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Abstract

We describe an upper bound on the independence number Erd&s—
Rényi random graphs and two results of Erdés that follow from this
bound: (a) an exponential lower bound on the diagonal Ramsey num-
bers, and (b) the existence of small triangle-free graphs of high chro-
matic number. The order of the latter will be n = O((kInk)3) where
k is the desired chromatic number.

1 Upper bound on the independence number whp

Let us pick the graph G = ([n], F) from the G(n,p) model. We denote this
circumstance by G ~ G(n, p).

Let A C [n], |A| = k.
The probability that A is independent in G is (1 — p)(g)

Therefore, by the union bound and using the trivial inequality (z) < n*/El,
the probability that a(G) > k is less than

(Z)(l ~p® < (n - i) W

This proves part (a) of the following statement.

Proposition 1.1. (a) Ifn(l—p)*=Y/2 <1 then P(a(G) > k) < 4.
(b) If Inn<p(k—1)/2 then P(a(G) > k) < 7.

Part (b) follows from Part (a) in the light of the inequality 1 + =z < €7,
applied to = := —p.
Part (b) is useful when p is small.

2 Exponential lower bound on the diagonal Ram-
sey numbers

Recall that the Erdés—Rado arrow symbol n — (k,£) (“n arrows (k,¢)”)

denotes the statement that every graph G of order n satisfies «(G) > k or

w(G) > ¢, where w(G) denotes the clique number of G. The Ramsey number

R(k,£) is the smallest value n such that n — (k,¢). The diagonal Ramsey
numbers refer to the case k = /.

Theorem 2.1 (Erdds, 1947).

R(k+1,k+1)> 22,



Compare this with the Erdés—Szekeres upper bound (1935):

R@+1¢+¢)<<f)<2%:45 (2)
In spite of significant efforts, the base 4 was not improved in this upper
bound for 88 years. On March 16, 2023, a paper was posted on arXiv,
“An exponential improvement for diagonal Ramsey” by Marcelo Campos,
Simon Griffiths, Robert Morris, and Julian Sahasrabudhe, arXiv 2303.09521),
claiming an upper bound of (4 — c)k for some positive constant c. The result,
when verified, will count as a major breakthrough.

No similar improvement of the base V2 in Erdés’s lower bound ok/2 —
ﬂk (Theorem i is known. Also wide open is Erdds’s conjecture that
limy oo R(k, k)'/* exists; all we know is that the lower limit is at least /2
(Theorem and the upper limit is at most 4 — ¢ (the recent paper).

Proof of Theorem[2.1. Let us set p = 1/2. Then, from Prop. we get
that if n < 2(6=1/2 then

P() > k) = Pa(0) = k) < 17 (3)

and therefore the probability of the OR of these two events is less than 2/k!.
It follows that there exists a graph of order 2¥/2 that has no clique and no
independent set of size k + 1, i.e.,

k2 f(k+1,k+1). (4)
By definition this is equivalent to Theorem O

Remark 2.2. We call a subset A C V' homogeneous in the graph G = (V, E)
if either A is an independent set in G or A induces a clique in G.

Not only did we show that there exists a graph of order n = 2¥/2 without
homogeneous subsets of size k+1; we have shown that almost all graphs have
this property. Yet an explicit construction of a graph with (1+c¢)* without a
homogeneous subset of size k 4+ 1 remain open, although much progress has
been made. It seems the current champion has order n = exp(kl/ (loglog k)c)
by Gil Cohen,

“Towards optimal two-source extractors and Ramsey graphs,” Electr. Col-
loq. Computat. Complexity 114 (2016).

3 Small triangle-free graphs with large chromatic
number

In this section we prove the existence of small triangle-free graphs of large
chromatic number, one of the early triumphs of the Probabilistic Method.

Theorem 3.1 (Erdés 1957). For every k there exists a triangle-free graph
of order O((kInk)3) and chromatic number k.

Compare this with Mycielski’s triangle-free graphs of large chromatic
number; those graphs have order 3 - 2572 — 1 for chromatic number k. This


https://arxiv.org/abs/2303.09521

order grows exponentially while Erdos’s grows polynomially as a function of
the desired chromatic number k.

For the proof we use the G(n,p) model, where p will be a function of n.
Let G ~ G(n,p).
Let X3 denote the number of triangles in G. Then

E(X3) =p’ <n

3> < (np)*/6. (5)

Lemma 3.2. If p is chosen such that
(a) p< en~2/3 where ¢ = (3/2)1/3 and
(b) Inn<p(l—1)/2

then there exists a triangle-free graph with at most n vertices and chromatic
number > n/(2().

Proof. Picking G from G(n,p), we have E(X3) < n/4 and P(a(G) > ¢) <
1/0!. By Markov’s inequality, P(X3 > n/2) < 1/2 and therefore the prob-
ability that X3 < n/2 and a(G) < ¢ is at least 1/2 — 1/¢! > 0. Therefore
both of these occur for some graph G. Let us now delete a vertex from each
triangle; we have deleted fewer than n/2 vertices. The remaining graph
H therefore has n’ > n/2 vertices, is triangle-free, and satisfies a(H) < /.
Therefore x(H) > n'/a(H) > n/(2(). O

Now we are ready to prove the existence of small triangle-free graphs of large
chromatic number.

Proof of Theorem [3.1. Let usset p = cn~2/3 where ¢ = (3/2)Y/3 = 1.1447... >
8/7. This p satisfies condition (a) in Lemma

We want to satisfy condition (b). For £ > 8 we have p(£ — 1) > n=3/2(.
Therefore it suffices to guarantee that Inn < n=2/ 3¢/2, in other words,
2n2/31nn < £. So let us choose £ = 2n?/3Inn. Now we get a triangle-free
graph with < n vertices and chromatic number k > n/(2¢) = n'/3/(41nn).
From this we get n < (12kInk)3. O
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