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1 Sequences

Notation 1.1. N = {1,2,3,...} denotes the set of natural numbers (positive integers), and
we write Ng = NU {0} for the set of non-negative integers.

Definition 1.2. A sequence is a function whose domain is a subset of Nj.

If the domain of our sequence a is the set I C Ny then for ¢ € I we typically write a; instead
of a(7). For the sequence (ag, a1, as,...) we write (a, | n € Np) or simply (a,,). The traditional
notation for this sequence is {a,}, which, however, risks a confusion between the sequence
(an | n € I) and the set {a, | n € I}: in a sequence, the order of items matters and repeated
items count as separate entries; in a set, the order does not matter and repeated entries are
ignored. For instance, (4,2,2,3,3) # (3,4,2,3,2), and these are sequences of length 5, but
{4,2,2,3,3} = {3,4,2,3,2} = {2,3,4} is a set of size 3.

Convention 1.3. In these notes, by a “sequence” we shall always mean an infinite sequence
(the domain is infinite), unless expressly stated otherwise.

Definition 1.4. We say that the sequence (b, | n € J) is a subsequence of the sequence
(an |nel)if JC I and (Vj € J)(a; =b;).

Definition 1.5. A predicate on a set 2 is a function P : Q@ — {0, 1}.

The Boolean values 1 and 0 are often interpreted to mean YES/NO or TRUE/FALSE. If for
some a € Q we write “P(a),” this means P(a) =1, i.e., “P(a) is TRUE.” The case P(a) =0
means P(a) is FALSE; this is also expressed as “~P(a),” i.e., the negation of P(a) is TRUE.

Example 1.6. If Q = Ny and P(a) means “a is a sum of two squares” (i.e., (Ju,v € Ny)(a =
u? 4+ v?)) then P(13) and —P(15).

Definition 1.7. Let (a, | » € I) be a sequence that takes values in a set ¥ (the codomain
of a). Let P be a predicate on ¥.. We say that “P(a,) holds for all sufficiently large n” if
(Ino)(Vn € I)(n > ng = P(ay,)). In this case we also say that P eventually holds for a,, or
we say that the sequence (a,,) is eventually P.

We refer to ng as a threshold (beyond which P is guaranteed to hold). If ng is a valid
threshold an n; > ng then n, is also a valid threshold.

Example 1.8. The sequence (a,) is eventually nonzero if
(Fno)(Vn € I)(n > ng = a, #0).

Exercise 1.9. (a) Define what it means for a sequence to be eventually zero.



(b) Find a sequence that is neither eventually zero nor eventually nonzero.

Exercise 1.10. Give a simple sentence in plain English expressing the negation of the statement
that “the sequence S is eventually nonzero.”

Do not use the word “not” and avoid mathematical usage such as “there exist(s)
use the word “zero” and variants of the word “infinity.”
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We shall deal with predicates on the set of sequences of real numbers. So in this
case, €1, the domain of the predicate, will not be a subset of Ny but the set of all sequences.

Examples 1.11. 1. For a sequence s, let C'(s) mean “s is convergent.” Then C' is a predi-
cate on the sequences of real numbers.

)

2. For a sequence s, let L(s) mean “s is an £2-sequence,” i.e., for

s=(an |n €1I), L(s)means that Z a? < co. Again, L is a predicate on the sequences

icl

of real numbers.
Definition 1.12. A tail predicate is a predicate on sequences that does not change its value
if we change a finite number of entries of the sequence. The predicate is not affected even if
a finite number of terms of the sequence are undefined (like 0/0); we just view “undefined” as
another symbol which will not appear beyond the threshold.

Examples 1.13. of tail predicates:
1. “Convergence” (TRUE for convergent sequences)

2. “Eventually constant.” This predicate is TRUE for a sequence (a,, | n € I) if (Ing € Ny
and c € R)(Vn € I)(n > ng = a, = ¢).

3. “Eventually monotone nondecreasing.” This predicate is TRUE for a sequence (a,, | n €
I) if (3ng)(Vn,m e I)(m >n>ng = an < ap,).

4. (?-sequence.

2 Additional exercises about sequences

This section is optional; it does not relate to our main subject.

Definition 2.1. For a,r € Ny and m € N we say that r is the smallest non-negative residue
of @ modulo m if 0 <7 <m —1and (g € Ny)(a = gqm + ).

In this case we write r = (@ mod m).

Example: (23 mod 7) = 2 because 23 =3 -7+ 2.

Exercise 2.2 (Division Theorem). Prove: For every a € Ny and m € N there is a unique
r € Ny such that r = (e mod m).

