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7.1 Notation: sets, functions, strings, closed-form expressions

Notation 7.1.1. We write N = {1, 2, 3, . . . } for the set of natural numbers (positive integers)
and N0 = {0, 1, 2, . . . } = {0} ∪ N for the set of non-negative integers. For n ∈ N0 we write
[n] = {1, 2, . . . , n}. So [3] = {1, 2, 3}, [1] = {1}, [0] = ∅. If A and B are sets then BA denotes
the set of functions f : A → B (functions with domain A and codomain B). |A| denotes the
cardinality (size) of the set A (the number of elements of A). For instance, for n ∈ N0 we have
|[n]| = n. A set of size k is referred to as a k-set. A k-subset of a set A is the set of those
subsets of A that are k-sets. For a set A we write P(A) = {B | B ⊆ A} for the powerset of A
(set of all subsets of A). If A is a set and k ∈ N0 then we write(

A

k

)
= {B ⊆ A : |B| = k} (7.1)

(the set of k-subsets of A).

Notation 7.1.2 (Strings). The sequences of length n of elements from a set Σ are functions
f : [n] → Σ. We can represent such a function as a string (or a word) of length n over the
“alphabet” Σ. (Any finite set can be used as the alphabet.) For instance, if Σ = {2, 5, 7} then
f = 727752 is a string of length 6 over Σ. It denotes the function f : [6] → Σ defined by
f(1) = 7, f(2) = 2, f(3) = 7, f(4) = 7, f(5) = 5, f(6) = 2. The overline serves to distinguish
this string from the product 7 · 2 · 7 · 7 · 5 · 2. But we omit the overline when it is clear from
the context that we are talking about a string rather than a product of numbers. The empty
string is denoted by Λ; this is the unique string of length 0. For n ∈ N0, we write Σn to denote
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2 CHAPTER 7. FINITE PROBABILITY SPACES

the set of strings (words) of length n over the alphabet Σ. For example, if Σ = {a,X, 7}
then XaX777aa ∈ Σ8. The set Σn is in a natural 1-to-1 correspondence with the set Σ[n] of
functions [n]→ Σ.

We call B = {0, 1} the Boolean alphabet. Boolean strings, also called (0, 1)-strings, are
strings over B. So Bn denotes the set of (0, 1)-strings of length n. For instance, B3 =
{000, 001, 010, 011, 100, 101, 110, 111}.
We can think of the Boolean strings of length n as representing the outcomes of the experiment
where we flip n coins; the outcome of each coin flip is either “Heads” (H) or “Tails” (T). So,
for instance, we interpret the string 011 as THH.

Exercise 7.1.3. (a) Prove: If A and B are finite sets then
∣∣BA

∣∣ = |B||A| .
(b) Let n, k ∈ N0. Let A be set of size n. We define the binomial coefficient

(
n
k

)
by the

equation (
n

k

)
=

∣∣∣∣(Ak
)∣∣∣∣ . (7.2)

Note that we did not assume n ≥ k. It follows from the definition that if n < k then
(
n
k

)
= 0.

(c) Prove: P(A) = 2|A|.
(d) Prove: |Σn| = |Σ|n.

Definition 7.1.4. A closed-form expression is an arithmetic expression that does not
involve summation (

∑
) or product (

∏
) symbols or ellipses (dot-dot-dots) and is made up of a

“standard” set of basic functions and operations. In this course, our standard set will consist
of the four arithmetic operations, taking powers, the factorial function, binomial coefficients,
and the constants 0, 1, e, π. Complex roots of unity are also included (as powers of 1). The
next exercises provide examples of non-closed-form expressions that can also be written as
closed-form expressions.

Exercise 7.1.5. Let n ∈ N0. Let S(n, 2) :=
(
n
0

)
+
(
n
2

)
+
(
n
4

)
+ · · · =

∑∞
k=0

(
n
2k

)
. (An infinite

sequence of zeros adds up to zero.) Express S(n, 2) as a simple closed-form expression.
Hint. Experiment with small values of n, arrive at a conjecture, prove your conjecture.

Exercise 7.1.6. Prove: (a)
∑∞

k=0

(
n
k

)
= 2n .

(b) (Vandermonde’s identity)
∑∞

k=0

(
n
k

)2
=
(

2n
n

)
.

(c) Let T (n, k) =
(
n
n

)
+
(
n+1
n

)
+ · · ·+

(
n+k
n

)
. Give a simple closed-form expression for T (n, k).

Definition 7.1.7. The Fibonacci numbers F0, F1, . . . are defined by the recurrence Fn =
Fn−1 + Fn−2 (for n ≥ 2) and the initial values F0 = 0, F1 = 1. So the sequence is
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, . . . . For instance, F5 = 5, F10 = 55, F12 = 144.

Exercise 7.1.8. Let n, k ∈ N0 and let d = gcd(n, k). Prove: gcd(Fn, Fk) = Fd.

Exercise 7.1.9. Let φ = (1 +
√

5)/2 (the golden ratio) and φ = (1 −
√

5)/2 (the algebraic
conjugate of φ). Prove:

Fn =
φn − φn√

5
. (7.3)
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7.2. ASYMPTOTIC EVALUATION OF SEQUENCES 3

So we have a closed-form expression for the Fibonacci numbers. This also means that we can
add the Fibonacci numbers to our “standard set” without changing the set of functions that
admit a closed-form expression.

Exercise 7.1.10. For n ∈ N0, let bn denote the number of (0, 1)-strings of length n with-
out consecutive zeros. So for instance, the string 10011101 does not count, while the string
10111011 does count toward b8.
Show that bn can be expressed as a closed-form expression.

Exercise 7.1.11. For n ∈ N0, prove:

bn/2c∑
k=0

(
n− k
k

)
= Fn+1 . (7.4)

Exercise 7.1.12. (a) For n ∈ N0, express the sum S(n, 4) :=
∑∞

k=0

(
n
4k

)
as a closed-form

expression. (b) Determine, for what values of n does S(n, 4) = 2n−2 hold.

7.2 Asymptotic evaluation of sequences

In exercises like those about random graphs, one often has to estimate binomial coefficients.
The following result comes in handy.

Stirling’s formula.

n! ∼ (n/e)n
√

2πn. (7.5)

Here the ∼ notation refers to asymptotic equality: for two sequences of numbers an and bn
we say that an and bn are asymptotically equal and write an ∼ bn if limn→∞ an/bn = 1.

To “evaluate a sequence an asymptotically” means to find a simple expression describing
a function f(n) such that an ∼ f(n). Stirling’s formula is such an example. While such
“asymptotic formulae” are excellent at predicting what happens for “large” n, they do not tell
how large is large enough.

An effective (non-asymptotic) variant, giving useful results for specific values of n, is the
following:

n! = (n/e)n
√

2πn(1 + θn/(12n)), (7.6)

where |θn| ≤ 1.

Exercise 7.2.1. Evaluate asymptotically the binomial coefficient
(

2n
n

)
. Show that

(
2n
n

)
∼

c · 4n/
√
n where c is a constant. Determine the value of c.

Copyright c© 2003, 2020 by László Babai. All rights reserved.



4 CHAPTER 7. FINITE PROBABILITY SPACES

We mention some important asymptotic relations from number theory. Let π(x) denote
the number of all prime numbers ≤ x, e. g., π(2) = 1, π(10) = 4, π(100) = 25. The Prime
Number Theorem of Hadamard and de la Vallée-Poussin (1896) asserts that

π(x) ∼ x/ lnx. (7.7)

Another important relation estimates the sum of reciprocals of prime numbers. The sum-
mation below extends over all primes p ≤ x.

∑
p≤x

1/p ∼ ln lnx. (7.8)

In fact a stronger result holds: there exists a number B such that

lim
x→∞

∑
p≤x

1/p− ln lnx

 = B. (7.9)

(Deduce (7.8) from (7.9).)

