(n) such that an ∼ f(n). Stirling’s formula is such an example. While such
“asymptotic formulae” are excellent at predicting what happens for “large” n, they do not tell
how large is large enough.

An effective (non-asymptotic) variant, giving useful results for specific values of n, is the
following:

n! = (n/e)n
√

2πn(1 + θn/(12n)), (7.20)

where |θn| ≤ 1.

Exercise 7.7.1. Evaluate asymptotically the binomial coefficient
(

2n
n

)
. Show that

(
2n
n

)
∼

c · 4n/
√
n where c is a constant. Determine the value of c.

We mention some important asymptotic relations from number theory. Let π(x) denote
the number of all prime numbers ≤ x, e. g., π(2) = 1, π(10) = 4, π(100) = 25. The Prime
Number Theorem of Hadamard and de la Vallée-Poussin (1896) asserts that

π(x) ∼ x/ lnx. (7.21)

Another important relation estimates the sum of reciprocals of prime numbers. The sum-
mation below extends over all primes p ≤ x.

∑
p≤x

1/p ∼ ln lnx. (7.22)

In fact a stronger result holds: there exists a number B such that

lim
x→∞

∑
p≤x

1/p− ln lnx

 = B. (7.23)

(Deduce (7.22) from (7.23).)

Exercise 7.7.2. Assuming 100-digit integers are “large enough” for the Prime Number Theo-
rem to give a good approximation, estimate the probability that a random integer with at most
100 decimal digits is prime. (The integer is drawn with uniform probability from all positive
integers in the given range.)
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7.8 Random variables, expected value, indicator variables, Bernoulli
trials

Definition 7.8.1. A random variable is a function X : Ω→ R.

We say that X is almost constant if for some u ∈ R, Pr(X = u) = 1.

Definition 7.8.2. The expected value of a random variable X is

E(X) =
∑
a∈Ω

X(a) Pr(a) . (7.24)

For u ∈ R, we shall refer to the event “X = u,” meaning the set {a | X(a) = u}} . So the
expression Pr(X = u) refers to the probability of this set.

Exercise 7.8.3 (Alternative definition of the expected value). Prove:

E(X) =
∑
u∈R

u · Pr(X = u) =
∑

u∈range(X)

u · Pr(X = u) . (7.25)

Here range(X) denotes the range of X:

range(X) = {X(a) | a ∈ Ω} . (7.26)

Exercise 7.8.4. The middle term in Eq. 7.25 seems like an infinite sum. Verify that all but
a finite number of terms are zero.

Exercise 7.8.5.
minX ≤ E(X) ≤ maxX. (7.27)

Throughout these notes, X,Y, Z, ϑ, and their subscripted versions refer to random variables.

Let us fix a probability space P(Ω,Pr). All random variables below refer to this probability
space, unless the space is specified more concretely. Note that random variables over P can be
added and can be multiplies by real numbers (scalars); they form a real vector space.

Exercise 7.8.6 (Additivity of expectation). Let X1,. . . , Xk be random variables. Then

E(X1 + · · ·+Xk) =

k∑
i=1

E(Xi) (7.28)

Proof: E

(
k∑
i=1

Xi

)
=
∑
a∈Ω

(X1(a) + · · ·+Xk(a)) Pr(a) =

k∑
i=1

∑
a∈Ω

Xi(a) Pr(a) =

k∑
i=1

E(Xi).
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Exercise 7.8.7 (Linearity expectation). If c1, . . . , ck are constants (real numbers) then

E

(
k∑
i=1

ciXi

)
=

k∑
i=1

ciE(Xi). (7.29)

Definition 7.8.8. An indicator variable is a (0,1)-valued random variable (its values are
0 or 1). Indicator variables are also called Bernoulli trials; an outcome of 1 is considered
“success” and 0 “failure.”

Definition 7.8.9. The indicator of an event A ⊆ Ω, also called the characteristic func-
tion of the event, is the function ϑA : Ω→ {0, 1} given by

ϑA(a) =

{
1 for a ∈ A
0 for a 6∈ A

Exercise 7.8.10 (Bijection between events and indicator variables). If T is an indicator vari-
able then there is a unique event A such that T = ϑA.

Exercise 7.8.11. The expected value of an indicator variable is the probability of the event
it indicates:

E(ϑA) = Pr(A) . (7.30)

So the indicator of an event A is a Bernoulli trial with probability Pr(A) of success.

Indicator variables are particularly useful if we want to count events, as demonstrated by
several of the exercises at the end of this section.

Exercise 7.8.12. (a) Every random variable X is a linear combination of indicator variables.
(b) Given a random variable X there exist functions f1, . . . , fk such that the random variables
Xi := fi(X) are indicator variables and X is a linear combination of the Xi.

Exercise 7.8.13. Let Y =
∑n

i=1Xi where Xi is a Bernoulli trial with probability pi of success.
Then E(Y ) =

∑n
i=1 pi.

We say that X is nonnegative if X(a) ≥ 0 for all a ∈ Ω.

Theorem 7.8.14 (Markov’s Inequality). If X is nonnegative then ∀a > 0,

Pr(X ≥ a) ≤ E(X)

a
.

Proof: Let m = E(X) > 0. Then m =
∑

u∈R u · Pr(X = u) ≥
≥
∑

u≥a u · Pr(X = u) (we just omitted some terms; all terms are nonegative)
≥ a ·

∑
u≥a Pr(X = u) = a · Pr(X ≥ a) (sum of disjoint events).

So we have m ≥ aPr(X ≥ a).
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Exercise 7.8.15 (Poker hand). (a) What is the expected number of Aces in a poker hand?
(b) What is the expected number of Spades?

Exercise 7.8.16 (Flipping coins). We flip a biased coin n times. The coin comes up Heads
with probability p and Tails with probability 1 − p. What is the expected number of runs
of k heads in a string of n coin-flips? (A “run of k heads” means a string of k consecutive
heads. Example: the string HHTHTTHHHT has 3 runs of 2 heads.) Prove your answer! Hint.
Indicator variables.

Exercise 7.8.17 (Lottery). Suppose in a lottery you have to pick five different numbers from
1 to 90. Then five winning numbers are drawn. If you picked two of them, you win 20 dollars.
For three, you win 150 dollars. For four, you win 5,000 dollars, and if all the five match,
you win a million. (a) What is the probability that you picked exactly three of the winning
numbers? (b) What is your expected win? (c) What does Markov’s inequality predict about
the probability that you’ll win at least 20 dollars? (d) What is the actual probability that this
happens?

Exercise 7.8.18 (Club of 2000). As a matter of long-standing tradition, the Moonwatchers’
Club of Onyx, NA, serves vodka legally to all of its members. Throughout the year 2020,
the club had 2000 members. One of the club members wrote the following in their diary
on June 27, 2020. “The managment of the club just announced that two weeks from now
they will distribute membership cards numbered 1 through 2000 to the members at random.
Members whose card number happens to coincide with their year of birth receive valuable gifts.
How exciting!” Determine the expected number of lucky members just before the managment
shuffles the cards. State the role of the vodka in your calculation. State the size of the sample
space for this experiment.

