Breadth-first search¹

Procedure BFS (G, v_0) INPUT: digraph G = (V, E) in adjacency array representation root (source) $v_0 \in V$ OUTPUT: parent links, distances from root, accessibility from v_0 01 Initialization02for $v \in V$ do status(v) := WHITE, p(v) := NIL, $dist(v) := \infty$ 03 $Q := \emptyset$ (: empty FIFO queue created :) $status(v_0) := GRAY, enqueue(Q, v_0)$ (: root discovered, added to Q :)04 05 $dist(v_0) := 0, p(v_0) := v_0$ 06 Main loop 07 while $Q \neq \emptyset$ 08 u := dequeue(Q)(: remove head of Q, call it u:) 09 for $w \in Adj[u]$ (: exploring edge $u \to w$:) 10 if status(w) = WHITE then (: w discovered :)11 $\operatorname{status}(w) := \operatorname{GRAY}, p(w) := u, \operatorname{dist}(w) := \operatorname{dist}(u) + 1$ 12 enqueue(Q, w)(: w added at the tail of the queue :) 13 end(for) status(u) := BLACK14 (: u finished :)15 end(while)

Exercises.

16

- (1) Loop invariant: $(\forall v \in V)(v \in Q \Leftrightarrow \text{status}(v) = \text{GRAY})$
- (2) In the OUTPUT, all vertices accessible from v_0 are BLACK and all vertices that are not accessible from v_0 are WHITE
- (3) In the OUTPUT, $(\forall u \in V)(\text{dist}(u) \text{ is the distance from } v_0 \text{ to } u)$
- (4) A shortest path from v_0 to an accessible vertex u found by reversing the sequence $u \to p(u) \to p^2(u) \to \cdots \to p^d(u) = v_0$ where $d = \operatorname{dist}(u)$
- (5) Complexity of main loop in the unit cost model: $O(n_0 + m_0)$ where n_0 is the number of vertices accessible from v_0 and m_0 is the number of edges accessible from v_0

return arrays status, p, dist

 $^{^{1}}$ L. B., 01-26-2021. Last updated 01-31-2025