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Definitions.
Let w : R→ R be a real function. We shall call w a weight function if the
following four conditions hold.

(a) w is Lebesgue measurable

(b) (∀x ∈ R)(w(x) ≥ 0)

(c)
∫∞
−∞w(x) dx > 0

(d) (∀k ≥ 0)(
∫∞
−∞ x

2kw(x) dx <∞).

Under these conditions, the formula

〈p, q〉 =

∫ ∞
−∞

p(x)q(x)w(x) dx (1)

defines a positive definite inner product on the space R[x] of real polynomials.
Let f0, f1, . . . be a sequence of polynomials such that deg(fn) = n. Then

these polynomials form a basis of R[x].
We say that the fn form a sequence of orthogonal polynomials with

respect to the weight function w if additionally they are pairwise orthogonal
with respect to the inner product (1), i. e., for all i 6= j, 〈fi, fj〉 = 0.

Such a sequence of polynomials can be constructed by applying Gram–
Schmidt orthogonalization to the basis (1, x, x2, . . . ) of R[x].
We now state the result indicated in the title.

Theorem. Let f0, f1, . . . be a sequence of orthogonal polynomials with
respect to some weight function w. Then, for all n ≥ 0, the polynomial fn
has n distinct real roots and the roots of fn+1 and fn strictly interlace.
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The typical proof of this result proceeds by first proving that every sequence
of orthogonal polynomials satisfies a “3-term recurrence” of the form

fn(x) = (αnx+ βn)fn−1(x)− γnfn−2(x) (2)

for suitable real numbers αn, βn, γn where αn, γn > 0, assuming (as we may
without loss of generality) that the leading coefficient of each fn is positive.

History. In a U. Chicago Math REU class in summer 2015 I (LB) assigned
the Theorem as a challenge problem. Abigail Ward, then a recent recipient
of her Bachelors degree, was a TA in the class. She solved the problem
within days. A remarkable aspect of her proof of this classical result is that
it does not rely on the 3-term recurrence but goes straight to the proof of
the Theorem. This provides the most elegant proof I am aware of of the first
statement in the Theorem (that orthogonal polynomials have n distinct real
roots), in just 12 lines (below).

The proof presented below follows the outline Ward gave me in a letter
on July 16, 2016.

Proof adapted from Abigail Ward, UChicago REU, June 2015.

We first note that for all n, the polynomials f0, . . . , fn−1 span the n-dimensional
vector space of all polynomials of degree at most n− 1. Since each fn is or-
thogonal to each fi for 0 ≤ i ≤ n− 1, fn is orthogonal to all polynomials of
degree less than n.

Lemma 1. Let p be a polynomial of degree n ≥ 0. Assume p is orthogonal
to all polynomials of degree ≤ n− 2. Then p has n distinct real roots.

Proof. Obvious for n = 0, 1. Let now n ≥ 2. Assume for a contradiction
that p does not have n distinct real roots. Assume without loss of general-
ity that the leading coefficient of p is positive. Let λ1, . . . , λk denote those
distinct roots of p that have odd multiplicity, i. e., those roots at which p
changes sign. Observe that k ≤ n − 2. Consider the degree-k polynomial
q = (x− λ1) · · · (x− λk). Note that pq is everywhere non-negative, so

〈p, q〉 =

∫ ∞
−∞

p(x)q(x)w(x) dx > 0 . (3)

Thus p is not orthogonal to q, which is a polynomial of degree at most n− 2,
a contradiction. �
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Corollary. For n ≥ 1 and any scalar σ ∈ R, the polynomial fn − σ · fn−1
has n distinct real roots. In particular, fn has n distinct real roots.

Proof. Indeed, fn − σ · fn−1 is orthogonal to all polynomials of degree
≤ n− 2. �

Lemma 2. For n ≥ 0, fn+1 and fn do not share any roots.

Proof. Assume for a contradiction that fn+1(ζ) = fn(ζ) = 0 for some
ζ ∈ R. We know that f ′n(ζ) 6= 0 because fn has no multiple roots. Let

σ =
f ′n+1(ζ)

f ′n(ζ)
and h = fn+1 − σ · fn. Then h(ζ) = h′(ζ) = 0, so ζ is a multiple

root of h, contradicting the Corollary. �

We now show that for n ≥ 0, the roots of fn+1 and fn interlace. This is
vacuously true for n = 0. Assume now n ≥ 1. Let λ0 < λ1 < · · · < λn be
the roots of fn+1.

Assume for a contradiction that the roots of fn+1 and fn do not interlace.
This means that fn+1 has two consecutive roots, λi < λi+1, with no root of
fn in the closed interval [λi, λi+1].

Consider the function g = fn+1/fn. This is a differentiable function on
the closed interval [λi, λi+1], and g(λi) = g(λi+1) = 0. By Rolle’s Theorem,
there exists a point ζ ∈ (λi, λi+1) for which g′(ζ) = 0; we then have that
fn+1(ζ)f ′n(ζ) = f ′n+1(ζ)fn(ζ), which implies that

g(ζ) =
fn+1(ζ)

fn(ζ)
=
f ′n+1(ζ)

f ′n(ζ)
. (4)

Let σ = g(ζ). Consider now the function fn+1 − σ · fn. We know by the
above that this function vanishes along with its derivative at ζ, thus ζ is a
multiple root, contradicting the Corollary. �
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