Exercise 7.2.2. Assuming 100-digit integers are “large enough” for the Prime Number Theo-
rem to give a good approximation, estimate the probability that a random integer with at most
100 decimal digits is prime. (The integer is drawn with uniform probability from all positive
integers in the given range.)

7.3 Finite probability space, events

Definition 7.3.1 (Probability distribution). Let Ω be a non-empty finite set. A function
f : Ω→ R is called a probability distribution on Ω if it satisfies the following two conditions:

(i) (∀a ∈ Ω)(f(a) ≥ 0) and

(ii)
∑
a∈Ω

f(a) = 1 .

We say that this probability distribution is uniform if

(∀a ∈ Ω)

(
f(a) =

1

|Ω|

)
. (7.10)

Definition 7.3.2. A finite probability space is a pair P = (Ω,Pr) where Ω is a non-empty
finite set and Pr : Ω→ R is a probability distribution on Ω. We say that the probability space
is uniform if Pr is the uniform distribution on Ω.
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7.3. FINITE PROBABILITY SPACE, EVENTS 5

We refer to the set Ω as the sample space and think of it as the set of possibe outcomes of
an experiment. We refer to the elements of Ω as elementary events.

Examples 7.3.3. 1. For s = X1 . . . Xn ∈ Bn let k(s) =
∑n

i=1Xi , the number of Heads in
the coin flip sequence. Let us fix a real number p in the interval 0 ≤ p ≤ 1. Let us define
the function Prp : Bn → R by the formula

Prp(s) = pk(s) · (1− p)n−k(s) . (7.11)

This equation defines a probability distribution on Bn (prove!).

2. Let C52 denote the set of 52 cards of the standard deck. A poker hand is an element

of

(
C52

5

)
, i. e., a set of 5 cards. When referring to poker hands, we always consider the

uniform distribution on

(
C52

5

)
.

Exercise 7.3.4. (a) Prove that Eq. (7.11) defines a probability distribution on Bn. (b) For
what value of p is Prp the uniform distribution on Bn? (c) The number of poker hands is(

52
5

)
.

Definition 7.3.5 (Events). Given a finite probability space (Ω,Pr), an event is a subset of
Ω. We identify the elementary event a ∈ Ω with the event {a}.

For the event A ⊆ Ω, we define the probability of A to be

Pr(A) :=
∑
a∈A

Pr(a) . (7.12)

In particular, for elementary events we have Pr({a}) = Pr(a).

Exercise 7.3.6. Prove: Pr(∅) = 0 and Pr(Ω) = 1.

Definition 7.3.7. The trivial events are those with probability 0 or 1.

Exercise 7.3.8. Prove: the number of trivial events is a power of 2.

Exercise 7.3.9. In a uniform probability space, calculation of probabilities amounts to count-
ing:

Pr(A) =
|A|
|Ω|

. (7.13)

This is the naive notion of probability: “number of good cases divided by the number of all
cases.”

CONVENTION [Unspecified distribution assumed uniform] Let Ω be a non-empty finite set.
If we say “pick an element at random from Ω” without specifying a probability distribution on
Ω, we mean the uniform distribution, so for any a ∈ Ω, the probability that a is being picked
is 1/|Ω|.

Copyright c© 2003, 2020 by László Babai. All rights reserved.



6 CHAPTER 7. FINITE PROBABILITY SPACES

Exercise 7.3.10 (Full house). A poker hand is a “full house” if it consists of three cards of a
kind (say three Kings) and two cards of another kind (say two 7s). We define the event “full
house” as the subset of Ω =

(
C52

5

)
consisting of the poker hands that are full house. Calculate

the probability of the full house event. Give a simple formula involving binomial coefficients.

Exercise 7.3.11 (Coin flips). Let 0 ≤ p ≤ 1. Consider the probability space (Bn,Prp) where
the probability distribution Prp is defined by Eq. (7.11). (a) Show that (a1) (∀i)(Pr(Xi = 1) =
p) (a2) (∀i 6= j)(Pr(Xi = 1 and Xj = 1) = p2) (a3) (∀I ⊆ [n])(Pr((∀i ∈ I)(Xi = 1)) = p|I|)
(b) Determine the probabilities of the following events: (b1) X1 = X2 (b2) X1 6= X2 (b3)∑n

i=1Xi = k . Your answers should be simple closed-form expressions of the input variables
n, p, and k.

Exercise+ 7.3.12. (Continued) (i)
∑n

i=1Xi is even. (Again, your answer should be a
simple closed-form expression.)
(ii) For what values of p is this probability greater than (1/2)(1 + 3−n) ?

Exercise 7.3.13 (Bridge). In the card game of bridge, the standard deck of 52 cards is evenly
distributed among four players called North, East, South, and West. What sample space does
each of the following questions refer to: (a) What is the probability that North holds all the
aces? (b) What is the probability that each player holds one of the aces? – These questions
refer to uniform probability spaces. Calculate the probabilities.

The rest of this section refers to a fixed finite probability space P = (Ω,Pr).

Exercise 7.3.14 (Modular equation). Let A,B ⊆ Ω be events. Prove:

Pr(A ∪B) + Pr(A ∩B) = Pr(A) + Pr(B). (7.14)

Definition 7.3.15. Events A and B are disjoint if A∩B = ∅. Events A and B are almost
disjoint if Pr(A ∩B) = 0.

Exercise 7.3.16 (Union bound). Let A1, . . . , Ak ⊆ Ω be events. Prove:

Pr(A1 ∪ · · · ∪Ak) ≤
k∑
i=1

Pr(Ai). (7.15)

Prove also that equality holds if and only if the Ai are pairwise almost disjoint.

7.4 Conditional probability, probability of causes

7.4.1 Conditional probability

Definition 7.4.1 (Conditional probability). If A and B are events and Pr(B) > 0 then the
“probability of A, given B,” denoted Pr(A | B), is given by the equation

Pr(A | B) =
Pr(A ∩B)

Pr(B)
. (7.16)
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7.4. CONDITIONAL PROBABILITY, PROBABILITY OF CAUSES 7

(B is the condition.)

In all exercises involving conditional probabilities, we assume that the condition has positive
probability.

Exercise 7.4.2. Let B ⊆ Ω with Pr(B) > 0. For a ∈ Ω, let Pr′(a) = Pr(a | B).
(a) Prove: (Ω,Pr′) is probability space. Moreover, for all A ⊆ Ω we have Pr′(A) = Pr(A | B).
(b) Prove: (B,Pr′|B) is probability space. Moreover, for all A ⊆ B we have Pr′(A) = Pr(A | B).

(Here, Pr′|B) is the restriction of the function Pr′ to B.)

Note that
Pr(A ∩B) = Pr(A | B) Pr(B) . (7.17)

Exercise 7.4.3 (Bayes’s Theorem).

Pr(B | A) =
Pr(A | B) · Pr(B)

Pr(A)
. (7.18)

The theorem is named after Reverend Thomas Bayes (1702–1761). P (B) is called the
prior probability (the probability of event B before knowing that event A has occurred), and
P (B | A) the posterior probability of B given A. P (A) is called the marginal probability.

Exercise 7.4.4. Prove: Pr(A ∩B ∩ C) = Pr(A | B ∩ C) Pr(B | C) Pr(C).

Exercise 7.4.5. We roll three dice. Each die shows a number from 1 to 6. (a) What is the
probability that the first die shows 5? (b) What is the probability that the sum of the three
numbers shown is 9? (c) What is the probability that the first die shows 5 given that the
sum of the three numbers shown is 9? (d) What is the probability space in this problem?
How large is the sample space? (In accordance with our convention, the distribution under
consideration is uniform.)