Exercise 7.8.19 (Random graphs). Consider a random graph G with n vertices.

(a) What is the expected number of edges in G?

(b) What is the expected number of triangles?

(c) What is the expected number of cycles of length k?

(d) Show that the expected number of Hamilton cycles (cycles of length n) is large; it is
greater than 100n for all sufficiently large n.

Exercise 7.8.20 (Distinct prime divisors). Let n be a random integer, chosen uniformly
between 1 and N . What is the expected number of distinct prime divisors of n? Show that
the result is asymptotically equal to ln lnN (as N →∞).

Exercise 7.8.21 (Mismatched letters). The boss writes n different letters to n addressees
whose addresses appear on n envelopes. The careless secretary puts the letters in the envelopes
at random (one letter per envelope). Determine the expected number of those letters which
get in the right envelope. State the size of the sample space for this problem.
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Exercise 7.8.22 (Marbles in cups). Kiara has n cups and n marbles. She puts each marble
in a randomly selected cup, regardless of whether the cup already has marbles in it. What is
the expected number of cups left empty? (a) Give a simple expression in terms of n. (b)
Asymptotically evaluate your answer. (Find a very simple expression that is asymptotically
equal to your answer.)

Exercise 7.8.23 (Counting cycles in permutations). For a permutation π of the set [n], let
ck(π) denote the number of k-cycles in the cycle decomposition of π. (For instance, if n =
7 and π = (18)(256)(3)(47)(9) then c1(π) = 2, c2(π) = 2, c3(π) = 1, and ck(π) = 0 for
all k 6= 1, 2, 3.) Pick π at random from all permutations of [n]. (a) Calculate E(ck(π)).
Your answer should be a very simple expression (no factorials, no binomial coefficients, no
summation). (b) Calculate the expected number of cycles (including cycles of length 1) in
the cycle decomposition of a random permutation. (This will be a simple sum, not a closed-
from expression.) Prove that this number is ∼ lnn.

7.9 Variance, covariance, Chebyshev’s Inequality

Definition 7.9.1. The kth moment of X is E(Xk). The kth central moment of X is the
kth moment of X − E(X), i. e., E((X − E(X))k).

Definition 7.9.2. The variance of X is its second central moment, Var(X) := E((X −
E(X))2).

Note that the variance is always nonnegative.

Exercise 7.9.3. Prove: Var(X) ≥ 0 and Var(X) = 0 if and only if X is almost constant.

Definition 7.9.4. The standard deviation of X is σ(X) :=
√

Var(X).

Exercise 7.9.5. (Invariance under shifts.) Prove that if c is a constant then Var(X) =
Var(X + c); and consequently, σ(X) = σ(X + c).

Exercise 7.9.6. Prove: if c is a constant then Var(cX) = c2 Var(X); and consequently,
σ(cX) = |c|σ(X).

Exercise 7.9.7. Var(X) = E(X2)− (E(X))2.

Corollary 7.9.8 (Cauchy–Schwarz inequality). (E(X))2 ≤ E(X2).

Proof of Observation: Let m = E(X). Then Var(X) = E((X−m)2) = E(X2−2Xm+m2) =
E(X2)− 2mE(X) + E(m2) = E(X2)− 2mm+m2 = E(X2)−m2.

Chebyshev’s inequality tells us that random variables don’t like to stray from their expected
value by more than a small multiple of their standard deviation.
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Theorem 7.9.9 (Chebyshev’s Inequality). Let m = E(X). Then for any number a > 0,

Pr(|X −m| ≥ a) ≤ Var(X)

a2
. (7.31)

Proof: Let Y = (X − m)2. Then, by definition, E(Y ) = Var(X). We apply Markov’s
Inequality to the nonnegative random variable Y : Pr(|X−m| ≥ a) = Pr(Y ≥ a2) ≤ E(Y )/a2 =
Var(X)/a2.

Exercise 7.9.10. In its more common form the Cauchy–Schwarz inequality asserts that for
any real numbers x1, . . . , xn, y1, . . . , yn we have(

n∑
i=1

x2
i

)(
n∑
i=1

y2
i

)
≥

(
n∑
i=1

xiyi

)2

. (7.32)

Deduce this inequality from Corollary 7.9.8.

Exercise 7.9.11. Prove: if the kth moment of X is zero for all odd integers k > 0 then
Pr(X = u) = Pr(X = −u) for all u ∈ R.

Definition 7.9.12 (Covariance). The covariance of the random variables X,Y is defined as

Cov(X,Y ) = E(XY )− E(X) · E(Y ) . (7.33)

Exercise 7.9.13. Var(X) = Cov(X,X)

Definition 7.9.14. We say that X and Y are positively correlated if their covariance is
positive; they are uncorrelated if their covariance is zero; and negatively correlated if
their covariance is negative.

Exercise 7.9.15 (Aces vs. Spades). (a) Consider a poker hand. Let X denote the number
of Aces and Y the number of Spades in the hand. Show that X and Y are uncorrelated.
Show all your work. The best way to solve this problem is by solving part (b) and
avoiding all numerical calculation.

(b) Generalize the problem to a deck of rs cards where there are r cards of each kind (e. g.,
r Aces) and and s cards in a suit (e. g., s Spades). A generalized poker hand will have k
cards (1 ≤ k ≤ rs).

We define independence of random variables in the next section but we warn in advance that
for a pair of random variables, independence is a stronger condition than being uncorrelated.

Exercise 7.9.16 (Events vs. indicator variables). The events A,B are positively correlated if
and only if the corresponding indicator variables ϑA and ϑB are positively correlated; A and
B are independent if and only if ϑA and ϑB are uncorrelated; and A and B are negatively
correlated if and only if ϑA and ϑB are negatively correlated.
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We often deal with sums of random variables. Next we give a formula for the variance of
such a sum.

Exercise 7.9.17 (Variance of sum). Let Y = X1 + · · · + Xn be a sum of random variables.
Then

Var(Y ) =
n∑
i=1

n∑
j=1

Cov(Xi, Xj) =
n∑
i=1

Var(Xi)+
∑
i 6=j

Cov(Xi, Xj) =
n∑
i=1

Var(Xi)+2·
∑

1≤i<j≤n
Cov(Xi, Xj) .

(7.34)

Corollary 7.9.18 (Additivity of variance). If X1, . . . , Xn are pairwise uncorrelated random
variables then

Var

(
n∑
i=1

Xi

)
=

n∑
i=1

Var(Xi) . (7.35)

In particular, this equation holds if the variables are pairwise independent (see Ex. 7.10.3).

Exercise 7.9.19 (Variance of the number of triangles). Let Xn denote the number of triangles
in a random graph with n vertices.

(a) Determine E(Xn).

(b) Determine Var(Xn). Your answer should be a closed-form expression in terms of n.

(c) Asymptotically evaluate your answer to (b). Your answer should be of the form
Var(Xn) ∼ anb. Determine the constants a and b. Hint: Write Xn as a sum of
indicator variables.