Definition 2.3. The sequence (a, | n € Ny) is a geometric progression if (3¢)(Vn €
No)(an+1 = qa,). We call ¢ the quotient of the sequence.

Definition 2.4. The sequence (a, | n € Ny) is a periodic if (3d € N)(Vn € Ny)(antd = an)-
In this case we call d a period of the sequence. We call the smallest positive period the
minimal period of the sequence.



Example 2.5. The sequence A, A, B, A, A,B, A, A, B, ... is periodic. Its minimal period is 3,
and its periods are the positive multiples of the number 3 (i.e., 3,6,9,...).

Exercise 2.6. Let S be a periodic sequence with minimal period d. Prove: the periods of
S are precisely the positive multiples of d, i.e., the numbers dk for k¥ € N.  Hint. Use the
Division Theorem.

Exercise 2.7. (a) Find all possible minimal periods of periodic sequences of geometric pro-
gressions of real numbers.

(b) Find all possible minimal periods of periodic sequences of geometric progressions of complex
numbers.

Definition 2.8. A sequence (a, | n € Np) is eventually periodic (or ultimately periodic)
if (3d € N)(3Ing € Ng)(¥n € Ng)(n > 1o = antd = an).

Note that being eventually periodic is a tail predicate.

Example 2.9. Consider the sequence of digits of the number

43/84 = 0.51 190476 190476 . ... Show that this sequence is eventually periodic with period 6.
The repeating part is 190476; and 51 is the preperiodic part of the sequence.

We write 43/84 = 0.51190476 to express this circumstance; the two dots indicate the beginning
and the end of the repeating part. Another example: 1/6 = 0.16 = 0.1666.... Here the
minimal period is 1.

Exercise 2.10. Let 0 < 2 < 1 be a real number. Prove: (a) The sequece of digits of = is
eventually periodic if and only if z is a rational number.  (b) When is the sequence of digits
of = (after the decimal point) periodic?

Definition 2.11. The sequence of Fibonacci numbers is defined by the recurrence F, 12 =
Foi1+ F, (n € Np) and the initial values Fy =0, F; = 1.

So the first few terms of the Fibonacci sequence are
0,1,1,2,3,5,8,13,21,34,55,89,144, .. ..

Exercise 2.12. Let m € N. Prove that the sequence (F, mod m) is periodic with period

<m?—1.
Example: the (F,, mod 3) sequence is periodic with period 8; the repeating part is 0,1,1,2,0,2,2, 1.

Definition 2.13 (Golden ratio). Let |AB| denote the length of the line segment AB where
A, B are points on a line. Let A, B be distinct points on a line. Consider a segment AB and
the (unique) point C on the segment such that

|AC|  |AB|
|CB|  |AC|®
This proportion is called the golden ratio and is often denoted ¢ (the Greek letter phi).
Exercise 2.14. Prove:
1++5
¢ = 5

Exercise 2.15. Prove: the ratio of a diagonal to a side of the regular pentagon is the golden
ratio.

~ 1.618 (1)

Definition 2.16. We say that the sequence (a,, | n € Ny) is a Fibonacci-type sequence if
for all n € Ny we have a,49 = any1 + an.



Exercise 2.17. Find the quotients of all nonzero Fibonacci-type geometric progressions. (A
sequence is nonzero if at least one of its terms is nonzero.)  Hint. There are two such ratios;
one of them is the golden ratio.

Exercise 2.18 (Explicit formula for Fibonacci-type sequences). If we denote the two solutions
to the previous exercise by ¢ and @, it follows that there are exactly two Fibonacci-type geo-
metric progressions starting with 1:  (¢™) and (¢").

Prove: every Fibonacci-type sequence is a linear combination of these two Fibonacci-type geo-

metric progressions. In other words, if (a, | n € Ny) is a Fibonacci-type sequence then

G, B)(Yn)(an =a-¢" + 5" ). (2)

Exercise 2.19 (Explicit formula for the Fibonacci sequence). Determine « and § in the pre-
vious exercise in the case that a, = F;, (the n-th Fibonacci number).

3 Limits

Convention 3.1. Unless expressly stated otherwise, by sequences we shall always mean infinite
sequences of real numbers, possibly including a finite number of undefined terms.

We begin with reviewing the concept of a limit.

Definition 3.2 (Finite limit). Let I be an infinite subset of Ny and (a, | n € I) a sequence
of real numbers. Let L be a real number. The statement “the limit of a,, is L as n goes to
infinity,” denoted lim,, ,, a, = L and also denoted a,, — L, means that

(Ve > 0)(3Ing)(Vn > ng)(Jan, — L| < ¢). (3)

In other words, for all positive values €, we have |a, — L| < € for all sufficiently large values
of n. Yet in other words, for all positive values €, the members of the sequence will eventually
be within an additive € of L (i.e., within the interval (L — €, L + €)). Note that the threshold
depends on e.