Definition 7.4.6. A partition of Ω is a set of pairwise disjoint events H1, . . . ,Hk of positive
probability, covering Ω:

Ω = H1 ∪ . . . ∪Hk, Hi ∩Hj = ∅, (∀i)(Pr(Hi) 6= 0) . (7.19)

The sets Hi are the blocks (or parts) of the partition.

In computer technology, blocks of a partition have also come to be called “partitions.” In this
course, please avoid this confusing terminology.

Exercise 7.4.7 (Theorem of Complete Probability). Let (H1, . . . ,Hk) be a partition of Ω
and let A ⊆ Ω be an event. Then

Pr(A) =

k∑
i=1

Pr(A | Hi) Pr(Hi). (7.20)

The significance of this formula is that the conditional probabilities are sometimes easier
to calculate than the left-hand side.

Copyright c© 2003, 2020 by László Babai. All rights reserved.



8 CHAPTER 7. FINITE PROBABILITY SPACES

7.4.2 Probability of causes

We illustrate this concept on some examples.

Consider a test for disease D. A false positive is a positive outcome of the test while the
patient does not have disease D, and a false negative is a negative outcome while the patient
does have the disease. Note that the probability of a false positive is a conditional probability
(probability of positive outcome given that the disease is not present) and analogously, the
probability of a false negative is also a conditional probability.

Exercise 7.4.8. A random member x of a population W is tested for disease D. We know
that the test has 1% false positives and 1% false negatives when applied to random members of
the population W . We also know that 1% of the population W suffers from disease D. Person
x tests positive. What is the probility that x has disease D?

With such a highly reliable test, one would think the probability of being sick given a
positive test result is high. In fact, it turns out that the probability is 50%. (Work it out.)

This striking exercise is a (significant) modification of an example stated by Chris Wiggins
in an article in the Scientific American (Dec 4, 2006), with the provocative title “What is
Bayes’s theorem, and how can it be used to assign probabilities to questions such as the existence
of God? What scientific value does it have?”

Wiggins begins his article with the following question.

A patient goes to see a doctor. The doctor performs a test with 99 percent
reliability–that is, 99 percent of people who are sick test positive and 99 percent
of the healthy people test negative. The doctor knows that only 1 percent of
the people in the country are sick. Now the question is: if the patient tests
positive, what are the chances the patient is sick?

At first glance this question seems identical with Ex. 7.4.8. Indeed, professor Wiggins informs
the reader of the counterintuitive answer that the chance in question is 50%.

In fact, the chance is likely to be considerably higher. The data point that “only 1 percent
of the people in the country are sick” has limited relevance; the relevant data would be the
prevalence of disease D among “patients,” i. e., individuals who “go to see a doctor,” presum-
ably because of some symptoms. Perhaps we should further restrict the population to those
patients with symptoms compatible with disease D, or even indicative of the possibility of
disease D – why else would the doctor run a test for that particular disease? Presumably
the prevalence of D is considerably higher among this restricted population than among “the
people in the country.”

Exercise 7.4.9. In Ex. 7.4.8, what is the probability that x has disease D if the test comes back
negative? State your answer as a fraction reduced to its smallest terms (i. e., the numerator
and the denominator are relatively prime).
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Exercise 7.4.10. In Ex. 7.4.8, what is the probability that comes back (a) positive (b) nega-
tive, assuming the prevalence of disease D among population W is 3% ?

Exercise 7.4.11. In Ex. 7.4.8, the doctor opts for a less expensive test. The test still has 1%
chance of a false negative, but the chance of a false positive is 3%. How does this affect the
probability that x has disease D if the test comes back (a) positive (b) negative?

Exercise 7.4.12. Diseases A and B have similar symptoms. Let W be the population of
all patients showing these symptoms. The two diseases can only be differentiated by costly
tests. We know (from sampling the population and performing these costly tests) that 70%
of W have disease A, 25% have disease B, and 5% have some other disease. We consider the
effectiveness of treatment T . We know that 60% of the patients with disease A respond to T ,
while only 12% of the patients with disease B respond to treatment T . From the rest of the
population W , 40% respond to treatment T . Answer the following questions. State the exact
value of each required probability as a fraction reduced to it lowest terms.

(a) A new patient arrives at the doctor’s office. The doctor determines that the patient
belongs to W . What is the probability that the patient will respond to treatment T?

(b) The patient’s insurance will not pay for the expensive tests to differentiate between the
possible causes of the symptoms. The doctor bets on treatment T . A week later it is
found that the patient did respond to the treatment. What is the probability that the
patient had disease A? Show all the intermediate results you need to compute.

(c) What is the probability space to which the discussion above refers?

Warning: Your answer to (c) needs to be simple. You cannot base it on calculations you
performed in (a) and (b); those calculations don’t make sense without having previously defined
a probability space. So answering (c) has to precede answering (a) and (b).

7.5 Independence, positive and negative correlation of a pair
of events

Definition 7.5.1. Events A and B are independent if Pr(A ∩B) = Pr(A) · Pr(B).

The intuitive meaning of this definition is supported by the following observation.

Exercise 7.5.2. Assume Pr(B) > 0. Then A and B are independent⇐⇒ Pr(A | B) = Pr(A).

Definition 7.5.3. The complement of the event A is the event A = Ω \A.

Exercise 7.5.4 (Independence of complement). If A and B are independent events then A
and B are also independent.

Copyright c© 2003, 2020 by László Babai. All rights reserved.
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Exercise 7.5.5 (Independence of a trivial event). Let A be any event and B a trivial event.
Show that A and B are independent.

Exercise 7.5.6. If we roll a die, are the following events independent: “the number shown is
odd”; “the number shown is a square”?

The following result is at the heart of the proof of the Fundamental Theorem of Arithmetic
(positive integers have unique prime factorization), first proved in Euclid’s Elements about
2300 years ago.

Theorem 7.5.7 (Euclid’s Lemma). If a prime number p divides a product ab where a and b
are integers then p divides a or p divides b.

Exercise 7.5.8. Let us consider a uniform probability space over a sample space whose cardi-
nality is a prime number. Prove that no two non-trivial events can be independent. Explicitly
use Euclid’s Lemma.

Exercise 7.5.9. Assume there exist two nontrivial independent events in our probability space.
Prove: |Ω| ≥ 4.

Definition 7.5.10 (Positively/negatively correlated events). The events A and B are said to
be positively correlated if Pr(A ∩ B) > Pr(A) Pr(B). They are negatively correlated if
Pr(A ∩B) < Pr(A) Pr(B).

Exercise 7.5.11. Let A,B ⊆ Ω. Assume Pr(B) > 0. Then A and B are positively (negatively)
correlated if and only if Pr(A | B) > Pr(A) (Pr(A | B) < Pr(A), resp.).

Exercise 7.5.12. Pick a number x at random from [n] = {1, . . . , n}. Consider the following
two evens: An is the event that x is even; Bn is the event that x is divisible by 3. Determine
whether An and Bn are positively correlated, independent, or negatively correlated. Your
answer should be a function of (n mod 6) (you need to list 6 cases). – What is the probability
space for this experiment?

Exercise 7.5.13. Let A ⊆ B ⊆ Ω. If A and B are independent then one of them is trivial.

Exercise 7.5.14. Let A,B be events. Suppose A ∩ B and A ∪ B are independent. Does it
follow that A or B must be trivial? If true, give a short proof. If false, minimize the size of
the sample space of your counterexample.

Exercise 7.5.15. Let A be an event. Prove: A and A are independent if and only if A is a
trivial event. If A is nontrivial then A and A are positively correlated.

7.6 Independence of multiple events

Definition 7.6.1. Events A1, . . . , Ak are pairwise independent if (∀i 6= j)(Ai and Aj are
independent).
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Definition 7.6.2 (Independence of 3 events). Events A,B,C ⊆ Ω are (fully) independent
if

(i) A,B,C are pairwise independent

(ii) Pr(A ∩B ∩ C) = Pr(A) · Pr(B) · Pr(C).