Exercise 7.9.20 (Limit on strongly negatively correlated events). (a) Suppose the events
A1, . . . , Am are balanced (have probability 1/2) and for each i 6= j, Pr(|Ai ∩Aj | ≤ 1/5. Prove:
m ≤ 6. (b) Generalize the statement to events of probability p, with p2 − ε in the place of
1/5.

7.10 Independence of a pair of random variables

We again fix our probability space.

Definition 7.10.1 (Independence of a pair of random variables). Let X,Y be random vari-
ables. We say that X and Y are independent if

(∀u, v ∈ R)(Pr(X = u and Y = v) = Pr(X = u) · Pr(Y = v) . (7.36)

Exercise 7.10.2. If Y is almost constant (see Def. 7.8.1) then X and Y are independent.
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Exercise∗ 7.10.3 (Independent implies uncorrelated). If X,Y are independent then they are
uncorrelated, i. e.,

E(XY ) = E(X) · E(Y ) . (7.37)

The next exercise asserts that the converse is false.

Exercise 7.10.4. Construct a probability space and two random variables that are uncorre-
lated but not independent. — Make sure you give a complete definition of your probability
space: state the sample space and the probability distribution. Define your random variables
by their table of values. Minimize the size of your sample space.

7.11 Independence of random variables

Definition 7.11.1. X1, . . . , Xk are independent if

(∀u1, . . . , uk ∈ R)

(
Pr (X1 = u1, . . . , Xk = uk) =

k∏
i=1

Pr(Xi = ui

)
. (7.38)

Exercise 7.11.2. Prove that the events A1, . . . , Ak are independent if and only if their indi-
cator variables are independent. – This is less obvious than it seems.

Exercise 7.11.3. Prove that the random variables X1, . . . , Xk are independent if and only if
for all choices of the numbers u1, . . . , uk, the k events X1 = u1, . . . , Xk = uk are independent.
Show that this is also equivalent to the independence of all k-tuples of events of the form
X1 < u1, . . . , Xk < uk.

Exercise 7.11.4. Prove: if X1, . . . , Xk are independent then f1(X1), . . . , fk(Xk) are also in-
dependent, where the fi are arbitrary functions. For example, X2

1 , eX2 , and cos(X3) are
independent.

Exercise 7.11.5. Prove: if X,Y, Z are independent random variables then f(X,Y ) and Z are
also independent, where f is an arbitrary function. (For instance, X + Y and Z, or XY and
Z are independent.) Generalize this statement to several variables, grouped into blocks, and
a function applied to each block.

Exercise 7.11.6. Let X1, . . . , Xm be non-almost-constant random variables (see Def. 7.8.1)
over a sample space of size n. Suppose the Xi are 4-wise independent (every four of them are
independent). Prove: n ≥

(
m
2

)
. Hint. Prove that the

(
m
2

)
random variables XiXj (1 ≤ i <

j ≤ m) are linearly independent over R (as members of the space of functions Ω → R). To
prove linear independence, first prove that w.l.o.g. we may assume (∀i)(E(Xi) = 0); then use
the “inner product” argument, using the function E(ZY ) in the role of an “inner product” of
the random variables Z and Y .
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Theorem 7.11.7 (Multiplicativity of the expected value). If X1, . . . , Xm are independent,
then

E(
m∏
i=1

Xi) =
m∏
i=1

E(Xi). (7.39)

Exercise 7.11.8. Prove this result for indicator variables.

Exercise 7.11.9. Prove: if X,Y are independent, then one can write X as a sum X =
c1X1 + . . .+ ckXk and Y as Y = d1Y1 + . . .+ d`Y` where the Xi and Yj are indicator variables
and for every i, j, the variables Xi and Yj are independent.

Exercise 7.11.10. Combine the two preceding exercises to a proof of the Theorem for m = 2
variables.

Exercise 7.11.11. Deduce the general case from the preceding exercise by induction on m,
using Exercise 7.11.5.

This sequence completes the proof of Theorem 7.11.7.

While this result required the full force of independence of our random variables, recall that
the additivity of the variance only required pairwise independence. In fact even less, pairwise
uncorrelatedness, suffices (Cor. 7.9.18).

Corollary 7.11.12. Let X1, . . . , Xn be random variables with the same standard deviation σ.
Let us consider their average, Y := (1/n)

∑n
i=1Xi. If the Xi are pairwise independent then

σ(Y ) = σ/
√
n.

Corollary 7.11.13 (Weak law of large numbers). Let X1, X2, . . . be an infinite sequence of
pairwise independent random variables each with expected value m and standard deviation σ.
Let Yn = (1/n)

∑n
i=1Xi. Then for any δ > 0,

lim
n→∞

Pr(|Yn −m| > δ) = 0. (7.40)

Proof: Use Chebyshev’s inequality and the preceding corollary. We obtain that the probability
in question is ≤ σ2/(δn)→ 0 (as n→∞).

Remark 7.11.14. Strictly speaking, we bent our rules here. An infinite sequence of non-
almost-constant, pairwise independent variables requires an infinite sample space. What we
actually proved, then, is the following. Let us fix the values m and σ ≥ 0. Assume that we are
given an infinite sequence of finite probability spaces, and over the nth space, we are given n
independent random variables Xn,1, Xn,2, . . . , Xn,n. Let Yn = (1/n)

∑n
i=1Xn,i. Then for any

δ > 0, the limit relation (7.40) holds.

Exercise 7.11.15. You and the bank play the following game. You flip n coins; if X of them
come up “Heads,” you receive 2X dollars.
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1. You have to buy a ticket to play this game. What is the fair price of the ticket? Hint:
it is the expected amount you will receive.

2. Prove: the probability that you break even (receive at least your ticket’s worth) is expo-
nentially small. Hint: At least how many “heads” do you need for you to break even?

3. Calculate the standard deviation of the variable 2X . Your answer should be a simple
formula. Evaluate it asymptotically; obtain an even simpler formula.

4. State what the “weak law of large numbers” would say for the variable 2X . Hint. This
law talks about the probability that 2X is not within (1±ε)-times its expectation.) Prove
that the Law does NOT hold for this variable.

7.12 Strong concentration inequalities:
the Bernstein–Hoeffding (Chernoff) bounds

Although the bound in the proof of the Weak Law of Large Numbers tends to zero, it does so
rather slowly. If our variables are fully independent and bounded, much stronger estimates can
be obtained by a method of Sergey Bernstein (1924, 1927, 1937) called the moment generator
function method. Results derived by this method are often referred to as “Chernoff bounds,”
based on a 1952 paper by Herman Chernoff that rediscovered Bernstein’s method (and did
not derive those consequences attributed tom him). Another paper frequently referenced in
this context is a 1963 paper by Wassily Hoeffding that is aware of Bernstein’s work, and
uses the moment generator method to derive several of those consequences often referred to
as “Chernoff bounds.” These bounds tend to be slightly stronger than the bounds found by
Bernstein. We shall refer to them as the Bernstein–Hoeffding bounds.

The Bernstein–Hoeffding bounds go to zero exponentially fast as a function of n, and this
is what most combinatorial applications require.

