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1 Congruences

Z denotes the set of integers.

Definition 1.1. Let a, b ∈ Z. We say that a divides b (notation: a | b) if (∃x)(ax = b).
(Here x is also an integer.)

Exercise 1.2. Note that 0 | 0.

Definition 1.3. Let a, b,m ∈ Z. We say that a is congruent to b modulo m if m | a − b.
Notation: a ≡ b (mod m).

Exercise 1.4. Let a ≡ b (mod m). Prove: gcd(a,m) = gcd(b,m).

Exercise 1.5. Prove: for a fixed m, the relation a ≡ b (mod m) is an equivalence relation
on Z.

Terminology 1.6. The equivalence classes of this relation are called mod m residue
classes.

Exercise 1.7. Observe: a ≡ b (mod 0) if and only if a = b.

Notation 1.8. Let [i]m denote the residue class of i mod m. We call i a representative of
this residue class.

Exercise 1.9. [i]m = [j]m if and only if i ≡ j (mod m).

Exercise 1.10. Let m 6= 0. Then the number of mod m residue classes is |m|.

Exercise 1.11. gcd([i]m,m) := gcd(i,m) is well-defined (it does not depend on the particular
choice of representative i).

Definition 1.12. [Arithmetic of residue classes] Let p be a prime number. We define [a]m +
[b]m := [a+ b]m and [a]m · [b]m := [ab]m.

Exercise 1.13. Prove that these definitions are sound. What you need to prove is the
following. If a ≡ x (mod m) and b ≡ y (mod m) then
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(i) a+ b ≡ x+ y (mod m)

(ii) ab ≡ xy (mod m).

Notation 1.14. We write Zm to denote the set of residue classes mod m.

Exercise 1.15. Prove that Zm is a commutative ring under the operations just defined,
i. e., each operation is commutative and associative, multiplication is distributive over ad-
dition, there is a zero element, and every element has an additive inverse. There is also a
multiplicative identity element.

Notation 1.16. The zero element of Zm is [0]m and the identity element is [1]m. Below we
shall omit the brackets and write 0m and 1m, and we omit m if its value is clear from the
context.

Definition 1.17. We say that b ∈ Zm is the multiplicative inverse of a ∈ Zm if ab = 1m. In
this case we write b = a−1.

Exercise 1.18. Prove: a ∈ Zm has a multiplicative inverse if and only if gcd(a,m) = 1.

Notation 1.19. It follows that if m = p is a prime number then every nonzero element of
Zp has a multiplicative inverse. In other words, Zp is field. In recognition of this fact, we
change the notation from Zp to Fp. So Fp is the field of residue classes mod p. We refer to
Fp as the finite field of order p.

2 Quadratic residues

Definition 2.1. Let p be a prime number and a ∈ Z. We say that a is a quadratic residue
mod p if a 6≡ 0 (mod p) (i. e., p - a), and (∃x ∈ Z)(a ≡ x2 (mod p)). We say that b ∈ Z
is a quadratic non-residue mod p if (∀x ∈ Z)(b 6≡ x2 (mod p)). Instead of “quadratic
non-residue” we often simply say “non-residue.”

Exercise∗ 2.2. −1 is a quadratic residue mod p if and only if p = 2 or p ≡ 1 (mod 4).

Terminology 2.3. Note that a ∈ Z is a quadratic residue mod p if and only if [a]p 6= 0p

and [a]p is the square of some element in Fp, and b ∈ Z is a non-residue mod p if and only if
[b]p is not the square of any element in Fp. For this reason, we also use the terms “quadratic
(non-)residue” in relation to Fp : we say that an element a ∈ Fp is a quadratic residue if
a 6= 0p and (∃x ∈ Fp)(a = x2), and we say that an element b ∈ Fp is a non-residue if
(∀x ∈ Fp)(b 6= x2).

Exercise 2.4. Prove that (a) the number of quadratic residues in Fp is (p − 1)/2 and (b)
the number of non-residues in Fp is (p− 1)/2.

Exercise 2.5. Let us represent the elements of F13 by the numbers {−6,−5, . . . , 5, 6}.
Verify that the quadratic residues are {±1,±3,±4}. Accordingly, the non-residues are
{±2,±5,±6}.
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Exercise 2.6. Prove: (a) if a, b are quadratic residues in Fp then so is ab (b) if a is a
q. residue and b is a non-residue in Fp then ab is a non-residue (c) if a and b are non-residues
then ab is a q. residue. (Only part (c) is non-trivial.)

Let p be an odd prime. We define the quadratic character χ2 : Fp → {0, 1,−1} by setting,
for a ∈ Fp,

χ2(a) =


0 if a = 0

1 if a 6= 0 and a is a square in Fp

−1 if a is not a square in Fp

A common notation for the quadratic character mod p is the Legendre symbol
(

a
p

)
:=

χ2(a). In these notes we shall not use the Legendre symbol.

Exercise 2.7. Prove: the quadratic character is multiplicative, i. e., (∀a, b ∈ Fp)(χ2(ab) =
χ2(a)χ2(b)).

