Paley graphs and Paley tournaments

László Babai

Last updated 2021 May 21 at 0:20

1 Congruences

 \mathbb{Z} denotes the set of integers.

Definition 1.1. Let $a, b \in \mathbb{Z}$. We say that a divides b (notation: $a \mid b$) if $(\exists x)(ax = b)$. (Here x is also an integer.)

Exercise 1.2. Note that $0 \mid 0$.

Definition 1.3. Let $a, b, m \in \mathbb{Z}$. We say that a is **congruent** to b modulo m if $m \mid a - b$. Notation: $a \equiv b \pmod{m}$.

Exercise 1.4. Let $a \equiv b \pmod{m}$. Prove: gcd(a, m) = gcd(b, m).

Exercise 1.5. Prove: for a fixed m, the relation $a \equiv b \pmod{m}$ is an equivalence relation on \mathbb{Z} .

Terminology 1.6. The equivalence classes of this relation are called $\mathbf{mod}\ m$ residue classes.

Exercise 1.7. Observe: $a \equiv b \pmod{0}$ if and only if a = b.

Notation 1.8. Let $[i]_m$ denote the residue class of $i \mod m$. We call i a representative of this residue class.

Exercise 1.9. $[i]_m = [j]_m$ if and only if $i \equiv j \pmod{m}$.

Exercise 1.10. Let $m \neq 0$. Then the number of mod m residue classes is |m|.

Exercise 1.11. $gcd([i]_m, m) := gcd(i, m)$ is well-defined (it does not depend on the particular choice of representative i).

Definition 1.12. [Arithmetic of residue classes] Let p be a prime number. We define $[a]_m + [b]_m := [a+b]_m$ and $[a]_m \cdot [b]_m := [ab]_m$.

Exercise 1.13. Prove that these definitions are sound. What you need to prove is the following. If $a \equiv x \pmod{m}$ and $b \equiv y \pmod{m}$ then

- (i) $a + b \equiv x + y \pmod{m}$
- (ii) $ab \equiv xy \pmod{m}$.

Notation 1.14. We write \mathbb{Z}_m to denote the set of residue classes mod m.

Exercise 1.15. Prove that \mathbb{Z}_m is a *commutative ring* under the operations just defined, i.e., each operation is commutative and associative, multiplication is distributive over addition, there is a zero element, and every element has an additive inverse. There is also a multiplicative identity element.

Notation 1.16. The zero element of \mathbb{Z}_m is $[0]_m$ and the identity element is $[1]_m$. Below we shall omit the brackets and write 0_m and 1_m , and we omit m if its value is clear from the context.

Definition 1.17. We say that $b \in \mathbb{Z}_m$ is the multiplicative inverse of $a \in \mathbb{Z}_m$ if $ab = 1_m$. In this case we write $b = a^{-1}$.

Exercise 1.18. Prove: $a \in \mathbb{Z}_m$ has a multiplicative inverse if and only if gcd(a, m) = 1.

Notation 1.19. It follows that if m = p is a prime number then every nonzero element of \mathbb{Z}_p has a multiplicative inverse. In other words, \mathbb{Z}_p is **field**. In recognition of this fact, we change the notation from \mathbb{Z}_p to \mathbb{F}_p . So \mathbb{F}_p is the field of residue classes mod p. We refer to \mathbb{F}_p as the **finite field of order** p.

2 Quadratic residues

Definition 2.1. Let p be a prime number and $a \in \mathbb{Z}$. We say that a is a **quadratic residue** $\operatorname{mod} p$ if $a \not\equiv 0 \pmod{p}$ (i. e., $p \nmid a$), and $(\exists x \in \mathbb{Z})(a \equiv x^2 \pmod{p})$. We say that $b \in \mathbb{Z}$ is a **quadratic non-residue mod** p if $(\forall x \in \mathbb{Z})(b \not\equiv x^2 \pmod{p})$. Instead of "quadratic non-residue" we often simply say "non-residue."

