
Computability and Complexity
Instructor: László Babai
Date: February 25, 2021

These notes offer sketchy outlines of the basic concepts of (a) computability, developed
in the 1930s, including a sketch of the proof of the undecidability of the HALTING problem,
and (b) of complexity theory, developed in the early 1970s, including the concepts of Cook-
and Karp-reducibility and 𝒩𝒫-completeness.

1 Strings, total and partial functions, languages
Definition 1.1. Let Σ be a finite set to which we refer as the alphabet. Σ∗ denotes the
set of all words over Σ, i. e., all finite strings of “letters” from the alphabet, including the
empty string, usually denoted Λ. The length of a string 𝑋 is the number of letters in it, so
for instance |Λ| = 0 and if 𝑥 = 0010 then |𝑥| = 4.

Examples 1.2. Our favorite alphabets are Σ1 = {0, 1} (the Boolean alphabet), an actual al-
phabet like Σ2 = {𝐴,𝐵,𝐶}, all symbols used in Boolean formulas: Σ3 = {𝑥, 0, 1, [,], (,), ∧, ∨, ¬}.
So Σ∗

1 consists of all (0, 1)-strings, like Λ, 0, 1, 0010, etc. Σ∗
3 includes Boolean formulas like

(𝑥[01] ∨ 𝑥[02]) ∧ (¬𝑥[01] ∨ 𝑥[11]), and also meaningless strings like 0[∨110[(𝑥𝑥 ∧ ∨.

We shall use the questionmark as a special symbol, not in the alphabet, to mean “undefined.”
Let Σ1, Σ2 be finite alphabets. We shall consider functions 𝑓 ∶ Σ∗

1 → Σ∗
2. We shall refer to

such functions as total functions, in distinction from functions 𝑓 ∶ Σ∗
1 → Σ∗

2∪{?}, to which
we refer as partial functions. The domain of the partial function 𝑓 is defined as 𝑓−1(Σ∗

2),
and 𝑓 is “undefined” on the rest of Σ∗

1.

Definition 1.3. A language over the alphabet Σ is a set 𝐿 ⊆ Σ∗. The complement of
this language is 𝐿 = Σ∗ 𝐿. (We assume Σ is prespecified.) If 𝒞 is a class of languages then
we define 𝑐𝑜𝒞 = {𝐿 ∣ 𝐿 ∈ 𝒞} (the set of complements of the languages in 𝒞).

Here “class” is just a fancy term for “set.” We usually use this term when we talk about
a set of sets. A language is a set of strings, so a set of languages is a set of sets; therefore
we prefer to talk about a class of languages.

Exercise 1.4. If 𝒞 is a class of languages then 𝑐𝑜(𝑐𝑜𝒞) = 𝒞.

Exercise 1.5. Let 𝒞 and 𝒟 be classes of languages over the alphabet Σ. Then 𝑐𝑜𝒞∩𝑐𝑜𝒟 =
𝑐𝑜(𝒞 ∩𝒟). In particular, if 𝒞 ⊆ 𝒟 then 𝑐𝑜𝒞 ⊆ 𝑐𝑜𝒟.

Definition 1.6. Let 𝐿 ⊆ Σ∗ be a language. The characteristic function 𝜒u� ∶ Σ∗ → {0, 1}
of the language 𝐿 is defined as follows: for 𝑥 ∈ Σ∗ we set

𝜒u�(𝑥) = {
1 if 𝑥 ∈ 𝐿
0 if 𝑥 ∉ 𝐿

(1)

0Copyright © 2021 by László Babai

1

2 Graphs, Boolean circuits
We can encode graphs over a finite alphabet, for instance, by naming the vertices by integers
in binary, and concatenating the rows of the adjacency list by using appropriate separators.
We can also get an encoding over the Boolean alphabet by concatenating the rows of the
adjacency matrix. The specific encoding does not matter as long as it is “reasonable.”
Similarly, we can encode Boolean circuits. One of the criteria to be “reasonable” is that we
can easily recongnize which strings encode graphs or Boolean formulas, and which strings
do not.