Exercise 2.8. Let p be an odd prime (i. e., p 6= 2). Prove:
∑

a∈Fp
χ2(a) = 0 .

Exercise 2.9. Prove: χ2(a) ≡ a(p−1)/2 (mod p).

Exercise 2.10. [Multiplicativity] Prove: χ2(ab) = χ2(a)χ2(b).

Exercise 2.11. Prove:
∣∣∣∑a∈Fp

χ2(a)χ2(a− 1)
∣∣∣ = 1 .

3 Paley graphs

In this section, p is a prime number and p ≡ 1 (mod 4).

Definition 3.1. The Paley graph of order p, denoted PGr(p), is defined as follows. The
vertices of PGr(p) are the elements of the field Fp . Vertices i and j are adjacent if j − i is a
quadratic residue in Fp.

Exercise 3.2. Show that this definition is sound: it indeed defines a graph. You need to
show that the adjacency relation is symmetric. Show where you use the assumption that
p ≡ 1 (mod 4).

Exercise 3.3. What is the graph PGr(5) ?

Exercise 3.4. Show that PGr(p) is (a) vertex-transitive (all vertices are equivalent under
automorphisms) (b) edge-transitive (all edges are equivalent under automorphisms) (c)
arc-transitive (all ordered pairs of adjacent vertices are equivalent under automorphisms).

Exercise 3.5. Show that PGr(p) is self-complementary (isomorphic to its complement).

Exercise 3.6. Show that every vertex of PGr(p) has degree (p− 1)/2.
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Exercise 3.7. Show that PGr(p) has diameter 2.

Exercise 3.8. (a) Show that every pair of adjacent vertices of PGr(p) has the same number
of common neighbors. (b) Show that this number is (p− 5)/4. (c) Show that every pair
of distinct, non-adjacent vertices has the same number of common neighbors. (d) Show
that this number is (p− 1)/4.

Exercise 3.9. (a) Show that the adjacency matrix A of PGr(p) satisfies an equation of the
form A2 + bA + cI = dJ . Determine the coefficients b, c, d. (I is the identity matrix, J is
the all-ones matrix.) (b) Find the eigenvalues of A. (c) Find the multiplicity of each
eigenvalue of A.

4 Paley tournaments

In this section, p is a prime number and p ≡ −1 (mod 4).

Definition 4.1. The Paley tournament of order p, denoted PTr(p), is defined as follows.
The vertices of PTr(p) are the elements of the field Fp . (i, j) is an edge (we draw the arrow
i→ j) if j − i is a quadratic residue in Fp.

Exercise 4.2. Show that this definition is sound: it indeed defines a tournament. You need
to show that this is an orientation of the complete graph, i. e., for every pair {a, b} of vertices,
exactly one of (a, b) and (b, a) is an edge. Show where you use the assumption that p ≡ −1
(mod 4).

Exercise 4.3. (a) What is PTr(3) ? (b) Make a nice drawing of the tournament PTr(7).

Exercise 4.4. Show that PTr(p) is (a) vertex-transitive (b) edge-transitive (all edges are
equivalent under automorphisms).

Exercise 4.5. Show that PTr(p) is self-converse (isomorphic to its converse, where every
edge is reversed).

Exercise 4.6. Show that every vertex of PTr(p) has indegree (p − 1)/2 and the same out-
degree. Show that this follows from vertex-transitivity.

Exercise 4.7. Show that the directed diameter of PTr(p) is 2, i. e., if a 6= b are vertices then
b can be reached from a in at most two steps.

Exercise 4.8. (a) Show that for every edge (a, b) in PTr(p), the number of two-step walks
from a to b is the same. (b) Show that this number is (p−3)/4. (c) Show that for every
edge (a, b) in PTr(p), the number of two-step walks from b to a is the same. (d) Show that
this number is (p+ 1)/4.

Definition 4.9. Let G = ([n], E) be an oriented graph. This means that the adjacency
relation is antisymmetric: if (u, v) ∈ E then (v, u) /∈ E. We define the ±-adjacency
matrix A = (aij) of G as follows:
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aij =


1 if (i, j) ∈ E
−1 if (j, i) ∈ E
0 otherwise

Note that this includes aii = 0. If G is a tournament then aij = 0 ⇐⇒ i = j.

Exercise 4.10. Let G be an oriented graph and let A be its ±-adjacency matrix.
(a) Observe that AT = −A.
(b) Assume (∀i, j)(deg+(i) = deg−(j)) (all indegrees and outdegrees are equal). Then the
all-ones vector is an eigenvector of A. What is the corresponding eigenvalue?
(c) If G is vertex-transitive then the assumption in (b) holds.

Exercise 4.11. Let A be the ±-adjacency matrix of the Paley tournament PTr(p).
(i) Prove that A2 can be expressed as A2 = aI + bJ . Determine the coefficients a and b.
(ii) Determine the eigenvalues of A2 and their multiplicities.
(iii) Determine the eigenvalues of A and their multiplicities (over C).
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