Remark 3.3. Note that the limit defined in Eq. is not affected if we change a finite
number of terms in the sequence. The definition is not affected even if a finite number of terms
is undefined. So the statement that “the limit of the sequence is a given number L” is a tail
predicate.

Terminology 3.4. There are several other verbal expressions of the circumstance that lim,, . a,, =
L: “a, tends to L,”  “a, approaches L,”  “a, converges to L.” (One may also say “a,
goes to L,” but for finite limits L, the expression “a,, tends to L” is preferred. We usually omit
the statement “as n goes to infinity” which is implicit when we speak about limits of sequences.

Exercise 3.5. Equation defines finite limits (L is a number). Infinity is NOT a number.
Give a definition, analogous to Eq. (3)), that defines the statement that (a) lim, e an, = 00
(b) limy,— 00 ay, = —00.

Terminology 3.6. We speak of a finite limit if L (the limit) is a number, and of an infinite
limit if L = oo or L = —oo0.

WARNING 3.7. Not every sequence has a limit. It is a frequent mistake to begin rea-
soning about the limit of a sequence without establishing (or explicitly assuming) the existence
of the limit.



Notation 3.8. R = RU {oo, —00}.

Definition 3.9. We say that the sequence (a,) is convergent if it tends to a finite limit.
Sequences that tend to an infinite limit or have no limit at all are called divergent.

Note that being convergent/divergent are tail predicates.

Terminology 3.10 (Verbal expressions for infinite limits). If lim, o a,, = L where L € {+o00}
then we say that “the limit of a, is L,” “a, goes to L,”  “a, approaches L,” but we do
NOT say that “a, converges to L.” One can also say “a,, tends to L,” but “a, goes to L” is
preferred for infinite limits.

Exercise 3.11. Prove: if a,, approaches L , where L € R, then every subsequence of (a,,) also
approaches L.

Definition 3.12. We say that a sequence (a,,) is bounded if
(3C,no)(Vn > ng)(la,| < C). We say that (a,) is bounded from above if
(3C, np)(¥n > ng)(a, < C). “Bounded from below” is defined analogously.

Note that, by definition, boundedness is a tail predicate.
Exercise 3.13. Prove: every convergent sequence is bounded.

Exercise 3.14. Find a bounded sequence that is divergent. Use Ex. for a very simple
proof that your sequence is divergent.
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2) is convergent.

Exercise 3.15. Find a divergent sequence (a,) such that the sequence (a
Exercise 3.16. Prove that the constant sequence ¢, ¢,c,... tends to c¢. (Here ¢ is a number.)
Exercise 3.17. Let K, c be numbers. Prove: if a,, - K then ca,, — cK.

Exercise 3.18. (a) Prove that every eventually constant sequence is convergent.
(b) Find a convergent sequence that is not eventually constant.

Exercise 3.19. Prove: if a,, — K and b, — L, where K, L are numbers (i.e., these are finite
limits) then (a) a, +b, > K+ L and a,b, — KL.

Exercise 3.20. Prove: if a,, — K and b, — L, where K, L are numbers, and L # 0, then
an /by, — K/L.

Exercise 3.21. (a) Prove: if a,, = K where K is a number and a,, > 0 then \/a,, — VK.

(b) More generally, let f be a continuous function whose domain includes the range (set of
values) of the sequence (a,) and the number L. Prove: if a,, — L then f(a,) — f(L).

(c) Prove: if a, — K where K is a number and K > 0 then ,/a, — VK. (Note that \/z is
only defined for non-negative real numbers x.)

Definition 3.22. The sequence (a, | n € Np) is nondecreasing if (Vn)(a, < an4+1). The
sequence is (strictly) increasing if (Vn)(a, < any1)-

Exercise 3.23. Prove: every nondecreasing sequence has a limit.
In particular, if a nondecreasing sequence is bounded from above then it is convergent.

Fact 3.24. One of the most important limit relations is the following.

1 n
lim (1 + ) =e. (4)
n—oo n



This is part theorem, part definition. First we prove that the sequence on the left-hand side
is strictly increasing and bounded, thus showing that the left-hand side converges. Then we
define the number e as the value of this limit.

The following more general result holds.

Fact 3.25. Let z € R. Then \n
lim (1 + 7) =e°. (5)
n—oo n

Exercise 3.26. Let us define the sequence (s,) by the recurrence s,.; = (v/2)*" and the
initial value sqg = 0. Prove:

(a) sy is strictly increasing

(b)  (¥n)(sn < 2)

(¢) Note that from (a) and (b) it follows that this sequence converges

(d) s, —2.

