
Algorithms – CMSC-27200
Basic algorithms in Number Theory:

Euclid’s algorithm and multiplicative inverse

Instructor: László Babai
Last updated at 12:40pm on 10-19-2022.

Z denotes the set of integers. All variables in this note range over Z.

1 Divisibility, definition of gcd

Definition 1.1 (divisibility). We say that a divides b (written as a | b) if
(∃x)(ax = b).

Exercise 1.2. Prove: (a) d divides all numbers ⇐⇒ d = ±1.
(b) All numbers1 divide z ⇐⇒ z = 0.

Exercise 1.3. Prove: (a) If d | a and d | b then d | a ± b (additivity of
divisibility);
(b) If a | b | c then a | c (transitivity of divisibility).
In each case, state, what basic property of multiplication you are using
(associativity, distributivity, etc.).

Let Div(a) denote the set of divisors of the number a. For instance,

Div(−6) = {±1,±2,±3,±6}. (1)

Exercise 1.4. Prove: (a) Div(a) = Div(−a). (b) Div(0) = Z
(c) If a 6= 0 then Div(a) is a finite set.

Exercise 1.5. Prove that the following three statements are equivalent:
(a) a | b and b | a
(b) Div(a) = Div(b)
(c) a = ±b

Notation 1.6.
Div(a, b) = Div(a) ∩Div(b) . (2)

So Div(a, b) is the set of common divisors of a and b.

Definition 1.7 (gcd). We say that d is a greatest common divisor of a and
b if

(i) d | a and d | b (: d is a common divisor of a and b :)

(ii) (∀e)(if e | a and e | b then e | d)
(: d is divisible by all common divisors of a and b :)

So d is “greatest” in the sense of divisibility. — We rephrase the definition.
The following exercise is central to our discussion.

1Part (b) of Ex. 1.2 includes the fact that 0 | 0. The reader may be puzzled: did
we overrule the prohibition agains division by zero? No, we did not: the definition of
divisibility (Def. 1.1) does not involve division, only multiplication. So 0 | 0 because there
exists x such that 0 · x = 0 (for instance, x = 17 is a solution).

1

Exercise 1.8. Prove: d is a greatest common divisor of a and b if and only
if

Div(a, b) = Div(d), (3)

i. e., the common divisors of a and b are precisely the divisors of d.

Note that if the number d satisfies either definition then so does −d. The
next exercise asserts that there are no other greatest common divisors.

Exercise 1.9. If d is a greatest common divisor of a and b then the greatest
common divisors of a and b are d and −d.

To make the gcd notation unique, we additionally require gcd(a, b) ≥ 0.

Convention 1.10. If d is a greatest common divisor of a and b then we
write gcd(a, b) = |d|.

So for example gcd(−30,−30) = 30.
Note that by Ex. 1.9, gcd(a, b) is unique, assuming it exists.
We defined gcd(a, b) by a wish-list; we need to prove that such a d

always exists. The proof will be algorithmic: it will not only prove the
existence of such d but also give an efficient way to calculate d.

Theorem 1.11. Every pair of numbers has a greatest common divisor.

First we settle some special cases.

Exercise 1.12. Div(a, 0) = Div(a). Therefore gcd(a, 0) exists and is equal
to |a|. (Note in particular that gcd(0, 0) = 0.)

Exercise 1.13. Div(a, a) = Div(a). Therefore gcd(a, a) exists and is equal
to |a|.

We also note that

Exercise 1.14. (a) Div(a) = Div(|a|) (b) Div(a, b) = Div(|a|, |b|)
(c) Div(a, b) = Div(b, a).

The key lemma to the proof of Theorem 1.11 is the following.

Exercise 1.15 (Euclid’s gcd Lemma, modern version).

Div(a, b) = Div(a− b, b) .

This lemma is not to be confused with “Euclid’s Lemma” which says
that if p is a prime number and p | ab then p | a or p | b.

It follows from Euclid’s gcd Lemma that

Exercise 1.16. For all integers k we have Div(a, b) = Div(a− kb, b).

(First prove this for k ≥ 0 by inductions on k and then infer from this
that the result also holds for all negative k.)

To make the algorithm efficient, we need to review the Division Theorem.

Exercise 1.17 (Division Theorem).

(∀a, b) (if b 6= 0 then (∃q, r)(a = bq + r and 0 ≤ r < |b|))

2

(Prove by induction on |a|.) The quantity q is the “integer quotient of a
divided by b” and r is the “least non-negative remainder of a modulo b.”

Notation 1.18. We write r = (a mod b) to denote the least non-negative
remainder of a modulo b.

For instance, 2 = (30 mod 7) = (30 mod −7) and 5 = (−30 mod 7).
This is the LATEX code2 for such expressions:

$5 = (-30 \bmod{7})$

2 Proof of existence of gcd: Euclid’s algorithm

To prove Theorem 1.11, we pick two numbers, a, b, of which we wish to
compute the gcd. By Ex. 1.14 we may assume a ≥ b ≥ 0.