If we say “A,B,C are independent,” it means they are fully independent. The term “fully”
can be added to emphasize that we are not talking about pairwise independence. Another
term for independence of A,B,C is that they are mutually independent.

Exercise 7.6.3 (Independence of complement). If A,B, and C are independent events then
A,B and C are also independent.

Exercise 7.6.4 (Independence of trivial event). If A,B are independent and C is a trivial
event then A,B,C are indepenedent.

Exercise 7.6.5 (Independence of intersection, union). If A,B,C are independent events then
the following pairs of events are also independent: (a) A ∩B,C (b) A ∪B,C.

Exercise 7.6.6. Assume there exist three nontrivial independent events in our probability
space. Prove: |Ω| ≥ 8.

Exercise 7.6.7. (a) Show that if three events are pairwise but not fully independent then none
of them is trivial. (b) Define a probability space and three events in it that are pairwise but
not fully independent. Compute the relevant probabilities. Make your sample space as small
as possible.

Definition 7.6.8. A balanced event is an event of probability 1/2.

Exercise 7.6.9. (a) Define a probability space and three events, A,B,C, in it that satisfy
Pr(A ∩ B ∩ C) = Pr(A) · Pr(B) · Pr(C) but are not independent. Compute the relevant
probabilities. Make your sample space as small as possible. (b) Same as (a) with the
additional requirement that the events be balanced.

We now wish to define, for a list of k events, what it means to be independent. Defini-
tion 7.6.2 suggests the following inductive definition. A k-subset is a subset of size k.

Definition 7.6.10. We say that the events A1, . . . , An are k-wise independent if for all
k-subsets I ⊆ [n], the list (Ai | i ∈ I) of events is independent.

Definition 7.6.11 (Independence: inductive definition). Let k ≥ 3. We say that the events
A1, . . . , Ak are independent if

(i) A1, . . . , Ak are (k − 1)-wise independent

(ii) Pr
(⋂k

i=1Ai

)
=
∏k
i=1 Pr(Ai)

Copyright c© 2003, 2020 by László Babai. All rights reserved.
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This definition is inductive: once we know what it means for k−1 events to be independent,
the definition tells us what it means for k events to be independent. The base case is k = 2.
But we could even take go further: we declare that any event alone (k = 1) is indepoendent;
this would be the base case, and then Def. 7.6.11 will take effect for k ≥ 2.

Next we give an alternative, non-inductive definition.

Definition 7.6.12 (Independence: explicit definition). Events A1, . . . , Ak are independent
if for all subsets I ⊆ [k] we have

Pr

(⋂
i∈I

Ai

)
=
∏
i∈I

Pr(Ai) . (7.21)

For this definition to make sense, we need to understand what
⋂
i∈I Ai means when I = ∅.

If we intersect more sets, we get a smaller set, so it is natural to define the intersection of an
empty list of sets to be as large as possible. So this definition needs to refer to a “largest set”
which we call the “universe”; all sets we consider are subsets of the universe. In the context
of events in a probability space (Ω,Pr), this universe is, naturally, the sample space Ω.

Let us now review the definition of intersection of a list of sets.

Definition 7.6.13 (Intersection of a list of sets). Let us fix a set Ω, to be referred to as the
“universe.” Let I be a (possibly empty) set and let (Ai | i ∈ I) be a list of subsets of the
universe. Then ⋂

i∈I
Ai = {x ∈ Ω | (∀i ∈ I)(x ∈ Ai)} (7.22)

Exercise 7.6.14. Based on Def. 7.6.13, verify the following.

(a)
⋂
i∈∅Ai = Ω

(b) If I = {j} (so |I| = 1) then
⋂
i∈I Ai = Aj .

Exercise 7.6.15 (Equivalence of definitions of independence). Show that our two definitions
of independence of k events, Def 7.6.11 and Def 7.6.12, are equivalent.

How many conditions do we need to verify to establish that a list of k events is independent?
Definition 7.6.12 tells us that we need to verify a condition for each subset I ⊆ [k]. This means
2k conditions. In fact, a bit fewer will suffice: k + 1 of these are automatically satisfied, as
stated in the following exercise.

Exercise 7.6.16. Show that for |I| ≤ 1, Eq. (7.21) always holds, so in verifying the indepen-
dence of a list of events, we only need to verify Eq. (7.21) for |I| ≥ 2. This means verifying
2k − k − 1 conditions.

Again, for emphasis, independent events are also called fully independent, or mutually
independent.
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Exercise 7.6.17 (Independence of complements-1). Prove: if A1, A2, . . . , Ak are independent
events then A1, A2, . . . , Ak are independent events.

Exercise 7.6.18 (Independence of complements-2). For an event A define A1 = A and A−1 =
A. Prove: if A1, . . . , Ak are independent events and ε1, . . . , εk ∈ {1,−1} then Aε11 , . . . , A

εk
k are

independent events.

Exercise 7.6.19. Assume there exist k nontrivial independent events in our probability space.
Prove: |Ω| ≥ 2k.

Exercise 7.6.20. For all n ≥ 2, construct a probability space and n balanced events (events of
probability 1/2) such that the events are not independent but they are (n−1)-wise independent.
Minimize the size of the sample space.

The size of the sample space is a resource in computer science, which we wish to minimize.
If we need pairwise independence only, rather than full independence, we can do much better
than the 2k size of the sample space. By the size of a probability space we mean the size
of its sample space.

Exercise∗ 7.6.21 (Small sample space for pairwise independent events-1).

(a) Let k ≥ 3. Construct a probability space of size k + 1 and k pairwise independent
nontrivial events in that space.

(b) Let k ≥ 1. Construct a probability space of size ≤ 2k and k pairwise independent
balanced events (events of probability 1/2) in that space.

The following exercise may help solve Ex. 7.6.21 (b).

Exercise∗ 7.6.22 (Small sample space for pairwise independent events-2). Let ` ≥ 1.

(i) For k = 2` − 1, construct a uniform probability space of size k + 1 with k pairwise
independent balanced events.

(ii) Same for k a prime number of the form k = 4t− 1.

Exercise∗∗ 7.6.23 (Lower bound for pairwise independent events). Assume there exist k
pairwise independent nontrivial events in our probability space. Prove: |Ω| ≥ k + 1. Note:
Ex. 7.6.21 (a) shows that this bound is tight.

Exercise∗ 7.6.24. Let 1 ≤ k ≤ n− 1.

(a) Construct a sample space Ω and n events that are k-wise independent but no k + 1 of
the events are independent.

(b) Solve item (a) under the additional constraint that each of the n events be balanced.

(Hint for part (a). Take a k-dimensional vector space W over a finite field of order q ≥ n.
Select n vectors from W so that any k are linearly independent. Let W be the sample space.)
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14 CHAPTER 7. FINITE PROBABILITY SPACES

Exercise 7.6.25 (Independence of Boolean combinations of groups of events). Prove: if the
five events A,B,C,D,E are independent then the three events A \ B, C ∪ D, and E are
independent as well. Formulate a general statement, for n events grouped into blocks.

Exercise 7.6.26 (A trick problem). We have n balls colored red, blue, and green (each ball has
exactly one color and each color occurs at least once). We select k of the balls with replacement
(independently, with uniform distribution). Let A denote the event that the k balls selected
have the same color. Let pr denote the conditional probability that the first ball selected is
red, assuming condition A. Define pb and pg analogously for blue and green outcomes. Assume
pr + pb = pg. Prove: k ≤ 2. Show that k = 2 is actually possible.

7.7 Constructing independent events: Product spaces

For i ∈ [k], let (Ωi,Pri) be finite probability spaces. Let Ω = Ω1×· · ·×Ωk. To a = (a1, . . . , ak) ∈
Ω, let us assign the value

Pr(a) =

k∏
i=1

Pri(ai) . (7.23)

Exercise 7.7.1. Prove: this assigment defines a probability space (Ω,Pr).