Let 𝟥𝖢𝖮𝖫 denote the set of 3-colorable graphs (encoded as strings), and 𝖲𝖠𝖳 the set of
satisfiable Boolean formulas. These languages belong to the class 𝒩𝒫 (below); therefore,
their complements belong to the language class 𝑐𝑜𝒩𝒫. Let 𝗇𝗈𝗇𝟥𝖢𝖮𝖫 denote the set of
graphs that are not 3-colorable, and let 𝗇𝗈𝗇𝖦𝗋𝖺𝗉𝗁 denote the set of strings that do not
encode graphs. We observe that the complement of 𝟥𝖢𝖮𝖫 is 𝗇𝗈𝗇𝟥𝖢𝖮𝖫⊔𝗇𝗈𝗇𝖦𝗋𝖺𝗉𝗁 (where ⊔
denotes disjoint union). Similarly, the complement of 𝖲𝖠𝖳 is the set 𝗇𝗈𝗇𝖲𝖠𝖳⊔𝗇𝗈𝗇𝖢𝗂𝗋𝖼𝗎𝗂𝗍
where 𝗇𝗈𝗇𝖲𝖠𝖳 denotes the set of non-satisfiable Boolean circuits and 𝗇𝗈𝗇𝖢𝗂𝗋𝖼𝗎𝗂𝗍 denotes the
set of strings that do not encode Boolean circuits.

3 Computable and computably enumerable languages.
Halting

By a “program,” in this note we mean a program in your favorite programming language, per-
haps Python, C, or, for the theoretically minded, Turing Machines (TMs). (The “program”
of a TM is its transition table.) A programming language is universal if it can simulate Tur-
ing machines (TMs). Since Python (or C) can simulate TMs, for a programming language
to be universal, it suffices if it can simulate Python (or, equivalently, C).
Let 𝑃 be a program and 𝑋 an input to that program. Both of these objects are strings. If
we run 𝑃 on 𝑋 then either 𝑃 stops after a finite number of steps, or it never stops. In the
former case we say (𝑃,𝑋) is a halting computation; it produces an output, which we denote
by 𝑃 (𝑋). If (𝑃,𝑋) is a non-halting computation (never stops), we write 𝑃 (𝑋) = ?.

Definition 3.1. Let 𝖧𝖠𝖫𝖳𝖨𝖭𝖦 denote the set of those programs (in the given programming
language) that, when run on an empty input, halt.

This is perhaps the most important language in computer science. While this definition
depends on the arbitrary choice of programming language (e. g., Python), the theory does
not depend on the particular choice of a universal programming language (including TM
transition tables, which appeared in the original definition).

Definition 3.2. Let 𝑃 be a program that takes strings in Σ∗
1 as input, and, if it halts on

input 𝑋 ∈ Σ∗
1, produces an output 𝑃 (𝑋) ∈ Σ∗

2. This means 𝑃 computes a partial function
𝜓u� ∶ Σ∗

1 → Σ∗
2∪{?}. A partial function ℎ ∶ Σ∗

1 → Σ∗
2∪{?} is called a computable (partial)

function if there exists a program 𝑃 such that ℎ = 𝑔u�.

The traditional term for a computable function is a recursive (partial) function,
introduced by Kurt Gödel (1906–1978), the greatest logician of all time.

2

Definition 3.3. Let 𝐿 ⊆ Σ∗ be a language. We say that 𝐿 is a computable language if
its characteristic function is computable, i. e., there exists a program 𝑃 such that 𝜒u� = 𝜓u� .
Note that 𝜒u� is a total function and therefore 𝑃 must halt on every input. The set of
computable languages is denoted ℛ. The traditional term for a computable language is a
recursive set (Gödel), explaining the notation.