Exercise 3.27. Let ¢ > 1 and let us define the sequence (t,(c)) by the recurrence t,1(c) =
() and the initial value ¢, = 0. Find the largest value ¢ such that the sequence t,(c) is
bounded (and therefore convergent) as n — occ.

Exercise 3.28. Let F,, denote the n-th Fibonacci number (see Def. . Give a very simple
proof of the following fact.

If the quotients F,,,1/F, converge then their limit is the golden ratio (see Def. [2.13).

Do not use the explicit formula for Fibonacci numbers (Exercises [2.18| and [2.19)).
This is a case when it is easier to compute the limit assuming it exists, than proving the
existence of the limit.

4 Upper/lower limit (limsup, liminf)
First we define the supremum of a set of real numbers.

Definition 4.1 (Upper bound). Let S C R. We say that L € R is an upper bound of S if
(Ve € S)(x < L).

Exercise 4.2. Prove that —oco is an upper bound of S C R if and only if S = .

Definition 4.3 (Supremum). Let S C R. We say that L is the supremum of S if (a) L is an
upper bound of S, and (b) for every upper bound M of S we have L < M. The supremum of
S is also called the least upper bound of S and is denoted sup(S).

The existence of the supremum is a basic fact about the ordering of the real numbers.
Fact 4.4. Every subset of R has a least upper bound.

Exercise 4.5. Show that the least upper bound is unique (every set has only one least upper
bound).

Definition 4.6. Lower bounds and least lower bound are defined analogously. The least lower
bound is also called the infimum and is denoted inf(.5).

Notation 4.7. For S C R we write —S = {—z |z € S}.
Exercise 4.8. Let S C R. Prove: inf(S) = —sup(—59).
Exercise 4.9. For which subsets S of R is sup(S) < inf(5)?



Definition 4.10. A set S C R is bounded from above if it has a finite upper bound.
Boudnedness from below is defined analogously.

Exercise 4.11. Prove: S C R is bounded from above if and only if sup(S) < oco.

Definition 4.12. A set S C R is bounded if S is bounded from above and bounded from
below.

Exercise 4.13. Show that S C R is bounded if and only if {|z| : © € S} is bounded from
above.

Exercise 4.14. Observe that L € R is an upper bound of the sequence (a,, | n € I) if and only
if L is an upper bound of the set range(S) := {a, | n € I}.

Definition 4.15. The supremum of a sequence is the supremum of its range. We define
the infimum of a sequence analogously. Notation: sup,,c; ¢, and inf,cj ay.

Definition 4.16 (Limsup). The upper limit or limsup of the sequence (ay, | n € I) is defined
as
limsupa, = lim A; (6)
nel 1—00

where, for ¢ € Ny, we set A; = sup{a, |n € I,n > i}.

Exercise 4.17. Prove that the sequence (A;) is nonincreasing. This guarantees that the limit
on the right-hand side of Eq. @ exists.

Exercise 4.18. For L € R, the statement “limsupa, = L7 is a tail predicate. Same with
lim inf.

Exercise 4.19 (characterization of limsup). Let M € R and let (a,) be a sequence. Prove:
limsup a, < M if and only if for all € > 0, eventually a,, < M + e.

Exercise 4.20 (limsup vs limit of subsequence). Let L € R and let (a,, | n € I) be a sequence.
Prove: if limsup,,c; a, = L then there exists a subsequence (a,, | n € J) (where J C I is an
infinite set) such that lim,c;a, = L.

Exercise 4.21. For every sequence S, liminf(S) < limsup(S).

The great advantage of using limsup and liminf is that, in contast to the limit, these two
quantities always exist.

Exercise 4.22 (existence of limit). Let S be a sequence. Prove: lim(S) exists if and only if
lim inf(S) = limsup(.9).

Exercise 4.23. Let a,, = (—1)"(1 + 1/n). Determine limsup a,, and liminf a,,.
Exercise 4.24 (subadditivity and submultiplicativity of limsup).

(a) Let (an) and (b,) be sequences. Prove: limsup(a, + b,) < limsupa, + limsupb,),
assuming the right-hand side makes sense. (The only case when it does not make sense
is when one of the terms is oo and the other is —00.)

(b) Let (a,) and (b,) be sequences of non-negative numbers. Prove: limsup(a,b,) <
(limsup ay,) - (limsupb,), assuming the right-hand side makes sense. (The only case
when it does not make sense is when one of the terms is 0 and the other is 00.)