The probablity space (Ω,Pr) is called the product of the spaces (Ωi,Pri).

Let πi : Ω→ Ωi denote the i-th projection: πi(a1, . . . , ak) = ai.

Let Ai ⊆ Ωi. The lifting of Ai is the set

Ãi := π−1
i (Ai) = {(a1, . . . , ak) | (∀j)(aj ∈ Ωj), ai ∈ Ai} .

Exercise 7.7.2. Pr(Ãi) = Pri(Ai) and the events Ãi (i ∈ [k]) are independent.

We now have the following corollary.

Let Ω = {0, 1}k be the set of (0, 1)-strings of length k. Denote the elements of Ω by
(x1, . . . , xk) where xi ∈ {0, 1}.

Exercise 7.7.3 (Coin flips with variable biases). (a) Prove: Given the real numbers 0 ≤ pi ≤ 1
for i ∈ [k], there exists a probability distribution Pr on Ω = {0, 1}k such that for i ∈ [k] we have
Pr(xi = 1) = pi and the k events “xi = 1” are independent. (b) Prove that this distribution
is unique.

7.8 Random graphs: The Erdős–Rényi model

Let Γn denote the set of graphs with vertex set V = [n].
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Exercise 7.8.1. |Γn| = 2(n2)

For e = {i, j} ∈
(
V
2

)
let pe be a real number, 0 ≤ pe ≤ 1.

Let Ae = {G ∈ Γn | e ∈ E(G)}. This is the event that i ∼G j.

Let G(n, (pe | e ∈
(
V
2

)
) denote the probability distribution on Γn such that

(∀e ∈
(
V

2

)
)(Pr(Ae) = pe) (7.24)

and these
(
n
2

)
events are independent. Such a probability distribution exists (and is unique)

according to Ex. 7.7.3.

Let n ∈ N and 0 ≤ p ≤ 1. The Erdős–Rényi model G(n, p) is defined as the special
case of the G(n, (pe | e ∈

(
V
2

)
) model where (∀e ∈

(
V
2

)
)(pe) = p. In other words, in the

G(n, p) model we have a fixed set V of n vertices and for every pair i, j of distinct vertices,
Pr(i ∼ j) = p and these

(
n
2

)
events are independent.

In the next sequence of problems we consider the uniform probability space over the sample
space Γn. This is called the uniform Erdős–Rényi model of “random graphs.”

Exercise 7.8.2 (Random graphs). Let A(i, j) denote the event that vertices i and j are
adjacent (1 ≤ i, j ≤ n, i 6= j). Note that A(i, j) = A(j, i) so we are talking about

(
n
2

)
events.

(a) Determine Pr(A(i, j)).

(b) Prove that these
(
n
2

)
events are independent.

(c) What is the probability that the degrees of vertex 1 and vertex 2 are equal? Give a
simple closed-form expression.

(d) If pn denotes the probability calculated in item (c), prove that pn
√
n tends to a finite

positive limit and determine its value.

(e) How are the following two events correlated: An =“vertex 1 has degree 3”; Bn =“vertex
2 has degree 3”? Find the limit of the ratio Pr(An | Bn)/Pr(An) as n→∞.

Definition 7.8.3. Let G = (V,E) be a graph. The distance dist(u, v) of vertices u and v is
the length of a shortest path between them. The diameter of G is the maximum distance:

diam(G) = max
u,v∈V

dist(u, v) . (7.25)

If G is disconnected, we say that diam(G) =∞.

Exercise 7.8.4. Prove: almost all graphs have diameter 2.

Explanation. Let pn denote the probability that a random graph on n vertices has a certain
property. We say that almost all graphs have the property if limn→∞ pn = 1.
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7.9 Random variables, expected value, indicator variables, Bernoulli
trials

Definition 7.9.1. A random variable is a function X : Ω→ R.

We say that X is almost constant if for some u ∈ R, Pr(X = u) = 1.

Definition 7.9.2. The expected value of a random variable X is

E(X) =
∑
a∈Ω

X(a) Pr(a) . (7.26)

For u ∈ R, we shall refer to the event “X = u,” meaning the set {a | X(a) = u}} . So the
expression Pr(X = u) refers to the probability of this set.

Exercise 7.9.3 (Alternative definition of the expected value). Prove:

E(X) =
∑
u∈R

u · Pr(X = u) =
∑

u∈range(X)

u · Pr(X = u) . (7.27)

Here range(X) denotes the range of X:

range(X) = {X(a) | a ∈ Ω} . (7.28)

Exercise 7.9.4. The middle term in Eq. 7.27 seems like an infinite sum. Verify that all but
a finite number of terms are zero.

Exercise 7.9.5.
minX ≤ E(X) ≤ maxX. (7.29)

Throughout these notes, X,Y, Z, ϑ, and their subscripted versions refer to random variables.

Let us fix a probability space P(Ω,Pr). All random variables below refer to this probability
space, unless the space is specified more concretely. Note that random variables over P can be
added and can be multiplies by real numbers (scalars); they form a real vector space.

Exercise 7.9.6 (Additivity of expectation). Let X1,. . . , Xk be random variables. Then

E(X1 + · · ·+Xk) =

k∑
i=1

E(Xi) (7.30)

Proof: E

(
k∑
i=1

Xi

)
=
∑
a∈Ω

(X1(a) + · · ·+Xk(a)) Pr(a) =

k∑
i=1

∑
a∈Ω

Xi(a) Pr(a) =

k∑
i=1

E(Xi).
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Exercise 7.9.7 (Linearity expectation). If c1, . . . , ck are constants (real numbers) then

E

(
k∑
i=1

ciXi

)
=

k∑
i=1

ciE(Xi). (7.31)

Definition 7.9.8. An indicator variable is a (0,1)-valued random variable (its values are
0 or 1). Indicator variables are also called Bernoulli trials; an outcome of 1 is considered
“success” and 0 “failure.”

Definition 7.9.9. The indicator of an event A ⊆ Ω, also called the characteristic func-
tion of the event, is the function ϑA : Ω→ {0, 1} given by

ϑA(a) =

{
1 for a ∈ A
0 for a 6∈ A

So the indicator of an event A is a Bernoulli trial with A being the event of “success.” In
particular, the probability of success is Pr(A).

Exercise 7.9.10 (Bijection between events and indicator variables). If T is an indicator vari-
able then there is a unique event A such that T = ϑA.

Exercise 7.9.11. The expected value of an indicator variable is the probability of the event
it indicates:

E(ϑA) = Pr(A) . (7.32)

Indicator variables are particularly useful if we want to count events, as demonstrated by
several of the exercises at the end of this section.

Exercise 7.9.12. (a) Every random variable X is a linear combination of indicator variables.
(b) Given a random variable X there exist functions f1, . . . , fk such that the random variables
Xi := fi(X) are indicator variables and X is a linear combination of the Xi.

Exercise 7.9.13. Let Y =
∑n

i=1Xi where Xi is a Bernoulli trial with probability pi of success.
Then E(Y ) =

∑n
i=1 pi.

We say that X is nonnegative if X(a) ≥ 0 for all a ∈ Ω.

Theorem 7.9.14 (Markov’s Inequality). If X is nonnegative then ∀a > 0,

Pr(X ≥ a) ≤ E(X)

a
.

Proof: Let m = E(X) > 0. Then m =
∑

u∈R u · Pr(X = u) ≥
≥
∑

u≥a u · Pr(X = u) (we just omitted some terms; all terms are nonegative)
≥ a ·

∑
u≥a Pr(X = u) = a · Pr(X ≥ a) (sum of disjoint events).

So we have m ≥ aPr(X ≥ a).
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Exercise 7.9.15 (Poker hand). (a) What is the expected number of Aces in a poker hand?
(b) What is the expected number of Spades?

