
Algorithms – CMSC-272

Breadth-First Search1

Instructor: László Babai

Single-source shortest path problem
The input is a rooted digraph G = (V,E, s) where s ∈ V is a special vertex called the root
or source (hence the letter s). The distance from vertex u to vertex v, denoted dist(u, v), is
the length of a shortest (directed) path from u to v. The distance is ∞ if v is not accessible
from u. The algorithm determines, in linear time, the distance of each vertex from the root.
It does so by organizing the vertices into layers by distance; the i-th layer consists of the
vertices at distance i. (Layer zero is the root.) The last layer consists of the vertices at
infinite distance, i. e., the vertices that are inaccessible from the root.

The algorithm scans all vertices that are accessible from the root. Vertices go through three
phases: initially, each vertex is unknown (has not been discovered yet, status: WHITE).
When a vertex v is discovered (first encountered by the algorithm), its status changes to
GRAY. At that point the vertex enters a queue (ENQUEUE), and when it is its turn (it
is DEQUEUE-d), its out-neighbors are discovered. Once all out-neighbors of v have been
discovered, v is finished (status: BLACK). The vertices that are inaccessible from the root
remain forever WHITE.

The root is discovered as part of the initialization. If vertex u (not the root) is discovered
while exploring a vertex v, i. e., scanning the out-neighbors of v, then we say that v is the
parent of u, denoted v = p(u). The parent links organize the set of accessible vertices in
a tree. We shall also maintain an array d[1 . . . n]. The intended meaning of d[v] at the
termination of the algorithm is dist(s, v); we shall have to verify, that this is indeed the case.

The digraph (V,E) is given in adjacency list representation, which is an array of linked
lists. The array V [1 . . . n] lists the vertices; and vertex i starts a linked list Adj[i] that lists
all outneighbors of i in some order (the adjacency list of vertex i). The “for j ∈ Adj[i]”
statement instructs the program to scan all outneighbors of i in the order they are listed.
Moving to the next member of the list takes one step.

The queue is a FIFO list (first-in, first-out) and permits three operations:
1. creation of an empty queue
2. ENQUEUE(Q, u) adds item u at the end of the queue Q
3. DEQUEUE(Q) outputs the first item in Q and removes it from Q, or reports that Q is
empty.

For the analysis of the process, it is helpful to keep track of time. We start at time t = 0 and
advance the time by 1 each time a vertex is discovered. Lines 04 and 11 of the pseudocode
below manage the time variable; we can omit these two lines from the code with no effect
on any of the other variables.

Here is the pseudocode for the algorithm.

1Last updated January 27, 2021.

1



BFS(V,E, s)

Initialization

01 for v ∈ V
02 status(v) := WHITE, d(v) :=∞, p(v) := NIL, Q := empty queue
03 end(for)
04 t := 1
05 status(s) := GRAY, d(s) := 0 (: s discovered :)
06 ENQUEUE(Q, s)

Main loop

07 while Q not empty do
08 v ← DEQUEUE(Q) (: begin exploring v :)
09 for u ∈ Adj(v) do (: explore edge v → u :)
10 if status(u) = WHITE then do
11 t := t + 1
12 status(u) := GRAY, p(u) := v, d(u) := d(v) + 1 (: u discovered :)
13 ENQUEUE(Q, u)
14 end(if)
15 end(for) (: end exploring v :)
16 status(v) := BLACK (: v finished :)
17 end(while)
18 return arrays p and d

Analysis: correctness
Our goal is to show that for all vertices v ∈ V , the value d(v) returned by the algorithm is
equal to dist(s, v).

We associate three points in time with each vertex u ∈ V : the time t1(u) when u is discovered,
the time t2(u) when the exploration of u begins and t3(u) when the exploration of u ends.
If u is never discovered, we set t1(u) := t2(u) := t1(u) :=∞. We can define these values by
adding the following lines to the code. Line 02a should be inserted after line 02, etc.

02a t1(i) := t2(i) := t1(i) :=∞
. . .

05a t1(s) := t

08a t2(v) := t
. . .

12a t1(u) := t
. . .

15a t3(v) := t

2



The addition of these lines has no effect on any of the original variables.

Exercise 1. Verify the following loop invariants.
(a) (∀v ∈ V )(if v ∈ Q then status(v) = GRAY)
(b) (∀v ∈ V )(p(v) = NIL ⇐⇒ status(v) = WHITE ⇐⇒ d(v) =∞)
(c) (∀v ∈ V )(if p(v) 6= NIL then d(v) = d(p(v)) + 1).

Exercise 2. (a) Prove: (∀u ∈ V )(t1(u) ≤ t2(u) ≤ t3(u)).
(b) Find a rooted digraph (V,E, s) and a vertex u ∈ V such that all vertices are accessible
from s, the vertex u has at least one out-neighbor (i. e., the list Adj[u] is not empty, yet
in other words the out-degree deg+(u) ≥ 1), and t2(u) = t3(u) (the time variable is not
advanced between the start and the end of the exploration of u). Make your digraph as
small as possible (minimize the number of edges). Describe your digraph by an adjacency
list. Attach a picture of the digraph. (You may draw it by hand.)
(c) Find a rooted digraph (V,E, s) and a vertex u ∈ V , u 6= s such that all vertices are
accessible from s, the vertex u has at least one sibling (another vertex w such that p(u) =
p(w)) and t1(u) = t2(u) < t3(u). Make your digraph as small as possible. Describe your
digraph by an adjacency list. Attach a picture of the digraph. (You may draw it by hand.)

Example of an adjacency list description:

1:2,4,3
2:1,4
3:
4:3,1

This means that set of vertices is V = {1, 2, 3, 4} and for instance deg+(4) = 2 and the two
out-neighbors of vertex 4 are 3 and 1.