Procedure: Euclid’s algorithm
Input: integers a ≥ b ≥ 0
Output: gcd(a, b)

Pseudocode A.

0 Initialize: A := a, B := b
1 while B ≥ 1 do
2 R := (A mod B) [Division Theorem]
3 A := B, B := R
4 end(while)
5 return A

Exercise 2.1. Prove that the algorithm terminates in a finite number of
steps.

The correctness of the algorithm follows from the following loop invariant:

Div(A,B) = Div(a, b) . (4)

Exercise 2.2. Prove that this is indeed a loop invariant.

This means the following: If Eq. (4) holds when the algorithm enters the
while loop then Eq. (4) also holds when the algorithm exits the while loop.
Given this loop invariant, we conclude that when looping terminates (i. e.,
when B = 0) we have Div(a, b) = Div(A, 0) = Div(A), so the returned value
A qualifies as gcd(a, b) by Ex. 1.8. This completes the proof of correctness of
Euclid’s algorithm and thereby the proof of Theorem 1.11 (that gcd exists).
�

The efficiency of the algorithm follows from the following observation:

2The pronunciation of the term “LATEX” is not “latex” (the source of natural rubber
or rubbery synthetic materials). It derives from TEX, the typesetting system created by
Donald Knuth, on which LATEX is built. As professor Knuth explains in his TEXBook, the
three letters are not the Roman T, E, X but the Greek τ, ε, χ and should be pronounced
like the first syllable in words like “technical” or “technology.”

3

Exercise 2.3. (a) Let Bi be the value of B produced after the i-th itera-
tion of the while loop, starting with B0 = b. Prove: for all i we have
Bi+2 ≤ Bi/2.

(b) Suppose b has n digits in binary. Then Euclid’s algorithm terminates
in ≤ 2n rounds. (A round is one execution of the while loop.)

Exercise 2.4 (Division algorithm). If A and B are positive integers with
≤ n binary digits then A mod B can be computed in O(n2) bit operations.

Therefore the total number of bit-operations is O(n3), so this is a poly-
nomial-time algorithm. (Good job, Euclid!)

Exercise 2.5. (a) Modify the Division Theorem so r satisfies −|b|/2 <
r ≤ |b|/2 (remainder with least absolute value). (b) Show that if in
Euclid’s algorithm we use remainders with least absolute value, the process
terminates in ≤ n rounds (where, as before, n is the number of binary digits
of b).

Exercise 2.6 (Euclid’s gcd Lemma, original version).

gcd(a, b) = gcd(a− b, b) .

3 Recursive implementation

We now give an alternative, recursive implementation of Euclid’s algorithm.
The non-recursive code is preferred.

Pseudocode B: recursive.

0 procedure gcd(a, b) (a ≥ b ≥ 0)
1 if b = 0 then return a
2 else r := (a mod b) [Division Theorem]
3 return gcd(b, r)

Exercise 3.1. Analyse this version of the algorithm.

4 Gcd as linear combination

Definition 4.1. A linear combination of the numbers a, b is a number of
the form au + bv. (As everywhere in this note, all numbers mentioned are
integers.)

A fundamental result about the gcd says that it can be written as a
linear combination:

Theorem 4.2 (Bézout’s Lemma). (∀a, b)(∃u, v)(gcd(a, b) = au + bv)

For instance, gcd(72, 52) = 4 = 72 · (−5) + 52 · 7

Exercise 4.3. Prove Theorem 4.2 by induction on |a|+ |b|.

Hint: use Euclid’s gcd Lemma.

Exercise 4.4. Prove: if d is a common divisor of a and b and d is a linear
combination of a and b then d is a greatest common divisor of a and b (i. e.,
|d| = gcd(a, b)).

4

5 Congruence, modular arithmetic

Definition 5.1 (Congruence). We say that a is congruent3 to b modulo
m if m | a− b. Notation: a ≡ b (mod m).

The notation in LATEX:

$a\equiv b \pmod{m}$

Exercise 5.2. Prove that congruence modulo m is an equivalence relation
on Z.

The equivalence classes are called residue classes mod m. If m 6= 0 then
there are exactly |m| residue classes mod m. NOTE: a and b belong to
the same residue class modulo m if and only if a ≡ b (mod m).

Exercise 5.3. Prove: if a ≡ x (mod m) and b ≡ y (mod m) then
a± b ≡ x± y (mod m) and ab ≡ xy (mod m).

Exercise 5.4. Prove: If a ≡ b (mod m) then gcd(a,m) = gcd(b,m). In
other words, all members of a residue class mod m have the same gcd with
the modulus.

6 Multiplicative inverse

Definition 6.1. We say that x is a multiplicative inverse of a modulo m if
ax ≡ 1 (mod m).

Exercise 6.2. Suppose x is a multiplicative inverse of a modulo m. Then
y is a multiplicative inverse of a modulo m if and only if y ≡ x (mod m).