Exercise 7.9.16 (Flipping coins). We flip a biased coin n times. The coin comes up Heads
with probability p and Tails with probability 1 − p. What is the expected number of runs
of k heads in a string of n coin-flips? (A “run of k heads” means a string of k consecutive
heads. Example: the string HHTHTTHHHT has 3 runs of 2 heads.) Prove your answer! Hint.
Indicator variables.

Exercise 7.9.17 (Lottery). Suppose in a lottery you have to pick five different numbers from
1 to 90. Then five winning numbers are drawn. If you picked two of them, you win 20 dollars.
For three, you win 150 dollars. For four, you win 5,000 dollars, and if all the five match,
you win a million. (a) What is the probability that you picked exactly three of the winning
numbers? (b) What is your expected win? (c) What does Markov’s inequality predict about
the probability that you’ll win at least 20 dollars? (d) What is the actual probability that this
happens?

Exercise 7.9.18 (Club of 2000). As a matter of long-standing tradition, the Moonwatchers’
Club of Onyx, NA, serves vodka legally to all of its members. Throughout the year 2020,
the club had 2000 members. One of the club members wrote the following in their diary
on June 27, 2020. “The managment of the club just announced that two weeks from now
they will distribute membership cards numbered 1 through 2000 to the members at random.
Members whose card number happens to coincide with their year of birth receive valuable gifts.
How exciting!” Determine the expected number of lucky members just before the managment
shuffles the cards. State the role of the vodka in your calculation. State the size of the sample
space for this experiment.

Exercise 7.9.19 (Random graphs). Consider a random graph G with n vertices.

(a) What is the expected number of edges in G?

(b) What is the expected number of triangles?

(c) What is the expected number of cycles of length k?

(d) Show that the expected number of Hamilton cycles (cycles of length n) is large; it is
greater than 100n for all sufficiently large n.

Exercise 7.9.20 (Distinct prime divisors). Let n be a random integer, chosen uniformly
between 1 and N . What is the expected number of distinct prime divisors of n? Show that
the result is asymptotically equal to ln lnN (as N →∞).

Exercise 7.9.21 (Mismatched letters). The boss writes n different letters to n addressees
whose addresses appear on n envelopes. The careless secretary puts the letters in the envelopes
at random (one letter per envelope). Determine the expected number of those letters which
get in the right envelope. State the size of the sample space for this problem.
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Exercise 7.9.22 (Marbles in cups). Kiara has n cups and n marbles. She puts each marble
in a randomly selected cup, regardless of whether the cup already has marbles in it. What is
the expected number of cups left empty? (a) Give a simple expression in terms of n. (b)
Asymptotically evaluate your answer. (Find a very simple expression that is asymptotically
equal to your answer.)

Exercise 7.9.23 (Counting cycles in permutations). For a permutation π of the set [n], let
ck(π) denote the number of k-cycles in the cycle decomposition of π. (For instance, if n =
7 and π = (18)(256)(3)(47)(9) then c1(π) = 2, c2(π) = 2, c3(π) = 1, and ck(π) = 0 for
all k 6= 1, 2, 3.) Pick π at random from all permutations of [n]. (a) Calculate E(ck(π)).
Your answer should be a very simple expression (no factorials, no binomial coefficients, no
summation). (b) Calculate the expected number of cycles (including cycles of length 1) in
the cycle decomposition of a random permutation. (This will be a simple sum, not a closed-
from expression.) Prove that this number is ∼ lnn.

7.10 Variance, covariance, Chebyshev’s Inequality

Definition 7.10.1. The kth moment of X is E(Xk). The kth central moment of X is the
kth moment of X − E(X), i. e., E((X − E(X))k).

Definition 7.10.2. The variance of X is its second central moment, Var(X) := E((X −
E(X))2).

Note that the variance is always nonnegative.

Exercise 7.10.3. Prove: Var(X) ≥ 0 and Var(X) = 0 if and only if X is almost constant.

Definition 7.10.4. The standard deviation of X is σ(X) :=
√

Var(X).

Exercise 7.10.5. (Invariance under shifts.) Prove that if c is a constant then Var(X) =
Var(X + c); and consequently, σ(X) = σ(X + c).

Exercise 7.10.6. Prove: if c is a constant then Var(cX) = c2 Var(X); and consequently,
σ(cX) = |c|σ(X).

Exercise 7.10.7. Var(X) = E(X2)− (E(X))2.

Corollary 7.10.8 (Cauchy–Schwarz inequality). (E(X))2 ≤ E(X2).

Proof of Observation: Let m = E(X). Then Var(X) = E((X−m)2) = E(X2−2Xm+m2) =
E(X2)− 2mE(X) + E(m2) = E(X2)− 2mm+m2 = E(X2)−m2.

Chebyshev’s inequality tells us that random variables don’t like to stray from their expected
value by more than a small multiple of their standard deviation.
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Theorem 7.10.9 (Chebyshev’s Inequality). Let m = E(X). Then for any number a > 0,

Pr(|X −m| ≥ a) ≤ Var(X)

a2
. (7.33)

Proof: Let Y = (X − m)2. Then, by definition, E(Y ) = Var(X). We apply Markov’s
Inequality to the nonnegative random variable Y : Pr(|X−m| ≥ a) = Pr(Y ≥ a2) ≤ E(Y )/a2 =
Var(X)/a2.

Exercise 7.10.10. In its more common form the Cauchy–Schwarz inequality asserts that for
any real numbers x1, . . . , xn, y1, . . . , yn we have(

n∑
i=1

x2
i

)(
n∑
i=1

y2
i

)
≥

(
n∑
i=1

xiyi

)2

. (7.34)

Deduce this inequality from Corollary 7.10.8.

Exercise 7.10.11. Prove: if the kth moment of X is zero for all odd integers k > 0 then
Pr(X = u) = Pr(X = −u) for all u ∈ R.

Definition 7.10.12 (Covariance). The covariance of the random variables X,Y is defined
as

Cov(X,Y ) = E(XY )− E(X) · E(Y ) . (7.35)

Exercise 7.10.13. Var(X) = Cov(X,X)

Definition 7.10.14. We say that X and Y are positively correlated if their covariance
is positive; they are uncorrelated if their covariance is zero; and negatively correlated if
their covariance is negative.

Exercise 7.10.15 (Aces vs. Spades). (a) Consider a poker hand. Let X denote the number
of Aces and Y the number of Spades in the hand. Show that X and Y are uncorrelated.
Show all your work. The best way to solve this problem is by solving part (b) and
avoiding all numerical calculation.

(b) Generalize the problem to a deck of rs cards where there are r cards of each kind (e. g.,
r Aces) and and s cards in a suit (e. g., s Spades). A generalized poker hand will have k
cards (1 ≤ k ≤ rs).

We define independence of random variables in the next section but we warn in advance that
for a pair of random variables, independence is a stronger condition than being uncorrelated.

Exercise 7.10.16 (Events vs. indicator variables). The events A,B are positively correlated
if and only if the corresponding indicator variables ϑA and ϑB are positively correlated; A and
B are independent if and only if ϑA and ϑB are uncorrelated; and A and B are negatively
correlated if and only if ϑA and ϑB are negatively correlated.
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We often deal with sums of random variables. Next we give a formula for the variance of
such a sum.

Exercise 7.10.17 (Variance of sum). Let Y = X1 + · · ·+Xn be a sum of random variables.
Then

Var(Y ) =
n∑
i=1

n∑
j=1

Cov(Xi, Xj) =
n∑
i=1

Var(Xi)+
∑
i 6=j

Cov(Xi, Xj) =
n∑
i=1

Var(Xi)+2·
∑

1≤i<j≤n
Cov(Xi, Xj) .