For example, let us consider a sequence of n independent coin flips; let X denote the
number of heads in this sequence. Then E(X) = n/2 and Var(X) = n/4 (by the additivity of
the variance). Therefore Chebyshev’s inequality tells us that

Pr(|X − n/2| ≥ r
√
n) <

1

4r2
. (7.41)

Below we shall prove the much stronger inequality

Pr(|X − n/2| ≥ r
√
n) < 2e−2r2 . (7.42)

under the same conditions.

The following corollary illustrates the power of inequality (7.42).
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Corollary 7.12.1. For any ε > 0, almost all graphs have no vertices of degree < (1 − ε)n/2
or > (1 + ε)n/2 where n is the number of vertices.

Proof of the Corollary. Let V = {1, . . . , n} be the vertex set of our random graph. Let δi
denote the degree of vertex i; so δi is the number of heads in a sequence of (n−1) independent
coin flips. Therefore, by inequality (7.42), we have that

Pr(|δi − (n− 1)/2| ≥ r
√
n− 1) < 2e−2r2 . (7.43)

Let us now set r = ε
√
n− 1. Then we obtain

Pr(|δi − (n− 1)/2| ≥ ε(n− 1)) < 2e−2ε2(n−1). (7.44)

Therefore the probability that there exists an i such that |δi − (n − 1)/2| ≥ ε(n − 1) is less
than n times the right-hand side, i. e., less than 2ne−2ε2(n−1). This quantity approaches zero
at an exponential rate as n→∞.

The slight change in the statement (having changed n to n − 1) can be compensated for
by slightly reducing ε.

Note that the same procedure using inequality (7.41) will fail. Indeed, setting r = ε
√
n− 1

in inequality (7.41), the right-hand side will be 1/(4ε2(n−1)), and if we multiply this quantity
by n, the result will be greater than 1 (if ε < 1/2), a meaningless upper bound for a probability.

Now we turn to the proof of inequality (7.42). Our discussion is based on the Appendix to
the wonderful monograph

Noga Alon, Joel H. Spencer: “The Probabilistic Method.”

It will be convenient to state the main result in terms of random variables with zero expected
value.

Theorem 7.12.2 (Bernstein–Hoeffding bound for coin flips). Let Xi be independent random
variables satisfying Pr(Xi = 1) = Pr(Xi = −1) = 1/2. Let Y =

∑n
i=1Xi. Then for any a > 0,

Pr(Y ≥ a) < e−a
2/2n (7.45)

and
Pr(|Y | ≥ a) < 2e−a

2/2n. (7.46)

Exercise 7.12.3. Deduce inequality (7.42) from this theorem.

Hint. Represent X as
∑n

i=1 ϑi where ϑi is the indicator variable of the i-th coin flip. Set
Xi = 2ϑi − 1 and Y =

∑n
i=1Xi. Note that X − n/2 = Y/2. Apply Theorem 7.12.2 to the Xi

and translate the result back to X.
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Exercise 7.12.4. Prove that the following is true for almost all graphs Gn on n vertices: the
degree of every vertex is within the interval [0.49n, 0.51n]. In answering this question, be
sure to clearly state the meaning of each variable occurring in your formulas. Also pay close
attention to the logical connectives (“and,” “if-then,” and quantifiers).

We now define the central concept of Bernstein’s method.

Definition 7.12.5. Let Y be a random variable. The function mY (t) = E(etY ) is called the
moment generator function of Y .

Now we turn to the proof of Theorem 7.12.2.

Let t be a positive real number. A specific value will be assigned to t later. Let us consider
the random variables Zi := exp(tXi). (Notation: exp(x) = ex.) The Zi are again independent
(for any fixed t) by Exercise 7.11.4. Therefore we can apply the multiplicativity of the expected
value to them to calculate the moment generator function of Y :

E(etY ) = E(exp(
n∑
i=1

tXi)) = E(
n∏
i=1

Zi) =
n∏
i=1

E(Zi) =
n∏
i=1

E(exp(tXi)). (7.47)

Applying Markov’s inequality to the variable etY , we conclude that

Pr(Y ≥ a) = Pr(etY ≥ eta) ≤
n∏
i=1

E(exp(tXi))e
−ta. (7.48)

Recall the definition of the hyperbolic cosine function, cosh(x) = (ex + e−x)/2. Observe
that

E(exp(tXi)) = cosh(t). (7.49)

Therefore the preceding inequality implies that

Pr(Y ≥ a) <
cosh(t)n

eta
. (7.50)

This is true for every t > 0. All we need to do is choose t appropriately to obtain the strongest
possible result. To this end we need the following simple observation.

Lemma 7.12.6. For all real numbers x,

cosh(x) ≤ ex
2/2.

Proof: Compare the Maclaurin series of the two sides. On the left-hand side we have

∞∑
k=0

x2k

(2k)!
= 1 +

x2

2
+
x4

24
+

x6

720
+ . . . (7.51)
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On the right-hand side we have

∞∑
k=0

x2k

2kk!
= 1 +

x2

2
+
x4

8
+
x6

48
+ . . . . (7.52)

Comparing the denominators in the corresponding terms, we see that (2k)! ≥ 2kk! for all k ≥ 0
(why?), so the right-hand side dominates the left-hand side term by term.

Consequently, from inequality (7.50) we infer that

Pr(Y ≥ a) < exp(t2n/2− ta). (7.53)

The expression t2n/2 − ta is minimized when t = a/n; setting t := a/n we conclude that
Pr(Y ≥ a) < exp(−a2/2n), as required.

Replacing each Xi by −Xi we obtain the inequality Pr(Y ≤ −a) < exp(−a2/2n); adding
this to the preceding inequality we obtain Pr(|Y | ≥ a) < 2 exp(−a2/2n).

We note that this technique works under much more general circumstances. We state a
useful and rather general case, noting that even this result does not exploit the full power of
the method.

Theorem 7.12.7 (Bernstein–Hoeffding bound for bounded variables). Let Xi be independent
random variables satisfying |Xi| ≤ 1 and E(Xi) = 0. Let Y =

∑n
i=1Xi. Then for any a > 0,

Pr(Y ≥ a) < e−a
2/2n (7.54)

and

Pr(|Y | ≥ a) < 2e−a
2/2n. (7.55)

Proof: Fix a value t > 0. Let

ht(x) = cosh(t) + x · sinh(t). (7.56)

(Recall that sinh(t) = (et − e−t)/2 is the hyperbolic sine function.) This is a linear function
of x. Observe that ht(x) ≥ etx for all x in the interval −1 ≤ x ≤ 1. (The graph of ht(x) over
the interval [−1, 1] is the segment connecting the corresponding two points of the graph of the
function etx, and etx is a convex function.)

Moreover, because of the linearity of the ht(x) function, we have E(ht(Xi)) = ht(E(Xi)) =
ht(0) = cosh(t). Therefore

E(etXi) ≤ E(ht(Xi)) = cosh(t). (7.57)

From here on the proof is identical with the proof of Theorem 7.12.2. As before, we set
t = a/n.
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Exercise 7.12.8. Prove: for almost all graphs G = (V,E) with n vertices,

(∀x ∈ V )(0.49n < deg(x) < 0.51n) . (7.58)

In other words, if pn denotes the probability of the event described in Eq. (7.58) then limn→∞ pn =
1.