Exercise 4.25. Prove: If limsupa, = —oc then lima,, = —oco.

Exercise 4.26.

(a) Find two bounded sequences, (a,) and (b,), such that limsup(a, + b,) < limsupa, +
lim sup b,, .

(b) Find two sequences, (a,) and (b,), such that limsup(a,, + b,) = —co while limsupa,, =
lim sup b,, = oo.

5 Standard definition and examples of asymptotic equal-
ity
Often, we are interested in comparing the rate of growth of two functions, as inputs increase in

length. Asymptotic equality is one formalization of the idea of two functions having the “same
rate of growth.”

Convention 5.1. Henceforth, the domains of our sequences will be N or Ny. So we shall write
lim sup,, _, o, a,, instead of lim sup,,¢; a,, and analogously for lim inf and lim. But we understand
that all definitions and results easily extend to sequences of which the domain is a subset of
Np.

Let (ay,) and (b,) be two sequences.

Definition 5.2 (Standard definition of asymptotic equality). We say that a,, is asymptotically
equal to by, if lim,,_, a, /b, = 1. We denote this circumstance by a,, ~ b,,.

Exercise 5.3. Prove: if a,, ~ b,, and ¢,, ~ d,, then a,,c, ~ b,d,, and
an/cn ~ bp/d,. (Recall that a finite number of undefined terms do not invalidate a limit
relation.)

WARNING 5.4. Asymptotic equality does not mean eventual equality, as, for instance,
example (a) in the next exercise shows.

Exercise 5.5. (a) Prove: n? + n ~ n?

(b) Prove: 5n3 + 7n — 1000 ~ 5n3

5n3 + 7n — 1000 )

P : ~—
(¢) Prove 8nl0 —6n2 —9n+7  8nT

(d) Note that for n = 1, the denominator in the preceding example is zero. Explain why this
is not a problem.

n
(e) Prove: there exist real numbers a, b such that <5> ~a-n’

Find a,b. Make your proof elegant.

Definition 5.6. A polynomial f is a function defined by an expression of the form

f@) =Y ™



where the coefficients ay, are (real) numbers. The degree of f, denoted deg(f), is the largest
k such that aj # 0. This ay, is called the leading coefficient of f and apz® is the leading term
of f. If all coefficients of f are zero then f is the zero polynomial, which we denote by 0, and
by convention, deg(0) = —oo.

Exercise 5.7. If f and g are polynomials then deg(fg) = deg(f) + deg(g) and deg(f +g) <
max{deg(f),deg(g)}.

Exercise 5.8. Prove:
(a) If f(x) and g(x) are polynomials with respective leading terms ax* and bz then f(n)/g(n) ~
(a/b)yn*—*.
(b) sin(1/n) ~ 1/n.
(¢) n(1+1/n) ~1/n.
(d) Vn2+1—n~1/(2n).
Exercise 5.9. Prove:
(a) If f is a function, differentiable at zero, f(0) = 0, and f/(0) # 0, then f(1/n) ~ f'(0)/n.
(b) Show that items (b), (c), (d) of the preceding exercise follow from part (a) of this exercise.

Exercise 5.10. Find two sequences of positive real numbers, (a,) and (b, ), such that a,, ~ b,
but a; # b7.
Next we state some of the most important asymptotic relations in mathematics.

Theorem 5.11 (Stirling’s Formula).

n! ~ (E> 2mn.
e

2n
Exercise 5.12. Prove: there exist real numbers a, b, ¢ such that ( ) ~a-n’ " Find a,b,c.
n

Next we state one of the most beautiful theorems of all of mathematics.

Definition 5.13 (Prime counting function). Let 7(z) denote the number of primes less than
or equal to x.

So 7(10) =4, 7(100) = 25, n(7) = 2, 7(—10) = 0.
Theorem 5.14 (The Prime Number Theorem).

X
7T(I‘) ~ M7

where In denotes the natural logarithm function.

This fundamental result was proved in 1896 independently by Jacques Hadamard and
Charles de la Vallée Poussin, using the theory of complex functions (Riemann’s zeta function).

Exercise 5.15. Feasibility of generating random prime numbers. Estimate, how many random
< 100-digit integers should we expect to pick before we encounter a prime number. (We
generate our numbers by choosing the 100 digits independently at random (initial zeros are
permitted), so each of the 101°° numbers has the same probability to be chosen.) Interpret this
question as asking the reciprocal of the probability that a randomly chosen integer is prime.
Assume, for the purposes of this estimate, that 10'°° is sufficiently large for the Prime Number
Theorem to give a good estimate. State how good the estimate needs to be.