So the multiplicative inverse is unique modulo m. We denote the least
positive multiplicative inverse of a by (a−1 mod m).
So for instance (3−1 mod 17) = 6.

Theorem 6.3. The number a has a multiplicative inverse mod m ⇐⇒
gcd(a,m) = 1.

The ⇒ direction of the proof is easy.

Exercise 6.4. Prove: if a ≡ b (mod m) and d | m then a ≡ b (mod d).

Exercise 6.5. Prove the ⇒ direction of Theorem 6.3.

Hint: let d = gcd(a,m). Suppose x is a multiplicative inverse of a
modulo m. So ax ≡ 1 (mod d). But ax ≡ 0 (mod d). So 1 ≡ 0 (mod d).

Exercise 6.6. Prove the ⇐ direction of Theorem 6.3.

Hint. Apply Bézout’s lemma (Theorem 4.2) to a and m.

3The text uses the term “a is equivalent to b modulo m.” This is not the commonly
used term in this context. Please use “congruent.”

5

7 Computing the multiplicative inverse

Next we shall learn how to use Euclid’s algorithm to efficiently compute the
multiplicative inverse.

We illustrate this on the example of computing x = (13−1 mod 18).
gcd(18, 13) = 1, so x exists. We can establish that gcd(18, 13) = 1

through the following sequence of remainders: 18, 13, 5, 3, 2, 1, 0
(namely, 18 = 13 ·1+5, 13 = 5 ·2+3, 5 = 3 ·1+2, 3 = 2 ·1+1, 2 = 1 ·2+0).

Consider now the following congruences. Both of these are true for
x = (13−1 mod 18).

18x ≡ 0 (mod 18)

13x ≡ 1 (mod 18)
(5)

Subtracting the second from the first, we obtain

5x ≡ −1 (mod 18) (6)

Subtracting twice this congruence from the preceding one, we obtain

3x ≡ 3 (mod 18) (7)

Subtracting this congruence from the preceding one, we obtain

2x ≡ −4 (mod 18) (8)

Subtracting this congruence from the preceding one, we obtain

x ≡ 7 (mod 18) (9)

So the solutions are those values of x that are congruent to 7 modulo 18. In
particular, (13−1 mod 18) = 7. (Verify!)

REMARK. Let us review the logic of this argument. We started from the
pair of congruences (5) and from these we deduced congruence (8). Does
this mean that x is a multiplicative inverse of 13 modulo 18 if and only if
x ≡ 7 (mod 18) ? NO. What it means is this: IF x is a multiplicative inverse
of 13 modulo 18 THEN x ≡ 7 (mod 18). This argument does NOT in itself
prove that x = 7 or x = 25 or x = −11 etc. are solutions. What we proved
is that ONLY these numbers (those that are congruent to 7 modulo 18) can
be solutions. But Theorem 6.3 guarantees that a solution EXISTS. So we
knew from the beginning that the number x we are looking for exists. We
concluded that x must belong to the residue class of numbers that are ≡ 7
(mod 18). Does that mean that for instance x = 7 is a solution? This is now
guaranteed by Exercise 6.2 which says in particular that the multiplicative
inverses form an entire residue class modulo 18. So if there is a number in the
residue class x ≡ 7 (mod 18) that is a multiplicative inverse of 13 modulo 18
then all numbers in this residue class (including 7, 25, −11, etc.) are. So it is
a combination of the calculations above with Theorem 6.3 and Exercise 6.2
that guarantee that every number ≡ 7 (mod 18) is a multiplicative inverse
of 13 modulo 18, and no number outside this residue class is. We found
all solutions. — Was it necessary to verify our solution at the end? Not

6

if we are confident that we did not make an arithmetic error. The residue
class x ≡ 7 (mod 18) is guaranteed to consist precisely of the multiplicative
inverses of 13 modulo 18. The only purpose of the verification is to check
we did not make an error in the calculations.

The next exercise asks you to turn the scheme we used above to calculate
(13−1 mod 18) into an algorithm.

Exercise 7.1. Suppose gcd(a,m) = 1. Design an efficient algorithm that
finds (a−1 mod m). Write your algorithm in elegant pseudocode. Do not
use recursion.

Hint: your code should be a modification of Pseudocode A. Your algo-
rithm should be as efficient as Euclid’s (within a constant factor).

Exercise 7.2. Given a and b, write gcd(a, b) as a linear combination of a
and b. Design an efficient algorithm to do so. Explain your algorithm in
concise, unambiguous English, no pseudocode required.

Hint. Here is an example: Let a = 72 and b = 52. Then gcd(a, b) = 4.
We need to find u, v such that 4 = 72u + 52v. Divide each side of this
equation by 4; we get 1 = 18u + 13v. So v must be a multiplicative inverse
of 13 modulo 18. (Why?) So take v = 7 (computed above), and find u.
(Compare with the example given after Theorem 4.2.)

7