Exercise 3.4. The notion of computable languages does not depend on the choice of uni-
versal programming language in our definitions. (Prove that it is the same for Python as for
C.)

Exercise 3.5. Prove: ℛ = 𝑐𝑜ℛ. In other words, you need to prove that the complement
of every computable language is computable.

Definition 3.6. A decision problem is a problem that has a YES/NO answer. The typical
decision problem we need to deal with is the membership problem in a given language
𝐿 ⊆ Σ∗ : given a string 𝑋 ∈ Σ∗, decide whether 𝑋 ∈ 𝐿.

Example 3.7. Deciding whether a graph is 3-colorable is the membership problem in 𝟥𝖢𝖮𝖫.

Definition 3.8. We say that the membership problem in the language 𝐿 is decidable if
𝐿 ∈ ℛ, and undecidable otherwise.

Exercise 3.9. Prove: 𝟥𝖢𝖮𝖫 ∈ ℛ. In other words, show that 3-colorability of a graph is
decidable.

Definition 3.10. A language 𝐿 ⊆ Σ∗ is computably enumerable if there exists a com-
putable function of which 𝐿 is the domain. In other words, 𝐿 is computably enumerable
exactly if there exists a program that takes inputs from Σ∗ and halts on input 𝑋 ∈ Σ∗

if an only if 𝑋 ∈ 𝐿. The class of computably enumerable languages is denoted ℛℰ. The
traditional term is recursively enumerable sets.

Exercise 3.11. Prove: a language 𝐿 ⊆ Σ∗ is computably enumerable if and only if either
𝐿 = ∅ or 𝐿 is the range of a computable total function.

Exercise 3.12. Prove: ℛ ⊆ ℛℰ.

Exercise 3.13. Infer from the previous exercise and another exercise earlier (which one?)
that ℛ ⊆ ℛℰ ∩ 𝑐𝑜ℛℰ.

Exercise 3.14. Prove: ℛ = ℛℰ ∩ 𝑐𝑜ℛℰ.

4 HALTING is undecidable
Exercise 4.1. Prove: 𝖧𝖠𝖫𝖳𝖨𝖭𝖦 ∈ ℛℰ.

How difficult is the HALTING problem?

3

Probably the most famous problem of mathematics, “Fermat’s Last Theorem (FLT),” was
first stated by Pierre de Fermat around 1637, and not proved until three and a half centuries
later by Andrew Wiles (1995)1.

FLT states that if 𝑥, 𝑦, 𝑧, 𝑛 are positive integers and 𝑛 ≥ 3 then 𝑥u� + 𝑦u� ≠ 𝑧u�.

Exercise 4.2. Imagine that FLT is still an open question. Design a simple program 𝑃 such
that 𝑃 halts on empty input if and only if FLT is false.

This shows that deciding whether your program 𝑃 halts is not easier than solving FLT.

Another mathematical problem that acquired great fame among the general public was the
4-color theorem (4CT), which states that every planar graph is 4-colorable. The question
was first proposed by Francis Guthrie, a cartographer, in 1852. More than 120 years later, in
1976, Kenneth Appel and Wolfgang Haken designed a program 𝑃 about which they were able
to prove that the 4CT is true if and only if 𝑃 halts. Then they ran the program on a computer
at UIUC. They waited and waited, not knowing whether the program will ever halt. It did!,
within two weeks. Thus the theorem was proved. (Not a very elegant proof, though. Over
a thousand cases checked. But the number of cases was not known in advance—could have
been infinite.)

Actually, the HALTING problem is much harder even than suggested by these two examples.

Next we sketch the proof of the most fundamental result in computer science.

Theorem 4.3 (Undecidability of the HALTING problem). 𝖧𝖠𝖫𝖳𝖨𝖭𝖦 ∉ ℛ.

In other words, there is no algorithm that could decide, whether a given program halts
on empty input.