6 Properties of asymptotic equality

The following simple exercise is conceptually significant.
Exercise 6.1. If a,, ~ b, then both of these sequences are eventually nonzero.

Let ¢ be a (real or complex) number. We write ¢ to denote the sequence (¢, ¢, ... ).
Exercise 6.2. If ¢ # 0 is a number then the statement a,, ~ ¢ is equivalent to a,, — c.

Note that this is false for ¢ = 0: the sequence 0 is not asymptotically equal to any sequence,
not even to itself, according to Ex.

Exercise 6.3. Let S denote the set of eventually nonzero sequences. Prove that ~ is an

[43 »”

equivalence relation on S, i.e., the relation “~” is
(a) reflexive: ap ~ ap;
(b) symmetric: if a,, ~ b, then b, ~ a,; and
(c) tramsitive: if a,, ~ by, and b, ~ ¢, then a, ~ c,.
(Implicit universal quantifiers: The statements above hold for all sequences (ay,), (by), (¢n) € S.)

Exercise 6.4. Consider the following statement.
If a,, ~ b, and ¢, ~ d, then a,, + ¢, ~ b, + d,. (8)

(a) Prove that is false, even if we assume that all the six sequences involved are eventually
nonzero.

(b) Prove: if anc, > 0 for all sufficiently large n then (8) is true.
Hint. Prove: if a,b,¢,d > 0 and a/b < ¢/d then a/b < (a+¢)/(b+ d) < ¢/d.

We say that the “statement A implies statement B” if B follows from A.
Exercise 6.5. Assume a,,b, > 1. Consider the following statements:
(A) an ~ by;
(B) Ina,, ~Inb,.
Prove:
(a) (A) does not imply (B).
(b) (A) does imply (B) under the stronger assumption that a, > 1.01.

Definition 6.6. We say that the sequence a,, is bounded away from the number L if there
exists ¢ > 0 such that for all sufficiently large n we have |a,, — L| > c.

The condition a,, > 1.01 in the preceding exercise can be replaced by the condition that a,, is

bounded away from 1 (while we continue to assume a,, > 1).

Exercise 6.7 (Squeeze principle). Assume that for all sufficiently large n we have a,, < b, < ¢p,.
Assume further that a,, ~ ¢,. Prove: a, ~ b, ~ ¢,.
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Exercise 6.8. (a) Prove: for all n > 1 we have n! > (E) .
e

Use the power series expansion of e*.
(b) Reason, why this result does not follow from Stirling’s formula.
(¢) Show that this result does follow from Stirling’s formula for all sufficiently large n.

Exercise 6.9. Prove: In(n!) ~ nlnn. Give two proofs. (a) Use Stirling’s formula. (b) Do
not use Stirling’s formula; use Ex. [6.8] instead.

Exercise 6.10. Let p, be the n-th prime number. Consider the following asymptotic equality:
pn ~nlnn. Prove that this statement is equivalent to the Prime Number Theorem.

Exercise’ 6.11. Let P(z) denote the product of all prime numbers < z. Consider the following
statement: In P(x) ~ x. Prove that this statement is equivalent to the Prime Number Theorem.

7 Extended definition of asymptotic equality

We wish the relation of asymptotic equality to be an equivalence relation among all sequences.
This is not true under the standard definition; the relation is not even reflexive: the all-zero
sequence 0 is not asymptotically equal to itself.

Exercise 7.1. a, ~ a, if and only if the sequence (a,,) is eventually nonzero.
To remedy this, we shall replace every occurrence of the fraction 0/0 by 1.

Remark 7.2. This does not mean that we think 0/0 = 1. No, the fraction 0/0 continues to
be undefined. This is simply a technical trick, we replace all occurrences of the fraction 0/0
among the fractions a,, /b, by 1. The benefits of this trick will be apparent below. I note that
this is not a standard trick, you will not find it in any textbook.

So the exact definition goes as follows.

Definition 7.3 (Extended definition of asymptotic equality). Let (a,) and (b,) be two se-
quences. Let ¢, = a,/b, except when a,, = b, = 0; in that case, let ¢, = 1. We say that
the sequence (a,) is asymptotically equal to the sequence (b,,) under the extended definition if
limy, s g, = 1. We denote this circumstance by a,, ~ by,

Note that if a, # 0 but b, = 0 then ¢, is undefined; and if infinitely many terms of the
sequence {¢,} are undefined then the sequence has no limit.

Exercise 7.4. Our extended definition indeed extends the standard definition:
(a) If ap ~ b, then a, ~ b,.

(b) If at least one of the sequences (a,) and (b,) is eventually nonzero, then a,, ~ b, if and
only if a,, ~b,,.

