Loop invariants

László Babai

Last updated 1-31-2009

Given an algorithm, a configuration is an assignment of values to each variable. A configuration is feasible if it can actually occur during the execution of the algorithm. Let \(C \) denote the set of all configurations, whether feasible or not. We refer to \(C \) as the configuration space.

A predicate over a set \(A \) is a Boolean function \(f: A \rightarrow \{0, 1\} \) (1: “true,” 0: “false”). A transformation of \(A \) is a function \(g: A \rightarrow A \).

Let \(P \) and \(Q \) be predicates over the configuration space \(C \) and let \(S \) be a set of instructions, viewed as a transformation of \(C \). Consider the loop “while \(P \) do \(S \).” We say that \(Q \) is a loop-invariant for this loop if for all configurations \(X \in C \) the following implication is correct:

\[
P(X) \land Q(X) \Rightarrow Q(S(X)).
\]

(1)

In other words, if \(P \land Q \) holds for the configuration \(X \) then \(Q \) also holds for the configuration \(S(X) \), where \(S(X) \) is the configuration obtained from \(X \) by executing \(S \).

Note that the highlighted statement has to hold even for infeasible configurations. This is analogous to chess puzzles: when showing that a certain configuration leads to checkmate in two moves, you do not investigate whether or not the given configuration could arise in an actual game.

Exercise 1. Prove: if \(Q_1 \) and \(Q_2 \) are loop-invariants for the loop “while \(P \) do \(S \)” then \(Q_1 \land Q_2 \) is also a loop-invariant.

A configuration for Dijkstra’s algorithm consists of a status value (white, grey, black), a cost value (a real number or \(\infty \)), and a parent link (possibly NIL) for each vertex, and a set \(Q \) (the priority queue; here we treat it as a set of nodes; priority is based on the cost value).

Dijkstra’s algorithm consists of iterations of a single “while” loop. Consider the following statements:

\[
Q_1 : \quad (\forall u \in V)(u \in Q \text{ if and only if } u \text{ is grey})
\]

\[
Q_2 : \quad (\forall u \in V)(\text{if } u \text{ is white then } c(u) = \infty).
\]

\[
Q_2^* : \quad (\forall u \in V)(u \text{ is white if and only if } c(u) = \infty).
\]
\[Q_3 : (\forall u, v \in V)(\text{if } u \text{ is black and } v \text{ is not black then } c(u) \leq c(v)). \]

\[Q_4 : (\forall v \in V)(c(v) \text{ is the minimum cost among all } s \to \ldots \to v \text{ paths that pass through black vertices only}). \]

(We say that the path \(s = v_0 \to v_1 \to \ldots \to v_k = v \) passes through black vertices only if for \(0 \leq i \leq k - 1 \), the vertex \(v_i \) is black.)

Exercise 2.

(a) Prove that \(Q_1 \) and \(Q_2 \) are loop-invariants.

(b) Let \(R = Q_1 \& Q_2 \). Prove that \(R \& Q_3 \) is a loop-invariant.

(c) Prove that \(R \& Q_3 \& Q_4 \) is a loop-invariant.

(d) Prove that \(R \& Q_4 \) alone is not a loop-invariant. **Explanation.** You need to construct a weighted directed graph with nonnegative weights, a source, and assignments of all the variables (parent pointers, status colors, current cost values) such that \(R \& Q_4 \) holds for your configuration, but \(Q_4 \) will no longer hold after executing Dijkstra’s **while** loop. Your graph should have very few vertices.

Exercise 3. Infer from Exercise 2(c) that Dijkstra’s algorithm is correct.

Exercise 4. (a) Prove that \(Q_2^* \) is not a loop-invariant.

(b) Prove that \(Q_1 \& Q_2^* \) is a loop invariant.