Proof. Assume for a contradiction that 𝖧𝖠𝖫𝖳𝖨𝖭𝖦 is decidable, i. e., there exists a hlting
program 𝐻 such that given a program 𝑃, we have

𝐻(𝑃) = {
1 if 𝑃 halts on empty input
0 if 𝑃 does not halt on empty input

(2)

Exercise 4.4. Given 𝐻, construct a halting program 𝐻1 with the following property. Let
𝑃 be a program and 𝑋 an input to 𝑃. 𝐻1 accepts the pair (𝑃,𝑋) as input and

𝐻1(𝑃,𝑋) = {
1 if 𝑃 halts input 𝑋
0 if 𝑃 does not halt on input 𝑋

(3)

The idea is to encode the input 𝑋 into the program 𝑃 ; this step produces a program 𝑃1
such that the behavior of 𝑃1 on empty input is the same as the behavior of 𝑃 on input 𝑋;
and then apply 𝐻 to 𝑃1. The program 𝐻1 can accomplish this.

1For light entertainment centered around the human drama leading to the proof, watch the musical “Fer-
mat’s Last Tango.” Among the characters featured are Pythagoras, Euclid, Newton, and Gauss, inhabitants
of the Aftermath.

4

Our next step is to construct a program 𝐴 that accepts pairs (𝑃,𝑋) as input, where 𝑃 is a
program and 𝑋 is an input to 𝑃, with the property that

𝐴(𝑃,𝑋) = {
? if 𝐻1(𝑃,𝑋) = 1
0 if 𝐻1(𝑃,𝑋) = 0

(4)

Note that, thanks to 𝐻, we were able to switch halting and non-halting: 𝐴(𝑃,𝑋) will halt
if and only if 𝑃 (𝑋) does not halt.
Here is a pseudocode for 𝐴, with reference to the halting program 𝐻1.

procedure 𝐴
Input: (𝑃,𝑋)
𝑧 ∶= 𝐻1(𝑃,𝑋), 𝑢 ∶= 1
if 𝑧 = 1 then

while 𝑢 > 0 do 𝑢 ∶= 𝑢 + 1
endwhile

else return 0, halt
Finally, let us consider the program 𝐵 that takes as input any program 𝑃 and is defined as
𝐵(𝑃) ∶= 𝐴(𝑃, 𝑃). Then, according to Eq. (4), for all programs 𝑃 we have

𝐵 halts on input 𝑃 if and only if 𝑃 does not halt on input 𝑃 . (5)

Since this is true for every program 𝑃, it is true in particular for 𝑃 ∶= 𝐵. Then it says,

𝐵 halts on input 𝐵 if and only if 𝐵 does not halt on input 𝐵, (6)

which is absurd. This contradiction proves that no such 𝐻 exists.

This is an example of the diagonal argument that descends from the ancient Greek paradox
“all Cretans lie” (told by Cretan philosopher Epimenides, cca. 600 BCE) and was first
employed as a template of a mathematical proof by Georg Cantor (1845–1918), creator of
set theory, in his famous proof that there are more real numbers than there are integers.

Exercise 4.5. Prove: 𝖧𝖠𝖫𝖳𝖨𝖭𝖦 ∉ 𝑐𝑜ℛℰ.

Exercise 4.6. (a) Prove: ℛℰ ≠ ℛ.
(b) Prove: ℛℰ ≠ 𝑐𝑜ℛℰ.

5 Polynomial time, Cook reduction
Definition 5.1. Let 𝑃 be a halting program. We say that 𝑃 runs in polynomial time if
there exists a polynomial 𝑝 such that on every input 𝑥 the number of steps the program takes
is ≤ 𝑝(|𝑥|). We say that a total function 𝑓 ∶ Σ∗

1 → Σ∗
2 is polynomial-time computable if

there is a polynomial-time program that computes 𝑓.