Explain, why this result does not follow from Chebyshev’s inequality.

Exercise 7.12.9. A vertex z is a common neighbor of vertices x and y in a graph G if both x
and y are adjacent to z in G. Let N(x, y) denote the number of common neighbors of x and
y. Prove that the following statement is true for almost all graphs G = (V,E) with n vertices:

(∀x 6= y ∈ V )(0.24n < N(x, y) < 0.26n) . (7.59)
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7.13 Problems

Exercise 7.13.1. (Bipartite Ramsey) (Erdős) Let n = 2t/2, where t is an even integer.
Prove that it is possible to color the edges of Kn,n red and blue (each edge receives one color)
such that there will be no monochromatic Kt,t. Hint. Use the probabilistic method.

A random graph on n vertices is defined by fixing a set of n vertices, say V = [n], and
flipping a fair coin

(
n
2

)
times to decide adjacency of the

(
n
2

)
pairs of vertices. Let Gn denote a

random graph on the vertex set [n].

Exercise 7.13.2. (Diameter of a random graph)

(a) State the size of the sample space of the experiment which produces a random graph.

(b) What is the probability diam(Gn) = 1? Your answer should be a very simple closed-form
expression. (diam(G) denotes the diameter of G. See the handout for the definition.)

(c) Prove that almost all graphs have diameter 2.

The meaning of this statement is the following. Let pn denote the probability that a
random graph on n vertices has diameter 2. Then limn→∞ pn = 1.

Hint. Let qn = 1 − pn. Prove that qn → 0. Show this by proving that with large
probability, every pair of vertices has a common neighbor. What is the probability that
vertices x and y do not have a common neighbor? Give a precise answer to this question;
it should be a simple formula. Now estimate the probability that there exist vertices x, y
without a common neighbor.

Use without proof the following fact from calculus:

(∀c, d > 0)( lim
x→∞

xce−dx = 0).

Exercise 7.13.3. (Chromatic number of a random graph) (Erdős) Recall from the
graph theory handout that ω(G) denotes the size of the largest clique (complete subgraph) in
the graph G; α(G) denotes the size of the largest independent set (anticlique) in G, and χ(G)
denotes the chromatic number of G. Note that α(G) = ω(G) where G denotes the complement
of G. Note also (do!) that for every graph G, χ(G) ≥ ω(G).

1. prove: χ(G) ≥ n/α(G), where n is the number of vertices of G.

2. Show that the chromatic number can be much greater than the clique number by proving
that there exists a constant c > 0 such that for all sufficiently large n there exists a graph
Gn with n vertices such that

χ(Gn)

ω(Gn)
≥ cn

(log n)2
.
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Estimate the value of c in your proof.

Hint. To prove the existence of these graphs, use the probabilistic method. To obtain a
lower bound on χ(Gn), give an upper bound on α(Gn) for almost all graphs Gn.

3. Prove: for almost all graphs, χ(G) = Θ(n/ log n). (The lower bound is easy; the upper
bound is more challenging!)

Exercise 7.13.4. (Chromatic number of set systems) (Erdős) Let F = {A1, . . . , Am}
be an r-uniform set-system (|Ai| = r) over the universe [n] (so Ai ⊂ [n]). Assume m ≤ 2r−1.
Prove that F is 2-colorable, i. e., it is possible to color every vertex v ∈ [n] red or blue such
that none of the Ai is monochromatic (each Ai has both colors). Hint. Assign the colors at
random. Compute the expected number of monochromatic sets Ai.

Exercise 7.13.5. (Error-correcting codes) Let X be a set of n elements. Let B(X) be the
set of all subsets of X; we view B(X) as a uniform probability space. A “random subset of X”
is an element of B(X) chosen from the uniform distribution.

(a) Prove: E(|A \ B|) = n/4, where A,B are two independent random subsets of X. What
is the size of the sample space for this experiment?

(b) (Constant-rate, cn-error-correcting codes) Prove that there exists a constant C > 1 and
there exists a family {A1, . . . , Am} of m ≥ Cn subsets of X such that (∀i, j)(i 6= j ⇒
|Ai \Aj | ≥ 0.24n). Hint. Take m random subsets, chosen independently. Use Chernoff’s
inequality to prove that |Ai \ Aj | < 0.24n is exponentially unlikely. Explanation of the
title. Suppose we want to send messages ((0, 1)-strings) of length k through a noisy
channel. Let n = k/ logC, so 2k = Cn = m and we can think of the messages as integers
from 1 to m. Rather than sending message i, we transmit the incidence vector of the
set Ai. This increases the length of the message by a constant factor (1/ logC). On
the other hand, even if 23% of the transmitted bits get changed due to noise, the error
can uniquely be corrected because the difference (Hamming distance) between any two
valid codewords is at least 0.48n. – Here we only prove the existence of such codes.
Constructive versions exist (Justesen codes).

Exercise 7.13.6. (Strongly negatively correlated events) Let A1, . . . , Am be events with
probability 1/2; suppose (∀i, j)(i 6= j ⇒ P (Ai ∩ Aj) ≤ 1/5). Prove: m ≤ 6. Hint. Use the
Cauchy– Schwarz inequality, Corollary 7.9.8.
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Chapter 8

Finite Markov Chains

Exercises. The unmarked exercises are routine, the exercises marked with a “plus” (+) are
creative, those marked with an asterisk (*) are challenging.

Recall that a directed graph (digraph, for short), is a pair G = (V,E), where V is the set of
“vertices” and E is a set of ordered pairs of vertices called “edges:” E ⊆ V × V.

A discrete system is characterized by a set V of “states” and transitions between the states. V
is referred to as the state space. We think of the transitions as occurring at each time beat,
so the state of the system at time t is a value Xt ∈ V (t = 0, 1, 2, . . . ). The adjective “discrete”
refers to discrete time beats.

A discrete stochastic process is a discrete system in which transitions occur randomly ac-
cording to some probability distribution. The process is memoryless if the probability of an
i→ j transition does not depend on the history of the process (the sequence of previous states):
(∀i, j, u0, . . . , ut−1 ∈ V )(P (Xt+1 = j |Xt = i,Xt−1 = ut−1, . . . , X0 = u0) = P (Xt+1 = j |Xt =
i)). (Here the universal quantifier is limited to feasible sequences of states u0, u1, . . . , ut−1, i,
i. e., to sequences which occur with positive probability; otherwise the conditional probability
stated would be undefined.) If in addition the transtion probability pij = P (Xt+1 = j |Xt = i}
does not depend on the time t, we call the process homogeneous.

A finite Markov chain is a memoryless homogeneous discrete stochastic process with a
finite number of states.

Let M be a finite Markov chain with n states, V = [n] = {1, 2, . . . , n}. Let pij denote the
probability of transition from state i to state j, i. e., pij = P (Xt+1 = j |Xt = i). (Note that
this is a conditional probability: the question of i→ j transition only arises if the system is in
state i, i. e., Xt = i.)