Exercise* 2.2. -1 is a quadratic residue mod p if and only if p = 2 or $p \equiv 1 \pmod{4}$.

Terminology 2.3. Note that $a \in \mathbb{Z}$ is a quadratic residue mod p if and only if $[a]_p \neq 0_p$ and $[a]_p$ is the square of some element in \mathbb{F}_p , and $b \in \mathbb{Z}$ is a non-residue mod p if and only if $[b]_p$ is not the square of any element in \mathbb{F}_p . For this reason, we also use the terms "quadratic (non-)residue" in relation to \mathbb{F}_p : we say that an element $a \in \mathbb{F}_p$ is a quadratic residue if $a \neq 0_p$ and $(\exists x \in \mathbb{F}_p)(a = x^2)$, and we say that an element $b \in \mathbb{F}_p$ is a non-residue if $(\forall x \in \mathbb{F}_p)(b \neq x^2)$.

Exercise 2.4. Prove that (a) the number of quadratic residues in \mathbb{F}_p is (p-1)/2 and (b) the number of non-residues in \mathbb{F}_p is (p-1)/2.

Exercise 2.5. Let us represent the elements of \mathbb{F}_{13} by the numbers $\{-6, -5, \dots, 5, 6\}$. Verify that the quadratic residues are $\{\pm 1, \pm 3, \pm 4\}$. Accordingly, the non-residues are $\{\pm 2, \pm 5, \pm 6\}$.

Exercise 2.6. Prove: (a) if a, b are quadratic residues in \mathbb{F}_p then so is ab (b) if a is a q. residue and b is a non-residue in \mathbb{F}_p then ab is a non-residue (c) if a and b are non-residues then ab is a q. residue. (Only part (c) is non-trivial.)

Let p be an odd prime. We define the quadratic character $\chi_2 : \mathbb{F}_p \to \{0, 1, -1\}$ by setting, for $a \in \mathbb{F}_p$,

$$\chi_2(a) = \begin{cases} 0 & \text{if } a = 0\\ 1 & \text{if } a \neq 0 \text{ and } a \text{ is a square in } \mathbb{F}_p\\ -1 & \text{if } a \text{ is not a square in } \mathbb{F}_p \end{cases}$$

A common notation for the quadratic character mod p is the **Legendre symbol** $\left(\frac{a}{p}\right) := \chi_2(a)$. In these notes we shall not use the Legendre symbol.

Exercise 2.7. Prove: the quadratic character is multiplicative, i. e., $(\forall a, b \in \mathbb{F}_p)(\chi_2(ab) = \chi_2(a)\chi_2(b))$.

Exercise 2.8. Let p be an odd prime (i. e., $p \neq 2$). Prove: $\sum_{a \in \mathbb{F}_p} \chi_2(a) = 0$.

Exercise 2.9. Prove: $\chi_2(a) \equiv a^{(p-1)/2} \pmod{p}$.

Exercise 2.10. [Multiplicativity] Prove: $\chi_2(ab) = \chi_2(a)\chi_2(b)$.

Exercise 2.11. Prove: $\left|\sum_{a\in\mathbb{F}_p}\chi_2(a)\chi_2(a-1)\right|=1$.

3 Paley graphs

In this section, p is a prime number and $p \equiv 1 \pmod{4}$.

Definition 3.1. The Paley graph of order p, denoted PGr(p), is defined as follows. The vertices of PGr(p) are the elements of the field \mathbb{F}_p . Vertices i and j are adjacent if j-i is a quadratic residue in \mathbb{F}_p .

Exercise 3.2. Show that this definition is sound: it indeed defines a graph. You need to show that the adjacency relation is symmetric. Show where you use the assumption that $p \equiv 1 \pmod{4}$.

Exercise 3.3. What is the graph PGr(5)?

Exercise 3.4. Show that PGr(p) is (a) vertex-transitive (all vertices are equivalent under automorphisms) (b) edge-transitive (all edges are equivalent under automorphisms) (c) arc-transitive (all ordered pairs of adjacent vertices are equivalent under automorphisms).