(7.36)

Corollary 7.10.18 (Additivity of variance). If X1, . . . , Xn are pairwise uncorrelated random
variables then

Var

(
n∑
i=1

Xi

)
=

n∑
i=1

Var(Xi) . (7.37)

In particular, this equation holds if the variables are pairwise independent (see Ex. 7.11.3).

Exercise 7.10.19 (Variance of the number of triangles). LetXn denote the number of triangles
in a random graph with n vertices.

(a) Determine E(Xn).

(b) Determine Var(Xn). Your answer should be a closed-form expression in terms of n.

(c) Asymptotically evaluate your answer to (b). Your answer should be of the form
Var(Xn) ∼ anb. Determine the constants a and b. Hint: Write Xn as a sum of
indicator variables.

Exercise 7.10.20 (Limit on strongly negatively correlated events). (a) Suppose the events
A1, . . . , Am are balanced (have probability 1/2) and for each i 6= j, Pr(|Ai ∩Aj | ≤ 1/5. Prove:
m ≤ 6. (b) Generalize the statement to events of probability p, with p2 − ε in the place of
1/5.

7.11 Independence of a pair of random variables

We again fix our probability space.

Definition 7.11.1 (Independence of a pair of random variables). Let X,Y be random vari-
ables. We say that X and Y are independent if

(∀u, v ∈ R)(Pr(X = u and Y = v) = Pr(X = u) · Pr(Y = v) . (7.38)

Exercise 7.11.2. If Y is almost constant (see Def. 7.9.1) then X and Y are independent.
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Exercise∗ 7.11.3 (Independent implies uncorrelated). If X,Y are independent then they are
uncorrelated, i. e.,

E(XY ) = E(X) · E(Y ) . (7.39)

The next exercise asserts that the converse is false.

Exercise 7.11.4. Construct a probability space and two random variables that are uncorre-
lated but not independent. — Make sure you give a complete definition of your probability
space: state the sample space and the probability distribution. Define your random variables
by their table of values. Minimize the size of your sample space.

7.12 Independence of random variables

Definition 7.12.1. X1, . . . , Xk are independent if

(∀u1, . . . , uk ∈ R)

(
Pr (X1 = u1, . . . , Xk = uk) =

k∏
i=1

Pr(Xi = ui

)
. (7.40)

Exercise 7.12.2. Prove that the events A1, . . . , Ak are independent if and only if their indi-
cator variables are independent. – This is less obvious than it seems.

Exercise 7.12.3. Prove that the random variables X1, . . . , Xk are independent if and only if
for all choices of the numbers u1, . . . , uk, the k events X1 = u1, . . . , Xk = uk are independent.
Show that this is also equivalent to the independence of all k-tuples of events of the form
X1 < u1, . . . , Xk < uk.

Exercise 7.12.4. Prove: if X1, . . . , Xk are independent then f1(X1), . . . , fk(Xk) are also in-
dependent, where the fi are arbitrary functions. For example, X2

1 , eX2 , and cos(X3) are
independent.

Exercise 7.12.5. Prove: if X,Y, Z are independent random variables then f(X,Y ) and Z are
also independent, where f is an arbitrary function. (For instance, X + Y and Z, or XY and
Z are independent.) Generalize this statement to several variables, grouped into blocks, and
a function applied to each block.

Exercise 7.12.6. Let X1, . . . , Xm be non-almost-constant random variables (see Def. 7.9.1)
over a sample space of size n. Suppose the Xi are 4-wise independent (every four of them are
independent). Prove: n ≥

(
m
2

)
. Hint. Prove that the

(
m
2

)
random variables XiXj (1 ≤ i <

j ≤ m) are linearly independent over R (as members of the space of functions Ω → R). To
prove linear independence, first prove that w.l.o.g. we may assume (∀i)(E(Xi) = 0); then use
the “inner product” argument, using the function E(ZY ) in the role of an “inner product” of
the random variables Z and Y .
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Theorem 7.12.7 (Multiplicativity of the expected value). If X1, . . . , Xm are independent,
then

E(
m∏
i=1

Xi) =
m∏
i=1

E(Xi). (7.41)

Exercise 7.12.8. Prove this result for indicator variables.

Exercise 7.12.9. Prove: if X,Y are independent, then one can write X as a sum X =
c1X1 + . . .+ ckXk and Y as Y = d1Y1 + . . .+ d`Y` where the Xi and Yj are indicator variables
and for every i, j, the variables Xi and Yj are independent.

Exercise 7.12.10. Combine the two preceding exercises to a proof of the Theorem for m = 2
variables.

Exercise 7.12.11. Deduce the general case from the preceding exercise by induction on m,
using Exercise 7.12.5.

This sequence completes the proof of Theorem 7.12.7.

While this result required the full force of independence of our random variables, recall that
the additivity of the variance only required pairwise independence. In fact even less, pairwise
uncorrelatedness, suffices (Cor. 7.10.18).

Corollary 7.12.12. Let X1, . . . , Xn be random variables with the same standard deviation σ.
Let us consider their average, Y := (1/n)

∑n
i=1Xi. If the Xi are pairwise independent then

σ(Y ) = σ/
√
n.

Corollary 7.12.13 (Weak law of large numbers). Let X1, X2, . . . be an infinite sequence of
pairwise independent random variables each with expected value m and standard deviation σ.
Let Yn = (1/n)

∑n
i=1Xi. Then for any δ > 0,

lim
n→∞

Pr(|Yn −m| > δ) = 0. (7.42)

Proof: Use Chebyshev’s inequality and the preceding corollary. We obtain that the probability
in question is ≤ σ2/(δn)→ 0 (as n→∞).

Remark 7.12.14. Strictly speaking, we bent our rules here. An infinite sequence of non-
almost-constant, pairwise independent variables requires an infinite sample space. What we
actually proved, then, is the following. Let us fix the values m and σ ≥ 0. Assume that we are
given an infinite sequence of finite probability spaces, and over the nth space, we are given n
independent random variables Xn,1, Xn,2, . . . , Xn,n. Let Yn = (1/n)

∑n
i=1Xn,i. Then for any

δ > 0, the limit relation (7.42) holds.

Exercise 7.12.15. You and the bank play the following game. You flip n coins; if X of them
come up “Heads,” you receive 2X dollars.
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1. You have to buy a ticket to play this game. What is the fair price of the ticket? Hint:
it is the expected amount you will receive.

2. Prove: the probability that you break even (receive at least your ticket’s worth) is expo-
nentially small. Hint: At least how many “heads” do you need for you to break even?

3. Calculate the standard deviation of the variable 2X . Your answer should be a simple
formula. Evaluate it asymptotically; obtain an even simpler formula.

4. State what the “weak law of large numbers” would say for the variable 2X . Hint. This
law talks about the probability that 2X is not within (1±ε)-times its expectation.) Prove
that the Law does NOT hold for this variable.

7.13 Strong concentration inequalities:
the Bernstein–Hoeffding (Chernoff) bounds

Although the bound in the proof of the Weak Law of Large Numbers tends to zero, it does so
rather slowly. If our variables are fully independent and bounded, much stronger estimates can
be obtained by a method of Sergey Bernstein (1924, 1927, 1937) called the moment generator
function method. Results derived by this method are often referred to as “Chernoff bounds,”
based on a 1952 paper by Herman Chernoff that rediscovered Bernstein’s method (and did
not derive those consequences attributed tom him). Another paper frequently referenced in
this context is a 1963 paper by Wassily Hoeffding that is aware of Bernstein’s work, and
uses the moment generator method to derive several of those consequences often referred to
as “Chernoff bounds.” These bounds tend to be slightly stronger than the bounds found by
Bernstein. We shall refer to them as the Bernstein–Hoeffding bounds.

The Bernstein–Hoeffding bounds go to zero exponentially fast as a function of n, and this
is what most combinatorial applications require.