5

Examples 5.2. The following functions are polynomial-time computable.
Multiplication of integers, multiplication of integral matrices (matrices with integer entries),
computing the matching number of a bipartite graph (Kőnig, 1931) and of a general graph
(Edmonds, 1965), computing the determinant and the rank of an integral matrix (Edmonds,
1965), solving a nonsingular 𝑛×𝑛 system of linear equations with integer coefficients, modular
exponentiation.
Exercise 5.3. Given the positive integers 𝑛 and 𝑚, prove that (𝐹u� mod 𝑚) is computable
in polynomial time. Estimate the degree of the polynomial. (Here 𝐹u� is the 𝑛-th Fibonacci
number, and (𝑎 mod 𝑚) denotes the smallest non-negative remainder of 𝑎 modulo 𝑚. For
instance, (38 mod 9) = 2 and (−38 mod 9) = 7.)
Definition 5.4. The language class 𝒫 is the set of polynomial-time computable languages
(i. e., languages of which the characteristic functions can be computed in polynomial time).
Exercise 5.5. None of Examples 5.2 belongs to 𝒫.
Examples 5.6. The following languages belong to 𝒫: all finite languages, all cofinite lan-
guages, the set of bipartite graphs, the set of graphs with a perfect matching (Edmonds
1965), the set of planar graphs, the set of connected graphs, the set of even numbers, the set
of squares (1, 4, 9, 16,…), the set of prime numbers (Agrawal–Kayal–Saxena 2002).
Definition 5.7. A polynomial-time Turing reduction is called a Cook reduction. Notation:
𝑓1 ≺Cook 𝑓2. If two functions are mutually Cook reducible to each other then we say that
they are Cook equivalent.
Exercise 5.8. If 𝑓 ≺Cook 𝑓2 and 𝑓2 can be computed in polynomial time then 𝑓1 can be
computed in polynomial time.
Exercise 5.9. Every language is Cook equivalent to its complement.

6 Optimization vs. decision
6.1. It is an important observation that under rather general circumstances, discrete opti-
mization problems are Cook equivalent to their decision versions. The key condition is that
the optimum value is an integer with a polynomially bounded number of digits.
Definition 6.2. A discrete optimization problem has the following input: finite de-
scriptions of functions 𝑓, 𝑔1,… , 𝑔u� ∶ ℤu� → ℤ. The problem is to find

max
u�∈ℤu�

{𝑓(𝑥) ∣ (𝑥 ∈ ℤu�) and (∀𝑗)(𝑔u�(𝑥) ≥ 0)} . (7)

(The maximum is either an integer or ±∞.)
The 𝑔u� are called the constraints and 𝑓 is the objective function. We say that an
assignment 𝑥 ∈ ℤu� is feasible if it satifies the constraints. We say that the system is
feasible if there is a feasible point 𝑥 ∈ ℤu�. The optimum of an infeasible system is −∞
(maximum of the empty set).
The decision problem corresponding this optimization problem takes the same input plus
an integer 𝑁 and asks the question

(∃?𝑥 ∈ ℤu�)((∀𝑗)(𝑔u�(𝑥) ≥ 0) and 𝑓(𝑥) ≥ 𝑁) . (8)

6

Exercise 6.3. (a) The decision problem Eq. (8) can be solved by a single query to an oracle
for the optimization problem Eq. (7).
(b) Assume we are given an integer 𝑁0 and a guarantee that for any feasible 𝑥 ∈ ℤu� we
have |𝑓(𝑥)| ≤ 𝑁0. Then we can solve the optimization problem Eq. (7) by making at most
⌈log2(2𝑁0 + 1)⌉ queries to an oracle to the decision problem Eq. (8).
In both cases, state, what additional computation you need to do in addition to making the
oracle queries.

Hint. (a) is obvious. For (b), use binary search on 𝑁, starting with −𝑁0. The answer to
the first question should tell whether the optimization problem is feasible; what is the first
question?