The converse of item (a) is not true: 0 ~ 0 but 0 # 0.
Compare item (b) with Ex.
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8 Properties of extended asymptotic equality

From now on we use our extended definition of asymptotic equality, Def. Remember,
however, that if we restrict our attention to eventually nonzero sequences then there is no
difference between the two concepts.

Exercise 8.1. Prove: a, ~ 0 if and only if a,, is eventually zero.

Exercise 8.2. Let S* denote the set of all sequences of real or complex numbers. Prove that

* . . . . . * .
~ is an equivalence relation on S8*, i.e., the relation “~” is

(a) reflezive: an ~ ap;
(b) symmetric: if a, ~ b, then b, ~ a,; and
(¢c) transitive: if a, X b, and b, ~ ¢, then a, ~ c,.
(Implicit universal quantifiers: The statements above hold for all sequences (a, ), (bn), (¢n)-)

Exercise 8.3. Prove: if a, ~ b, and ¢, ~ d, then a,c, ~ byd,. If, moreover, c,d, 2 0 for all
sufficiently large n then a,/c, ~ b, /dp.

9 Asymptotic inequality

We wish to define a notion of asymptotic inequality between sequences, to be called the “greater
than or asymptotically equal” relation, denoted a, = b,. It is natural to expect our definition
to satisfy the following conditions:

2 by and b, 2 a, hold;

~

(a) an ~ b, if and only if both a,
(b) if (Vn)(an > b,) then a, 2 b, ; and

~

(¢) if ap = by, and ay, 2 ¢, then a, 2

~ ~ ~

max{by, cp }.

It turns out that these three conditions together already determine the concept. The simplest
definition we could find that works for all pairs of sequences is described next. A more intuitive
definition that works in the important case of sequences of positive numbers will be given in
Exercise[9.15 below. The definition will be followed by a series of exercises each of which can be
solved in a few lines given the exercises preceding it; these exercises reveal the basic properties
of the = relation.

Definition 9.1. Let (a,) and (b,) be sequences of real numbers. We say that a,, is greater
than or asymptotically equal to b,, denoted as a, = b, if

an ~ max{a,,b,}. (9)

A dual definition, using min, can also be given; the two definitions are equivalent (Exer-
cise . Before proving the equivalence, we verify some simple consequences of the definition
given.

Exercise 9.2. Prove: if a,, ~ b,, then a,, = by,.

2 by

~

Exercise 9.3. Prove: if a,, > b, holds for all sufficiently large n then a,

12



Exercise 9.4. (a) Prove: if a, 2 b, and b,, = a,, then a, X by,

(b) [Squeeze principle] Prove: if a,, < b, < ¢, and ay, ~ ¢, then a, ~ b, ~ ¢,.

(¢) Prove: if a,, S b, < ¢, and a,, ~ ¢, then a, ~ b, ~ ¢,.

These facts are immediate from the definition. Now we give a somewhat technical yet
intuitive equivalent definition.

Exercise 9.5. Let (a,) and (b,) be sequences of real numbers. Let B = {n : a, < b,}. We
claim that a, 2 b, if and only if either B is finite or the subsequences (a, : n € B) and

~

(bn, : n € B) are asymptotically equal (in the extended sense).

This exercise seems to justify the term “greater than or asymptotically equal:” for some of
the subscripts, a,, > b,; and for the remaining subscripts, a, ~ by,

The dual characterization of the 2 relation is now immediate.

Exercise 9.6. Prove: a, > b, if and only if b, ~ min{a,, b, }.

~

The following is an immediate corollary:
Exercise 9.7. a, 2 b, if and only if —b,, 2 —a,.

We begin our preparations for proving that the > relation is transitive. The following two
exercises give the two most useful and intuitive characterizations of asymptotic inequality.

Exercise 9.8 (Characterization of asymptotic inequality 1). Prove: a, = b, if and only if

~

there exists a sequence d,, such that a, ~ d,, > b,.

Note that the = direction is immediate from the definition; the < direction follows using
Exercise [0.5

Exercise 9.9 (Characterization of asymptotic inequality 2). Prove: a, 2 b, if and only if
there exists a sequence ¢,, such that a, > ¢, ~ by,.
Hint. This exercise is an immediate consequence of the preceding exercise by switching signs

and using Exercise [9.7]
Now we are ready to prove transitivity.

Exercise 9.10. Prove: if a,, = b,, and b,, = ¢,, then a,, = c,,.

~ ~ ~

The proof only requires some manipulation of symbols using the preceding two exercises.

