Algorithms — CS-27200
The “greedy coloring” algorithm
Léasz16 Babai

Recall that a legal coloring of a graph G assigns colors to the vertices such that adjacent
vertices never receive the same color. The minimum number of colors needed for this
is the chromatic number x(G) of the graph. The graph G is bipartite if x(G) < 2.

Let G = (V, E) be a graph with n vertices. We assume V = {1,2,...,n}.

The greedy coloring algorithm assigns a color (non-negative integer) c(x) to each
vertex x in a greedy manner as follows. The variable k stores the number of colors
used; this will be the output. Notation: adj(i) is the list of vertices adjacent to vertex
i

0 k:=0
1 for i =1ton do
let ¢(i) be the smallest positive integer such that
c(i) ¢ {c(y) | j <i, jeadj(i)} (: first available color :)

3 if ¢(7) > k then k := c(7)
4 end (for)
5 return k

It should be clear that the assignment ¢(.) defined by the algorithm is a legal coloring
of G. Observe that the colors used are exactly the numbers {1,...,k}.

Problem. (a) (“Greedy coloring is not so bad”) Prove: the number of colors used
is at most 1 + deg,, .. (deg, .« is the maximum degree.)

(b) (“Greedy coloring is terrible”) Let n be even. Construct a bipartite graph with
n vertices so that the greedy coloring algorithm will use a whopping n/2 colors. (You
need to state for all ¢ and j whether ¢ and j are adjacent. Just giving the graph up to
isomorphism does not determine what the greedy coloring does.)

(c) (“Greedy coloring can be optimal”) Given a graph, prove that one can relabel it
(permute the vertex labels) such that the greedy coloring algorithm gives an optimal
coloring (uses k = x(G) colors, where x(G) is the chromatic number). (Catch: we
cannot efficiently find this relabeling. But it exists.)

(d) Implement the greedy coloring algorithm in linear time (O(n + m) where m is the
number of edges). G is given in the adjacency array representation (array of adjacency
lists). “Implementation” refers to a detailed description of how you execute Line 2.
Prove that your algorithm runs in linear time.

Last updated 1-22-2014