6.4. In discrete optimization problems we often require the variables to be Boolean (take
values 0 or 1). This can be ensured by the constraints 𝑥≥0 and 1 − 𝑥u� ≥ 0. When we say
“the variables are Boolean,” we assume these constaints without actually listing them.

Example 6.5. The integer Knapsack problem (all weights and values are integers) is an
example of a discrete optimization problem with Boolean variables, used to select the items.
The input is a list (𝑤1,… ,𝑤u�, 𝑣1,… , 𝑣u�,𝑊) of positive integers (the weights, the values, and
the weight limit). We have 𝑛 Boolean variables (the selectors), listed as 𝑥 = (𝑥1,… , 𝑥u�).
The constraints are that the variables are Boolean and ∑u�

u�=1 𝑥u�𝑤u� ≤ 𝑊. The objective
function is ∑u�

u�=1 𝑥u�𝑣u�. So here is a description of the problem:

max
u�∈{0,1}u�

{
u�

∑
u�=1

𝑥u�𝑣u� ∣
u�

∑
u�=1

𝑥u�𝑤u� ≤ 𝑊} . (9)

The corresponding decision problem has an additional input item, 𝑁, the target value, and
the question is, does there exist an input (𝑥, …,𝑥u�) that satisfies the constraints and addi-
tionally satisfies the inequality ∑u�

u�=1 𝑥u�𝑣u� ≥ 𝑁.

Exercise 6.6. Let 𝖪𝖭𝖠𝖯 denote the set of inputs to the integer Knapsack problem (weights,
values, weight limit) that can achieve value ≥ 𝑁. (𝖪𝖭𝖠𝖯 is the language corresponding to
he decision problem described in the preceding exercise.) Show that the integer Knapsack
problem is Cook-reducible to the language 𝖪𝖭𝖠𝖯.

Definition 6.7. The Factoring problem takes a positive integer 𝑥 as input and returns
its prime factorization: the list of prime factors in non-decreasing order. For instance, if
𝑥 = 360 then the output is (2, 2, 2, 3, 3, 5). If 𝑥 = 1 then the output is ().
The decision version of the Factoring problem is the language

𝖥𝖠𝖢𝖳 = {(𝑥, 𝑠) ∣ 𝑥, 𝑠 ≥ 1 are integers and (∃𝑑)(2 ≤ 𝑑 ≤ 𝑠 ∧ 𝑑 ∣ 𝑥)} . (10)

Exercise 6.8. Prove that the Factoring problem is Cook equivalent to the language 𝖥𝖠𝖢𝖳.
For the reduction a Factoring to FACT, state the number of oracle queries; make it asymp-
totically as small as you can.

7

7 The class 𝒩𝒫
7.1. We formalize the notion of efficiently verifiable puzzles. Think of a puzzle like Sudoku,
which may or may not have a solution and may have multiple solutions. Solutions may be
difficult to find (if they exist at all), but if soeone presents a purported solution, it is easy
to verify, i. e., decide whether it is indeed a solution. A solution is a witness of solvability,
and solvability is our main concern. An example of such puzzles is 3-colorability of graphs;
a solution, which may or may not exist, is a legal 3-coloring of the vertices.

Definition 7.2. The language class 𝒩𝒫 is defined as follows.
Let 𝐿 ⊆ Σ∗ be a language. We say that 𝐿 ∈ 𝒩𝒫 if the following condition holds:

(∃ polynomial 𝑝)(∃𝐴 ∈ 𝒫)(∃ finite set Σ1)
(∀𝑥 ∈ Σ∗)(𝑥 ∈ 𝐿 ⇔ (∃𝑤 ∈ Σ∗

1)(|𝑤| ≤ 𝑝(|𝑥|) ∧ (𝑥,𝑤) ∈ 𝐴) .
(11)

If such a 𝑤 exists, we call 𝑤 a witness of the membership 𝑥 ∈ 𝐿.