The finite Markov chain M is characterized by the n × n transition matrix T = (pij)
(i, j ∈ [n]) and an initial distribution q = (q1, . . . , qn) where qi = P (X0 = i).
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Definition. An n×n matrix T = (pij) is stochastic if its entries are nonnegative real numbers
and the sum of each row is 1:

(∀i, j)(pij ≥ 0) and (∀i)(
∑n

j=1 pij = 1).

Exercise 8.1.1. The transition matrix of a finite Markov chain is a stochastic matrix. Con-
versely, every stochastic matrix can be viewed as the transition matrix of a finite Markov
chain.

Exercise 8.1.2. Prove: if T is a stochastic matrix then T k is a stochastic matrix for every k.

Random walks on digraphs are important examples of finite Markov chains. They are defined
by hopping from vertex to neighboring vertex, giving equal chance to each out-neighbor. The
state space will be V , the set of vertices. The formal definition follows.

Let G = (V,E) be a finite digraph; let V = [n]. Assume (∀i ∈ V )(deg+(i) ≥ 1). Set
pij = 1/deg+(i) if (i, j) ∈ E; pij = 0 otherwise.

Exercise 8.1.3. Prove that the matrix (pij) defined in the preceding paragraph is stochastic.

Conversely, all finite Markov chains can be viewed as weighted random walks on a digraph,
the weights being the transition probabilities. The formal definition follows.

Let T = (pij) be an arbitrary (not necessarily stochastic) n× n matrix. We associate with
T a digraph G = (V,E) as follows. Let V = [n] and E = {(i, j) : pij 6= 0}. We label the edge
i→ j with the number pij 6= 0 (the “weight” of the edge).

This definition makes sense for any matrix T ; edges indicate nonzero entries. If T is the
transition matrix of a finite Markov chainM then we call the associated digraph the transition
digraph of M. The vertices of the transition digraph represent the states of M and the
edges the feasible transitions (transitions that occur with positive probability).

Exercise 8.1.4. Prove that in the transition digraph of a finite Markov chain, (∀i)(deg+(i) ≥
1).

Exercise 8.1.5. Draw the transition digraph corresponding to the stochastic matrix

A =

(
0.7 0.3
0.2 0.8

)
.

Label the edges with the transition probabilities.

The principal subject of study in the theory of Markov chains is the evolution of the
system.

The initial distribution q = (q1, . . . , qn) describes the probability that the system is in a
particular state at time t = 0. So qi ≥ 0 and

∑n
i=1 qi = 1.
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Figure 8.1: A Markov Chain with two states

Set q(0) = q and let q(t) = (q1t, . . . , qnt) be the distribution of the states at time t, i. e., the
distribution of the random variable Xt:

qit = P (Xt = i).

The following simple equation describes the evolution of a finite Markov chain.

Exercise 8.1.6. (Evolution of Markov chains) Prove: q(t) = q(0)T t.

So the study of the evolution of a finite Markov chain amounts to studying the powers of
the transition matrix.

Exercise 8.1.7. Experiment: study the powers of the matrix A defined in Exercise 8.1.5.
Observe that the sequence I, A,A2, A3, . . . appears to converge. What is the limit?

Exercise+ 8.1.8. Prove the convergence observed in the preceding exercise.

The study of the powers rests on the study of eigenvalues and eigenvectors.

Definition. A left eigenvector of an n × n matrix A is a 1 × n vector x 6= 0 such that
xA = λx for some (complex) number λ called the eigenvalue corresponding to x. A right
eigenvector of A is an n× 1 matrix y 6= 0 such that Ay = µy for some (complex) number µ
called the eigenvalue corresponding to y.

Remember that the zero vector is never an eigenvector.

The right action of a matrix. Note that if x = (x1, . . . , xn) is a 1 × n vector, A = (aij) is
an n× n matrix, and z = (z1, . . . , zn) = xA then

zj =

n∑
i=1

xiaij . (8.1)

Note that if G is the digraph associated with the matrix A then the summation can be reduced
to

zj =

n∑
i:i→j

xiaij . (8.2)
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So the left eigenvectors to the eigenvalue λ is defined by the equation

λxj =
n∑

i:i→j
xiaij . (8.3)

Exercise 8.1.9. State the equations for the left action and the right eigenvectors of the matrix
A.

Theorem. The left and the right eigenvalues of a matrix are the same (but not the eigenvec-
tors!).

Proof. Both the right and the left eigenvalues are the roots of the characteristic polynomial
fA(x) = det(xI −A) where I is the n× n identity matrix.

Exercise 8.1.10. Find the eigenvalues and the corresponding left and right eigenvectors of
the matrix A from Exercise 8.1.5.

Hint. The characteristic polynomial is

fA(x) =

∣∣∣∣x− 0.7 −0.3
−0.2 x− 0.8

∣∣∣∣ = x2 − 1.5x+ 0.5 = (x− 1)(x− 1/2).

So the eigenvalues are λ1 = 1 and λ2 = 1/2. Each eigenvalue gives rise to a system of linear
equations for the coordinates of the corresponding (left/right) eigenvectors.

Exercise+ 8.1.11. Prove: if λ is a (complex) eigenvalue of a stochastic matrix then |λ| ≤ 1.
Hint. Consider a right eigenvector to eigenvalue λ.

Exercise 8.1.12. Let A be an n × n matrix. Prove: if x is a left eigenvector to eigenvalue
λ and y is a right eigenvector to eigenvalue µ and λ 6= µ then x and y are orthogonal, i. e.,
xy = 0. Hint. Consider the product xAy.

Definition. A stationary distribution (also called equilibrium distribution) for the
Markov chain is a probability distribution q = (q1, . . . , qn) (qi ≥ 0,

∑n
i=1 qi = 1) which is

a left eigenvector to the eigenvalue 1: qA = q.

Exercise 8.1.13. If at time t, the distribution q(t) is stationary then it will remain the same
forever: q(t) = q(t+ 1) = q(t+ 2) = . . . .

Exercise 8.1.14. Prove: if T is a stochastic matrix then λ = 1 is a right eigenvalue. Hint.
Guess the (very simple) eigenvector.
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1

2 3

Figure 8.2: A transition digraph

Observe the consequence that λ = 1 is also a left eigenvalue. This is significant because it
raises the possibility of having stationary distributions.

Exercise 8.1.15. Find a left eigenvector x = (x1, x2) to the eigenvalue 1 for the stochastic
matrix A defined in Exercise 8.1.5. Normalize your eigenvector such that |x1| + |x2| = 1.
Observe that x is a stationary distribution for A.

Exercise 8.1.16. Let T be a stochastic matrix. Prove: if the limit T∞ = limt→∞ T
t exists

then every row of T∞ is a stationary distribution.

Exercise 8.1.17. Consider the stochastic matrix

B =

(
0 1
1 0

)
.

Prove that the sequence I,B,B2, B3, . . . does not converge, yet B does have a stationary
distribution.

Exercise 8.1.18. Let ~Cn denote the directed cycle of length n. Prove that the powers of the
transition matrix of the random walk on ~Cn do not converge; but a stationary distribution
exists.