Indeed, notice that there exist sequences {u,} and {v,} such that a, > u, Kby vy > e Tt
follows that a,, 2 v, and therefore there exists a sequence {w,} such that a, Sy, > vUn; the

~

conclusion a,, 2 ¢, is now immediate.

~

Exercise 9.11. Conclude from the preceding exercises that the “>” relation is a partial order
on the set of extended asymptotic equivalence classes of sequences of real numbers.

Exercise 9.12. Prove: a, 2 0 if an only if a, is eventually non-negative, i.e., a,, > 0 for all
sufficiently large n.

Hint: Exercises and

Exercise 9.13. True or false:
(a) If a,, 2 by, and b,, is eventually non-negative then a,, must also eventually be non-negative.

~

(b) If a,, 2 b, and b, is eventually positive then a,, must also eventually be positive.

~
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Exercise 9.14. Prove: If a,, =

2 b, and ¢, 2 d,, and (b,,) and (d,,) are eventually non-negative
then apc, 2 bpdy,.

Next we turn to sequences of positive numbers; in this case, the following more intuitive
characterization of the 2 relation be given.

Exercise 9.15 (asymptotic inequality for sequences of positive numbers). Let (a,) and (b,)
be sequences of positive numbers. Prove: a,, 2 b, if and only if lim inf a,, /b, > 1.

~

An equivalent version of this characterization is the following:

Exercise 9.16. Let a,, b, > 0. Prove: a,, 2 b, if and only if for all € > 0, we have a,, > (1—¢)b,
for all sufficiently large n.

(As usual, the threshold depends on e.)

Exercise 9.17. Show that if a,, and b,, are sequences of negative numbers, then the condition
liminf a,, /b, > 1 is neither necessary, nor sufficient for the relation a,, 2 b,.

However, we do have a characterisation of the 2 relation, analogous to Ex. for sequences
are negative numbers.

Exercise 9.18 (asymptotic inequality for sequences of negative numbers). Let (a,) and (b,)
be sequences of negative numbers. Prove: a,, = b, if and only if limsup a,, /b, < 1.

~

Exercise 9.19. Let a,, b, < 0. Prove: a,, 2 b, if and only if for all € > 0, we have a,, < (1+€)b,
for all sufficiently large n.

We now wish to characterize asymptotic inequality for arbitrary sequences of real numbers.

Exercise 9.20. Let (a,) and (b,,) be arbitrary sequences of real numbers. Let P ={n | a, >0
and b, > 0},

N ={n]a, <0 and b, <0},

U={n]a,>0andb, <0},

and D = {n|a, <0 and b, > 0}.

Prove: a,, 2 b, if and only if all of the following hold:

(i) either P is finite or liminf,cp a, /b, > 1

(ii) either N is finite or limsup,,¢n @n /by <1

(iii) either D is finite or both (a, | n € D) and (b, | n € D) are eventually zero.

Exercise 9.21. (a) Prove: If a,, — b, 2 0 then a,, = b,.

~

~ ~ =

(b) The converse is false: a,, 2 b, does not imply a,, — b, = 0.

Exercise 9.22. (a) Prove: If a,, 2 b, and ¢, 2 d,, and (b,) and (d,) are eventually non-
negative then a,, + ¢, = b, + d,.

~

(b) Show that the conclusion would not follow without the non-negativity assumption.

Exercise 9.23. Assume a,,b, > 1 for all sufficiently large n. Consider the following state-
ments:
(A) ay, 2 by;

~

(B) Ina, 2 Inb,.
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Prove:
(a) (A) does not imply (B).

(b) (A) does imply (B) under the stronger assumption that (3¢ > 0)(3ng)(¥n > ng)(an, >
1 4+ ¢) (in other words, a, is bounded away from 1 in the positive direction). (See

Exercise [6.5])
Exercise™ 9.24. Let a,, > 1. Prove: a2 Ina, 2> n if and only if a,, = \/2n/Inn.

Exercise 9.25. We are given n distinct weights and want to sort them using a balance to
compare pairs of weights. The weights are given in any order, so there are n! possible inputs.

(a) Suppose an algorithm sorts every input using < C(n) comparisons. Prove: C(n) =
nlogy n.

(b) Prove the same conclusion if the algorithm is only required to work correctly one percent
of the time, i.e., it will correctly sort n!/100 inputs.

Exercise 9.26. (a) Find a sequence (a,) of positive numbers such that
Gnt1 2 apn and a, — 0.

(b) Let (a,) be a sequence of positive numbers such that a,4+1 2 a,. Show that a, cannot
decrease exponentially, i.e., for all 0 < ¢ < 1, we have a,, > ¢" for all sufficiently large n.
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