Exercise 3.5. Show that PGr(p) is self-complementary (isomorphic to its complement).

Exercise 3.6. Show that every vertex of PGr(p) has degree (p-1)/2.

Exercise 3.7. Show that PGr(p) has diameter 2.

Exercise 3.8. (a) Show that every pair of adjacent vertices of PGr(p) has the same number of common neighbors. (b) Show that this number is (p-5)/4. (c) Show that every pair of distinct, non-adjacent vertices has the same number of common neighbors. (d) Show that this number is (p-1)/4.

Exercise 3.9. (a) Show that the adjacency matrix A of PGr(p) satisfies an equation of the form $A^2 + bA + cI = dJ$. Determine the coefficients b, c, d. (I is the identity matrix, I is the all-ones matrix.) (b) Find the eigenvalues of A. (c) Find the multiplicity of each eigenvalue of A.

4 Paley tournaments

In this section, p is a prime number and $p \equiv -1 \pmod{4}$.

Definition 4.1. The **Paley tournament of order** p, denoted PTr(p), is defined as follows. The vertices of PTr(p) are the elements of the field \mathbb{F}_p . (i,j) is an edge (we draw the arrow $i \to j$) if j - i is a quadratic residue in \mathbb{F}_p .

Exercise 4.2. Show that this definition is sound: it indeed defines a tournament. You need to show that this is an orientation of the complete graph, i. e., for every pair $\{a, b\}$ of vertices, exactly one of (a, b) and (b, a) is an edge. Show where you use the assumption that $p \equiv -1 \pmod{4}$.

Exercise 4.3. (a) What is PTr(3)? (b) Make a nice drawing of the tournament PTr(7).

Exercise 4.4. Show that PTr(p) is (a) vertex-transitive (b) edge-transitive (all edges are equivalent under automorphisms).

Exercise 4.5. Show that PTr(p) is self-converse (isomorphic to its converse, where every edge is reversed).

Exercise 4.6. Show that every vertex of PTr(p) has indegree (p-1)/2 and the same outdegree. Show that this follows from vertex-transitivity.

Exercise 4.7. Show that the directed diameter of PTr(p) is 2, i. e., if $a \neq b$ are vertices then b can be reached from a in at most two steps.

Exercise 4.8. (a) Show that for every edge (a, b) in PTr(p), the number of two-step walks from a to b is the same. (b) Show that this number is (p-3)/4. (c) Show that for every edge (a, b) in PTr(p), the number of two-step walks from b to a is the same. (d) Show that this number is (p+1)/4.

Definition 4.9. Let G = ([n], E) be an oriented graph. This means that the adjacency relation is antisymmetric: if $(u, v) \in E$ then $(v, u) \notin E$. We define the \pm -adjacency matrix $A = (a_{ij})$ of G as follows:

$$a_{ij} = \begin{cases} 1 & \text{if } (i,j) \in E \\ -1 & \text{if } (j,i) \in E \\ 0 & \text{otherwise} \end{cases}$$

Note that this includes $a_{ii} = 0$. If G is a tournament then $a_{ij} = 0 \iff i = j$.

Exercise 4.10. Let G be an oriented graph and let A be its \pm -adjacency matrix.

- (a) Observe that $A^T = -A$.
- (b) Assume $(\forall i, j)(\deg^+(i) = \deg^-(j))$ (all indegrees and outdegrees are equal). Then the all-ones vector is an eigenvector of A. What is the corresponding eigenvalue?
- (c) If G is vertex-transitive then the assumption in (b) holds.

Exercise 4.11. Let A be the \pm -adjacency matrix of the Paley tournament PTr(p).

- (i) Prove that A^2 can be expressed as $A^2 = aI + bJ$. Determine the coefficients a and b.
- (ii) Determine the eigenvalues of A^2 and their multiplicities.
- (iii) Determine the eigenvalues of A and their multiplicities (over \mathbb{C}).