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Abstract

We describe an upper bound on the independence number Erdős–
Rényi random graphs and two results of Erdős that follow from this
bound: (a) an exponential lower bound on the diagonal Ramsey num-
bers, and (b) the existence of small triangle-free graphs of high chro-
matic number. The order of the latter will be n = O((k ln k)3) where
k is the desired chromatic number.

1 Upper bound on the independence number whp

Let us pick the graph G = ([n], E) from the G(n, p) model. We denote this
circumstance by G ∼ G(n, p).

Let A ⊆ [n], |A| = k.

The probability that A is independent in G is (1− p)(
k
2).

Therefore, by the union bound and using the trivial inequality
(
n
k

)
≤ nk/k!,

the probability that α(G) ≥ k is less than(
n

k

)
(1− p)(

k
2) <

1

k!

(
n(1− p)(k−1)/2

)k
. (1)

This proves part (a) of the following statement.

Proposition 1.1. (a) If n(1− p)(k−1)/2 ≤ 1 then P (α(G) ≥ k) < 1
k! .

(b) If lnn ≤ p(k − 1)/2 then P (α(G) ≥ k) < 1
k! .

Part (b) follows from Part (a) in the light of the inequality 1 + x ≤ ex,
applied to x := −p.
Part (b) is useful when p is small.

2 Exponential lower bound on the diagonal Ram-
sey numbers

Recall that the Erdős–Rado arrow symbol n → (k, `) (“n arrows (k, `)”)
denotes the statement that every graph G of order n satisfies α(G) ≥ k or
ω(G) ≥ `, where ω(G) denotes the clique number of G. The Ramsey number
R(k, `) is the smallest value n such that n → (k, `). The diagonal Ramsey
numbers refer to the case k = `.

Theorem 2.1 (Erdős, 1947).

R(k + 1, k + 1) > 2k/2 .
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Compare this with the Erdős–Szekeres upper bound (1935):

R(k + 1, k + 1) <

(
2k

k

)
< 22k = 4k . (2)

In spite of significant efforts, the base 4 was not improved in this upper
bound for 88 years. On March 16, 2023, a paper was posted on arXiv,
“An exponential improvement for diagonal Ramsey” by Marcelo Campos,
Simon Griffiths, Robert Morris, and Julian Sahasrabudhe, arXiv 2303.09521,
claiming an upper bound of (4−c)k for some positive constant c. The result,
when verified, will count as a major breakthrough.
No similar improvement of the base

√
2 in Erdős’s lower bound 2k/2 =√

2
k

(Theorem 2.1) is known. Also wide open is Erdős’s conjecture that
limk→∞R(k, k)1/k exists; all we know is that the lower limit is at least

√
2

(Theorem 2.1) and the upper limit is at most 4− c (the recent paper).

Proof of Theorem 2.1. Let us set p = 1/2. Then, from Prop. 1.1, we get
that if n ≤ 2(k−1)/2 then

P (ω(G) ≥ k) = P (α(G) ≥ k) ≤ 1

k!
(3)

and therefore the probability of the OR of these two events is less than 2/k!.
It follows that there exists a graph of order 2k/2 that has no clique and no
independent set of size k + 1, i. e.,

2k/2 6→ (k + 1, k + 1) . (4)

By definition this is equivalent to Theorem 2.1.

Remark 2.2. We call a subset A ⊆ V homogeneous in the graph G = (V,E)
if either A is an independent set in G or A induces a clique in G.

Not only did we show that there exists a graph of order n = 2k/2 without
homogeneous subsets of size k+1; we have shown that almost all graphs have
this property. Yet an explicit construction of a graph with (1+c)k without a
homogeneous subset of size k+ 1 remain open, although much progress has
been made. It seems the current champion has order n = exp(k1/(log log k)

c
)

by Gil Cohen,
“Towards optimal two-source extractors and Ramsey graphs,” Electr. Col-
loq. Computat. Complexity 114 (2016).

3 Small triangle-free graphs with large chromatic
number

In this section we prove the existence of small triangle-free graphs of large
chromatic number, one of the early triumphs of the Probabilistic Method.

Theorem 3.1 (Erdős 1957). For every k there exists a triangle-free graph
of order O((k ln k)3) and chromatic number k.

Compare this with Mycielski’s triangle-free graphs of large chromatic
number; those graphs have order 3 · 2k−2 − 1 for chromatic number k. This

2

https://arxiv.org/abs/2303.09521


order grows exponentially while Erdős’s grows polynomially as a function of
the desired chromatic number k.

For the proof we use the G(n, p) model, where p will be a function of n.
Let G ∼ G(n, p).

Let X3 denote the number of triangles in G. Then

E(X3) = p3
(
n

3

)
< (np)3/6. (5)

Lemma 3.2. If p is chosen such that

(a) p ≤ cn−2/3 where c = (3/2)1/3 and

(b) lnn ≤ p(`− 1)/2

then there exists a triangle-free graph with at most n vertices and chromatic
number ≥ n/(2`).

Proof. Picking G from G(n, p), we have E(X3) ≤ n/4 and P (α(G) ≥ `) <
1/`!. By Markov’s inequality, P (X3 ≥ n/2) ≤ 1/2 and therefore the prob-
ability that X3 < n/2 and α(G) < ` is at least 1/2 − 1/`! > 0. Therefore
both of these occur for some graph G. Let us now delete a vertex from each
triangle; we have deleted fewer than n/2 vertices. The remaining graph
H therefore has n′ > n/2 vertices, is triangle-free, and satisfies α(H) < `.
Therefore χ(H) ≥ n′/α(H) > n/(2`).

Now we are ready to prove the existence of small triangle-free graphs of large
chromatic number.

Proof of Theorem 3.1. Let us set p = cn−2/3 where c = (3/2)1/3 = 1.1447 . . . >
8/7. This p satisfies condition (a) in Lemma 3.2.
We want to satisfy condition (b). For ` ≥ 8 we have p(` − 1) ≥ n−3/2`.
Therefore it suffices to guarantee that lnn ≤ n−2/3`/2, in other words,
2n2/3 lnn ≤ `. So let us choose ` = 2n2/3 lnn. Now we get a triangle-free
graph with ≤ n vertices and chromatic number k ≥ n/(2`) = n1/3/(4 lnn).
From this we get n . (12k ln k)3.
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