Example 7.3. 𝟥𝖢𝖮𝖫 ∈ 𝒩𝒫. Witness: a legal 3-coloring of 𝑥.
Usually, naming the witness should suffice to indicate the proof, the required properties of
the witness (not too long, verifiable in polynomial time) being evident.

7.4. We ignored the issue when 𝑥 ∈ Σ∗ is a string that does not encode a graph. Under any
reasonable encoding of graphs, this should be polynomial-time decidable, so we can leave it
to the judge. In this case, the judge would reject all witnesses.

Exercise 7.5. Prove that each of the following languages belong to 𝒩𝒫:

1. 𝟥𝖢𝖮𝖫 (the set of 3-colorable graphs)

2. 𝟦𝖢𝖮𝖫, etc.

3. Hamiltonian graphs (graphs that have a Hamilton cycle)

4. 𝖪𝖭𝖠𝖯 (the decision version of the integer Knapsack problem)

5. 𝖥𝖠𝖢𝖳 (the decision version of the Factoring problem)

6. 𝖲𝖠𝖳 (Boolean circuit satisfiability)

7. 𝟥𝖲𝖠𝖳 (satisfiability of 3-CNF formulas [3 literals per clause])

In each case, just name the witness.

Exercise 7.6. Define the class 𝑐𝑜𝒩𝒫. (Check Def. 1.3.)

Exercise 7.7. Prove: 𝒫 ⊆ 𝒩𝒫. Find the simplest possible witnesses.

7.8. One of the greatest mathematical conjectures of our time is that 𝒫 ≠ 𝒩𝒫. This
is one of the seven “Millennium problems of mathematics.” The Clay Foundation offers a
$1 million prize for a proof or disproof.

8

7.9. Another related conjecture states that 𝒩𝒫 ≠ 𝑐𝑜𝒩𝒫.

Exercise 7.10. Consider the two conjectures stated above:

(a) 𝒫 ≠ 𝒩𝒫

(b) 𝒩𝒫 ≠ 𝑐𝑜𝒩𝒫

Prove one of the implications (𝑎) ⇒ (𝑏) and (𝑏) ⇒ (𝑎). Clearly state, which direction you
are proving.

Exercise 7.11. Infer from Ex. 7.7 that 𝒫 ⊆ 𝒩𝒫∩ 𝑐𝑜𝒩𝒫.

7.12. Yet another related conjecture states that 𝒫 ≠ 𝒩𝒫∩ 𝑐𝑜𝒩𝒫.

Exercise 7.13. Let (c) be the conjecture 𝒫 ≠ 𝒩𝒫 ∩ 𝑐𝑜𝒩𝒫. Prove one of the following
implications:
(𝑎) ⇒ (𝑐), (𝑏) ⇒ (𝑐), (𝑐) ⇒ (𝑎), (𝑐) ⇒ (𝑏). Here (a) and (b) refer to Ex. 7.10.

Exercise 7.14. Prove: 𝖥𝖠𝖢𝖳 ∈ 𝑐𝑜𝒩𝒫. Explicitly use AKS (Agrawal–Kayal–Saxena).

Exercise∗ 7.15. Prove: 𝖥𝖠𝖢𝖳 ∈ 𝑐𝑜𝒩𝒫. Do not use AKS.
This result was known nearly three decades before AKS (Vaughan Pratt, 1975).

7.16. Note that by Ex. 7.5, this means 𝖥𝖠𝖢𝖳 ∈ 𝒩𝒫 ∩ 𝑐𝑜𝒩𝒫.

Exercise 7.17. Prove: if Conjecture 7.12 fails then the RSA cryptosystem can be broken
in polynomial time.