Exercise 3. Prove: (∀v ∈ V )(if v 6= s then t2(p(v)) ≤ t1(v) ≤ t3(p(v))).

Exercise 4. (a) Prove: (∀u, v ∈ V )(if u 6= v then t1(u) 6= t1(v)).
(b) Prove: if t1(u) < t1(v) then t3(u) ≤ t2(v).
(c) Find a rooted digraph (V,E, s) and vertices u, v ∈ V such that u 6= v, both u and v are
accessible from s, and t2(u) = t3(v). Make your digraph as small as possible. Describe your
digraph by an adjacency list. Attach a picture of the digraph. (You may draw it by hand.)

Exercise 5. (a) Verify that (∀v ∈ V ) the values p(v) and d(v) are updated at most once,
namely, at the time v is discovered.
(b) Prove: (∀v ∈ V )( if v 6= s then d(v) = d(p(v)) + 1).

* * * * *

Below, d(v) and p(v) denote the final value of these variables (the value returned by the
algorithm). Let V0 denote the set of vertices accessible from the root.

Exercise 6. Prove: v ∈ V0 if and only if d(v) <∞.

3



Hint. For the “if” part, the assumption is d(v) <∞ and the desired conclusion is dist(s, v) <
∞. Prove this by induction on d(v).
For the “only if” part, the assumption is dist(s, v) < ∞ and the desired conclusion is
d(v) <∞. Prove this by induction on dist(s, v).

Exercise 7. Let v ∈ V0. Prove: dist(s, v) ≤ d(v).
Use Ex. 6 and part (b) of Ex. 5. State where you use each of these in your argument, and
which direction of Ex. 6 you use.

Hint. Induction on d(v).

Exercise 8. Let u, v ∈ V0, u, v 6= s. Prove: if t1(u) ≤ t1(v) then
(a) t1(p(u)) ≤ t1(p(v)) (b) d(u) ≤ d(v). Use part (b) of Ex. 4. State where you use it.

Now we are ready to prove the main result of the analysis.

Theorem 9. For all v ∈ V we have d(v) = dist(s, v).

Proof. If v /∈ V0 then d(v) = dist(s, v) =∞ by Ex. 6.
Assume now v ∈ V0. We already know dist(s, v) ≤ d(v) (Ex. 7). We need to show that
d(v) ≤ dist(s, v). We prove this by induction on dist(s, v).
Base case: dist(s, v) = 0. This means v = s an therefore d(v) = 0 by line 05 of the algorithm.
Assume now k := dist(s, v) ≥ 1.
Inductive Hypothesis: For all w ∈ V , if dist(s, w) < k then d(w) ≤ dist(s, w) (and therefore
d(w) = dist(s, w)).
Let s = x0 → x1 → · · · → xk = v be a shortest path from s to v. We need to show that
d(v) ≤ k.
DO: show that for every i ≤ k, dist(s, xi) = i.
So dist(s, xk−1) = k − 1 and therefore, by the Inductive Hypothesis, d(xk−1) = k − 1. If
xk−1 = p(v), it follows that d(v) = k by Ex. 5.
Consider now the case that xk−1 6= p(v). This means that at time t = t2(xk−1), the status of
v was not “WHITE,” which means by that time, v had been discovered: t1(v) < t2(xk−1).
But t1(v) ≥ t2(p(v)) (Ex. 3). So t2(p(v)) < t2(xk−1).

Claim. t1(p(v)) < t1(xk−1).

Indeed, by part (a) of Ex. 5 we have t1(p(v)) 6= t1(xk−1). Now assume for a contradiction
that t1(p(v)) > t1(xk−1). By part (b) of Ex. 5 we infer t3(xk−1) ≤ t2(p(v)). By part (a)
of Ex. 2 this implies t2(xk−1) ≤ t2(p(v)), contradicting the inequality t2(p(v)) < t2(xk−1)
established above. This proves the Claim.
Combining the Claim with part (b) of Ex. 8 we conclude that d(p(v)) ≤ d(xk−1) = k−1 and
therefore, by part (b) of Ex. 5, d(v) = d(p(v)) + 1 ≤ k.

This completes the proof of correctness.
The next exercise makes an important structural observation.

Exercise 10. As before, let V0 denote the set of vertices accessible from the root. Let
P = {{v, p(v)} | v ∈ V0, v 6= root}. Prove: the graph (V0, P ) is a tree.

4



Analysis: efficiency

Theorem 11. The BFS algorithm runs in linear time.

“Linear time” means O(length of the input). We use the “unit cost” model where our
alphabet is the set {1, . . . , n} and copying such a number or incrementing such a number
costs one unit of time. So the length of the input is Θ(n + m) (where n is the number
of vertices and m is the number of directed edges). “Linear time” therefore means time
O(n + m) in this model.

Exercise 12 (Directed Handshake Theorem). For a directed graph (V,E) with m directed
edges, ∑

v∈V

deg+(v) = m.

Proof of Theorem 11. In this model, the cost of the initialization is O(n). The while loop
is executed at most once for each vertex v. (No vertex is DEQUEUE-ed more than once.
Why?) For each v, the execution of this while loop (exploration of v) involves a constant
number of steps, plus a constant number of steps for each edge (v, u). The total cost of the
exploration of v is O(1 + deg+(v)), adding up to O(m + n) by Ex. 12.

* * * * *

Definition 13. A digraph is strongly connected if each vertex is accessible from each
vertex.

Exercise 14. Given a digraph G in adjacency list representation, decide in linear time
whether G is strongly connected.
Give a very simple solution based on BFS. Do not use DFS (Depth-first search).

5