Exercise 8.1.19. Consider the following digraph: V = [3], E = {1→ 2, 1→ 3, 2→ 2, 3→ 3}.
Write down the transition matrix of the random walk on the graph shown in Figure 8.2.

Prove that the random walk on this graph has 2 stationary distributions.

Definition. A stochastic matrix T = (pij) is called “doubly stochastic” if its column sums
are equal to 1: (∀j ∈ [n])(

∑n
i=1 pij = 1).

In other words, T is doubly stochastic if both T and its transpose are stochastic.
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Exercise 8.1.20. Let T be the transition matrix for a finite Markov chain M. Prove that the
uniform distribution is stationary if and only if T is doubly stochastic.

A matrix is called non-negative if all entries of the matrix are non-negative. The Perron–
Frobenius theory of non-negative matrices provides the following fundamental result.

Theorem (Perron–Frobenius, abridged) If A is a non-negative n× n matrix then A has
a non-negative left eigenvector.

Exercise 8.1.21. Prove that a non-negative matrix has a non-negative right eigenvector. (Use
the Perron–Frobenius Theorem.)

Exercise 8.1.22. Let T be a stochastic matrix and x a non-negative left eigenvector to eigen-
value λ. Prove: λ = 1. Hint. Use Exercise 8.1.12.

Exercise 8.1.23. Prove: every finite Markov chain has a stationary distribution.

Exercise+ 8.1.24. Let A be a non-negative matrix, x a non-negative left eigenvector of A,
and G the digraph associated with A. Prove: if G is strongly connected then all entries of
x are positive. Hint. Use equation (8.3).

Exercise 8.1.25. Let A be a non-negative matrix, x and x′ two non-negative eigenvectors of
A, and G the digraph associated with A. Prove: if G is strongly connected then x and x′

belong to the same eigenvalue. Hint. Use the preceding exercise and Exercise 8.1.12.

Exercise+ 8.1.26. Let A be a non-negative matrix; let x be a non-negative left eigenvector
to the eigenvalue λ and let x′ be another left eigenvector with real coordinates to the same
eigenvalue. Prove: if G is strongly connected then (∃α ∈ R)(x′ = αx). Hint. WLOG
(without loss of generality we may assume that) all entries of x are positive (why?). Moreover,
WLOG (∀i ∈ V )(x′i ≤ xi) and (∃j ∈ V )(x′j = xj) (why?). Now prove: if xj = x′j and i → j
then xi = x′i. Use equation (8.3).

Finite Markov chains with a strongly connected transition digraph (every state is accessi-
ble from every state) are of particular importance. Such Markov chains are called irreducible.
To emphasize the underlying graph theoretic concept (and reduce the terminology overload),
we shall deviate from the accepted usage and use the term strongly connected Markov
chains instead of the classical and commonly used term “irreducible Markov chains.”

Our results are summed up in the following exercise, an immediate consequence of the
preceding three exercises.
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Exercise 8.1.27. Prove: A strongly connected finite Markov chain (a) has exactly
one stationary distribution; and (b) all probabilities in the stationary distribution
are positive.

As we have seen (which exercise?), strong connectivity is not sufficient for the powers of
the transition matrix to converge. One more condition is needed.

Definition. The period of a vertex v in the digraph G is the g.c.d. of the lengths of all closed
directed walks in G passing through v. If G has no closed directed walks through v, the period
of v is said to be 0. If the period of v is 1 then v is said to be aperiodic.

Exercise 8.1.28. (a) Show that it is not possible for every state of a finite Markov chain to
have period 0 (in the transition digraph). (b) Construct a Markov chain with n states, such
that all but one state has period 0.

Note that a loop is a closed walk of length 1, so if G has a loop at v then v is automatically
aperiodic. A lazy random walk on a digraph stops at each vertex with probability 1/2 and
divides the remianing 1/2 evenly between the out-neighbors (pii = 1/2, and if i → j then
pij = 1/2 deg +(i)). So the lazy random walks are aperiodic at each vertex.

Exercise 8.1.29. Let G = (V,E) be a digraph and x, y ∈ V two vertices of G. Prove: if x
and y belong to the same strong component of G (i. e., x and y are mutually accessible from
one another) then the periods of x and y are equal.

It follows that all states of a strongly connected finite Markov chain have the same
period. We call this common value the period of the strongly connected Markov chain. A
Markov chain is aperiodic if every node has period 1.

Exercise 8.1.30. Recall that (undirected) graphs can be viewed as digraphs with each pair
of adjacent vertices being connected in both directions. Let G be an undirected graph viewed
as a digraph. Prove: every vertex of G has period 1 or 2. The period of a vertex v is 2 if and
only the connected component of G containing v is bipartite.

Exercise 8.1.31. Suppose a finite Markov chainM is strongly connected and NOT aperiodic.
(It follows that the period ≥ 2 (why?).)
Prove: the powers of the transition matrix do not converge.
Hint. If the period is d, prove that the transition graph is a “blown-up directed cycle of length d”
in the following sense: the vertices of the transition graph can be divided into d disjoint subsets
V0, V1, . . . , Vd−1 such that (∀k) all edges starting at Vk end in Vk+1, where the subscript is read
modulo d (wraps around). – Once you have this structure, observe that any t-step transition
would take a state in Vk to a state in Vk+t (the subscript again modulo d).
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Now we state the Perron–Frobenius Theorem in full.

Theorem (Perron–Frobenius, unabridged) Let A be a non-negative n × n matrix and
G the associated digraph. Let fA(x) =

∏n
i=1(x − λi) be the characteristic polynomial of A

factored over the complex numbers. (So the λi are the eigenvalues, listed with multiplicity.)
Then

(a) There is an eigenvalue λ1 such that

(a1) λ1 is real and non-negative;

(a2) (∀i)(λ1 ≥ |λi|);
(a3) there exists a non-negative eigenvector to eigenvalue λ1.

(b) If G is strongly connected and aperiodic then (∀i)(λ1 > |λi|).

Definition. A strongly connected aperiodic Markov chain is called ergodic.

The significance of aperiodicity is illuminated by the following exercises.

Exercise 8.1.32. Prove that the eigenvalues of the random walk on the directed n-cycle are
exactly the n-th roots of unity. (So all of them have unit absolute value.)

More generally, we have the following:

Exercise 8.1.33. Let A be a (not necessarily non-negative) n×n matrix and G the associated
digraph. Suppose d is a common divisor of the periods of G. Let ω be a complex d-th root of
unity (i. e., ωd = 1). Then, if λ is an eigenvalue of A then λω is also an eigenvalue of A. Hint.
Equation (8.3).

The following consequence of the Perron–Frobenius Theorem is the fundamental result in
the theory of finite Markov chains.