For example, let us consider a sequence of n independent coin flips; let X denote the
number of heads in this sequence. Then E(X) = n/2 and Var(X) = n/4 (by the additivity of
the variance). Therefore Chebyshev’s inequality tells us that

Pr(|X − n/2| ≥ r
√
n) <

1

4r2
. (7.43)

Below we shall prove the much stronger inequality

Pr(|X − n/2| ≥ r
√
n) < 2e−2r2 . (7.44)

under the same conditions.

The following corollary illustrates the power of inequality (7.44).
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Corollary 7.13.1. For any ε > 0, almost all graphs have no vertices of degree < (1 − ε)n/2
or > (1 + ε)n/2 where n is the number of vertices.

Proof of the Corollary. Let V = {1, . . . , n} be the vertex set of our random graph. Let δi
denote the degree of vertex i; so δi is the number of heads in a sequence of (n−1) independent
coin flips. Therefore, by inequality (7.44), we have that

Pr(|δi − (n− 1)/2| ≥ r
√
n− 1) < 2e−2r2 . (7.45)

Let us now set r = ε
√
n− 1. Then we obtain

Pr(|δi − (n− 1)/2| ≥ ε(n− 1)) < 2e−2ε2(n−1). (7.46)

Therefore the probability that there exists an i such that |δi − (n − 1)/2| ≥ ε(n − 1) is less
than n times the right-hand side, i. e., less than 2ne−2ε2(n−1). This quantity approaches zero
at an exponential rate as n→∞.

The slight change in the statement (having changed n to n − 1) can be compensated for
by slightly reducing ε.

Note that the same procedure using inequality (7.43) will fail. Indeed, setting r = ε
√
n− 1

in inequality (7.43), the right-hand side will be 1/(4ε2(n−1)), and if we multiply this quantity
by n, the result will be greater than 1 (if ε < 1/2), a meaningless upper bound for a probability.

Now we turn to the proof of inequality (7.44). Our discussion is based on the Appendix to
the wonderful monograph

Noga Alon, Joel H. Spencer: “The Probabilistic Method.”

It will be convenient to state the main result in terms of random variables with zero expected
value.

Theorem 7.13.2 (Bernstein–Hoeffding bound for coin flips). Let Xi be independent random
variables satisfying Pr(Xi = 1) = Pr(Xi = −1) = 1/2. Let Y =

∑n
i=1Xi. Then for any a > 0,

Pr(Y ≥ a) < e−a
2/2n (7.47)

and
Pr(|Y | ≥ a) < 2e−a

2/2n. (7.48)

Exercise 7.13.3. Deduce inequality (7.44) from this theorem.

Hint. Represent X as
∑n

i=1 ϑi where ϑi is the indicator variable of the i-th coin flip. Set
Xi = 2ϑi − 1 and Y =

∑n
i=1Xi. Note that X − n/2 = Y/2. Apply Theorem 7.13.2 to the Xi

and translate the result back to X.
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Exercise 7.13.4. Prove that the following is true for almost all graphs Gn on n vertices: the
degree of every vertex is within the interval [0.49n, 0.51n]. In answering this question, be
sure to clearly state the meaning of each variable occurring in your formulas. Also pay close
attention to the logical connectives (“and,” “if-then,” and quantifiers).

We now define the central concept of Bernstein’s method.

Definition 7.13.5. Let Y be a random variable. The function mY (t) = E(etY ) is called the
moment generator function of Y .

Now we turn to the proof of Theorem 7.13.2.

Let t be a positive real number. A specific value will be assigned to t later. Let us consider
the random variables Zi := exp(tXi). (Notation: exp(x) = ex.) The Zi are again independent
(for any fixed t) by Exercise 7.12.4. Therefore we can apply the multiplicativity of the expected
value to them to calculate the moment generator function of Y :

E(etY ) = E(exp(
n∑
i=1

tXi)) = E(
n∏
i=1

Zi) =
n∏
i=1

E(Zi) =
n∏
i=1

E(exp(tXi)). (7.49)

Applying Markov’s inequality to the variable etY , we conclude that

Pr(Y ≥ a) = Pr(etY ≥ eta) ≤
n∏
i=1

E(exp(tXi))e
−ta. (7.50)

Recall the definition of the hyperbolic cosine function, cosh(x) = (ex + e−x)/2. Observe
that

E(exp(tXi)) = cosh(t). (7.51)

Therefore the preceding inequality implies that

Pr(Y ≥ a) <
cosh(t)n

eta
. (7.52)

This is true for every t > 0. All we need to do is choose t appropriately to obtain the strongest
possible result. To this end we need the following simple observation.

Lemma 7.13.6. For all real numbers x,

cosh(x) ≤ ex
2/2.

Proof: Compare the Maclaurin series of the two sides. On the left-hand side we have

∞∑
k=0

x2k

(2k)!
= 1 +

x2

2
+
x4

24
+

x6

720
+ . . . (7.53)
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On the right-hand side we have

∞∑
k=0

x2k

2kk!
= 1 +

x2

2
+
x4

8
+
x6

48
+ . . . . (7.54)

Comparing the denominators in the corresponding terms, we see that (2k)! ≥ 2kk! for all k ≥ 0
(why?), so the right-hand side dominates the left-hand side term by term.

Consequently, from inequality (7.52) we infer that

Pr(Y ≥ a) < exp(t2n/2− ta). (7.55)

The expression t2n/2 − ta is minimized when t = a/n; setting t := a/n we conclude that
Pr(Y ≥ a) < exp(−a2/2n), as required.

Replacing each Xi by −Xi we obtain the inequality Pr(Y ≤ −a) < exp(−a2/2n); adding
this to the preceding inequality we obtain Pr(|Y | ≥ a) < 2 exp(−a2/2n).

We note that this technique works under much more general circumstances. We state a
useful and rather general case, noting that even this result does not exploit the full power of
the method.

Theorem 7.13.7 (Bernstein–Hoeffding bound for bounded variables). Let Xi be independent
random variables satisfying |Xi| ≤ 1 and E(Xi) = 0. Let Y =

∑n
i=1Xi. Then for any a > 0,

Pr(Y ≥ a) < e−a
2/2n (7.56)

and

Pr(|Y | ≥ a) < 2e−a
2/2n. (7.57)

Proof: Fix a value t > 0. Let

ht(x) = cosh(t) + x · sinh(t). (7.58)

(Recall that sinh(t) = (et − e−t)/2 is the hyperbolic sine function.) This is a linear function
of x. Observe that ht(x) ≥ etx for all x in the interval −1 ≤ x ≤ 1. (The graph of ht(x) over
the interval [−1, 1] is the segment connecting the corresponding two points of the graph of the
function etx, and etx is a convex function.)

Moreover, because of the linearity of the ht(x) function, we have E(ht(Xi)) = ht(E(Xi)) =
ht(0) = cosh(t). Therefore

E(etXi) ≤ E(ht(Xi)) = cosh(t). (7.59)

From here on the proof is identical with the proof of Theorem 7.13.2. As before, we set
t = a/n.
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Exercise 7.13.8. Prove: for almost all graphs G = (V,E) with n vertices,

(∀x ∈ V )(0.49n < deg(x) < 0.51n) . (7.60)

In other words, if pn denotes the probability of the event described in Eq. (7.60) then
limn→∞ pn = 1.

Explain, why this result does not follow from Chebyshev’s inequality.

Exercise 7.13.9. A vertex z is a common neighbor of vertices x and y in a graph G if both x
and y are adjacent to z in G. Let N(x, y) denote the number of common neighbors of x and
y. Prove that the following statement is true for almost all graphs G = (V,E) with n vertices:

(∀x 6= y ∈ V )(0.24n < N(x, y) < 0.26n) . (7.61)

Exercise 7.13.10. Determine (a) the expected number and (b) the variance of the number of
edges of
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