8 Karp reducibility, 𝒩𝒫-completeness
Definition 8.1. A Karp-reduction is a polynomial-time many-one reduction.
In other words, let 𝐿1 ⊆ Σ1 and 𝐿2 ⊆ Σ2. A Karp-reduction from 𝐿1 to 𝐿2 is a polynomial-
time computable function 𝑓 ∶ Σ∗

1 → Σ∗
2 such that

(∀𝑥 ∈ Σ∗
1)(𝑥 ∈ 𝐿1 ⇔ 𝑓(𝑥) ∈ 𝐿2) (12)

We say that 𝐿1 is Karp-reducible to 𝐿2 if such an 𝑓 exists. This circumstance is denoted
𝐿1 ≺Karp 𝐿2.

Exercise 8.2. Prove: If 𝐿1 ≺Karp 𝐿2 then 𝐿1 ≺Cook 𝐿2.

Exercise 8.3. Prove: If the converse of the preceding exercise holds then 𝒩𝒫 = 𝑐𝑜𝒩𝒫.

Exercise 8.4. Prove: If 𝐿1 ≺Karp 𝐿2 and 𝐿2 ≺Karp 𝐿3 then 𝐿1 ≺Karp 𝐿3. The definition
of Karp-reducibility involves a polynomial (the reduction is a polynomial-time computation).
Let 𝑑u�u� denote the degree of the polynomial for the 𝐿u� ≺Karp 𝐿u� reduction. Give your best
upper bound on 𝑑13 in terms of 𝑑12 and 𝑑23.

Exercise 8.5. Prove: 𝟥𝖢𝖮𝖫 ≺Karp 𝖧𝖠𝖫𝖳𝖨𝖭𝖦.

9

Exercise 8.6. Prove: 𝗇𝗈𝗇𝟥𝖢𝖮𝖫 ≺Karp 𝖧𝖠𝖫𝖳𝖨𝖭𝖦.

Exercise 8.7. Give a very simple direct proof of the fact that 𝟥𝖢𝖮𝖫 ≺Karp 𝟦𝖢𝖮𝖫.
Do not use the fact that 𝟦𝖢𝖮𝖫 is 𝒩𝒫-complete.

Definition 8.8. We say that the language 𝐿 is 𝒩𝒫-complete if

(a) 𝐿 ∈ 𝒩𝒫

(b) (∀Σ)(∀𝑀 ⊆ Σ∗)(𝑀 ∈ 𝒩𝒫 ⇒ 𝑀 ≺Karp 𝐿).

The class of 𝒩𝒫-complete languages is denoted 𝒩𝒫𝒞.

By definition, 𝒩𝒫𝒞 ⊆ 𝒩𝒫.

Theorem 8.9 (Steven Cook and Leonid Levin, 1972/73). 𝖲𝖠𝖳 is 𝒩𝒫-complete.

Exercise 8.10. Prove that the following two conjectures are equivalent:

(a) 𝒫 ≠ 𝒩𝒫

(b) 𝒩𝒫𝒞 ∩𝒫 = ∅

Do not use the Cook–Levin Theorem.

Exercise 8.11. Prove that the following two conjectures are equivalent:

(a) 𝒩𝒫 ≠ 𝑐𝑜𝒩𝒫

(b) 𝒩𝒫𝒞 ∩ 𝑐𝑜𝒩𝒫 = ∅

State, where you are using the Cook–Levin Theorem.

Exercise 8.12. Prove: If 𝐿 ∈ 𝒩𝒫 and 𝖲𝖠𝖳 ≺Karp 𝐿 then 𝐿 ∈ 𝒩𝒫𝒞.

Exercise 8.13. Prove: If 𝖲𝖠𝖳 ≺Karp 𝖥𝖠𝖢𝖳 then 𝒩𝒫 = 𝑐𝑜𝒩𝒫.

Exercise+ 8.14. Prove: If 𝖲𝖠𝖳 ≺Cook 𝖥𝖠𝖢𝖳 then 𝒩𝒫 = 𝑐𝑜𝒩𝒫.

10