Exercise∗ 8.1.34. (Convergence of ergodic Markov chains.) Prove: if T is the transition
matrix of an ergodic Markov chain then the powers of T converge. Hint. There exists
an invertible complex matrix S such that U = S−1TS is an upper triangular matrix of which
the first row is [1, 0, 0, . . . , 0]. (This follows, for example, from the Jordan normal form.) Now
the diagonal entries of U are the eigenvalues, starting with λ1 = 1; all other eigenvalues satisfy
|λi| < 1. Prove that as a consequence, the sequence U t (t → ∞) converges to the matrix N
which has a 1 in the top left corner and 0 everywhere else. Now T k →M := SNS−1 (why?).

Exercise 8.1.35. Prove: if T is the transition matrix of an ergodic Markov chain and
limt→∞ T

t = M then all rows of M are equal.
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Exercise 8.1.36. Prove: if a finite Markov chain is ergodic then from any initial distributrion,
the process will approach the unique stationary distribution. In other words, let T be the
transition matrix, s the stationary distribution, and q an arbitrary initial distribution. Then

lim
t→∞

qT t = s.

The following example illuminates the kind of Markov chains encountered in combinatorics,
theoretical computer science, and statistical physics.

Random recoloring: a class of large Markov chains. Let G = (V,E) be a graph with n
vertices and maximum degree ∆; and let Q ≥ ∆ + 1. Let S be the set of all legal colorings of
G with Q colors, i. e., S is the set of functions f : V → [Q] such that if v, w ∈ V are adjacent
then f(v) 6= f(w). This “random recoloring process” is a Markov chain which takes S as its
set of states (the “state space”). The transitions from a legal coloring are defined as follows.
We pick a vertex v ∈ V at random, and recolor it by one of the available colors (colors not
used by the neighbors of v), giving each available color an equal chance (including the current
color of v).

Exercise 8.1.37. Prove: if Q ≥ ∆ + 2 then the random recoloring process is an ergodic
Markov chain.

Exercise 8.1.38. Prove that the number of states of the random recoloring process is between
(Q−∆− 1)n and Qn. So if Q ≥ ∆ + 2 then the state space is exponentially large.

Exercise 8.1.39. Prove: if Q ≥ ∆ + 2 then the stationary distribution for the random
recoloring process is uniform.

As a consequence, the random recoloring process will converge to a uniformly distributed
random legal Q-coloring of G. Just how quickly the process approaches the uniform distribu-
tion is an open problem. While the state space is exponential, it is expected that the process
distribution will be close to uniform within a polynomial (nconst) number of steps. This phe-
nomenon is called rapid mixing. Marc Jerrum proved in 1995 that for Q > 2∆, the random
recoloring process does indeed mix rapidly; Jerrum proved an O(n log n) bound on the mixing
time. In a recent (2000) paper, published in the Journal of Mathematical Physics, Eric Vigoda
showed that the 2∆ bound was not best possible; he proved that rapid mixing already occurs
for Q > (11/6)∆; under this weaker condition Vigoda shows a somewhat less rapid, O(n2 log n)
mixing. The techniques leading to such improvements are expected to be widely applicable in
combinatorics, theoretical computer science, and statistical physics.

Concluding remarks. Markov chains are widely used models in a variety of areas of
theoretical and applied mathematics and science, including statistics, operations research, in-
dustrial engineering, linguistics, artificial intelligence, demographics, genomics. Markov chain
models are used in performance evaluation for computer systems (“if the system goes down,
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what is the chance it will come back?”), in queuing theory (server queuing, intelligent trans-
portation systems). Hidden Markov models (where the transition probabilities are not known)
are a standard tool in the design of intelligent systems, including speech recognition, natural
language modelling, pattern recognition, weather prediction.

In discrete mathematics, theoretical computer science, and statistical physics, we often
have to consider finite Markov chains with an enormous number of states. Card shuffling is an
example of a Markov chain with 52! states. The “random recoloring process,” discussed above,
is an example of a class of Markov chains which have exponentially many states compared
to the length of the description of the Markov chain. (The description of an instance of the
random recoloring process consists of specifying the graph G and the parameter Q.) We remark
that the random recoloring process is but one instance of a class of Markov chains referred to
as “Glauber dynamics,” originating in statistical physics.

An example from computer science: if the state of a memory unit on a computer chip can
be described by a bit-string of length k then the number of states of the chip is 2k. (Transitions
can be defined by changing one bit at a time.)

This exponential behavior is typical of combinatorially defined Markov chains.

Because of the exponential growth in the number of states, it is not possible to store the
transition matrices and to compute their powers; the size of the matrices becomes prohibitive
even for moderate values of the description length of the states. (Think of a 52!× 52! matrix
to study card shuffling!)

The evolution of such “combinatorially defined” Markov chains is therefore the subject
of intense theoretical study. It is of great importance to find conditions under which the
distribution is guaranteed to get close to the stationary distribution very fast (in a polynomial
number of steps). As noted above, this circumstance is called rapid mixing. Note that rapid
mixing takes place much faster than it would take to visit each state! (Why is this not a
paradox?)

8.2 Problems

Exercise 8.2.1. Let M be the Markov chain shown in Figure 8.3.

1. Is M strongly connected?

2. Write down the transition matrix T for M.

3. What is the period of vertex 1?

4. Find a stationary distribution for M. You should describe this distribution as a 1 × 5
matrix.
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Figure 8.3: Transition graph for a Markov chain.
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Figure 8.4: The transition graph for a Markov chain.

5. Prove that limt→∞ T
t does not exist. Prove this directly, do not refer to the Perron-

Frobenius theorem.

Exercise 8.2.2. Consider the following digraph: V = [3], E = {1 → 2, 1 → 3, 2 → 2, 3 →
3}. Write down the transition matrix of the random walk on this graph, with transition
probabilities as shown in Figure 8.4. State two different stationary distributions for this Markov
chain.
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102 CHAPTER 8. FINITE MARKOV CHAINS

Last update: January 5, 2023


	Logic
	Quantifier notation
	Problems

	Asymptotic Notation
	Limit of sequence
	Asymptotic Equality and Inequality
	Little-oh and little-omega notation
	Big-Oh, Omega, Theta notation (O, , )
	Prime Numbers
	Partitions
	Problems

	Convex Functions and Jensen's Inequality
	Basic Number Theory
	Introductory Problems: g.c.d., congruences, multiplicative inverse, Chinese Remainder Theorem, Fermat's Little Theorem
	Gcd, congruences
	Arithmetic Functions
	Prime Numbers
	Quadratic Residues
	Lattices and diophantine approximation

	Counting
	Binomial coefficients
	Recurrences, generating functions

	Graphs and Digraphs
	Graph Theory Terminology
	Planarity
	Ramsey Theory
	Digraph Terminology
	Paradoxical tournaments, quadratic residues


	Finite Probability Spaces
	Notation: sets, functions, strings, closed-form expressions
	Finite probability space, events
	Conditional probability, probability of causes
	Independence, positive and negative correlation of a pair of events
	Independence of multiple events
	Random graphs: The Erdos–Rényi model
	Asymptotic evaluation of sequences
	Random variables, expected value, indicator variables, Bernoulli trials
	Variance, covariance, Chebyshev's Inequality
	Independence of a pair of random variables
	Independence of random variables
	Strong concentration inequalities
	Problems

	Finite Markov Chains
	Problems


