Algorithms — CMSC 27230
Evaluation of Recurrent Inequalities:
The Method of Reverse Inequalities

Laszl6 Babai

In this handout, we discuss a typical situation in the analysis of algo-
rithms: the number of steps required by the algorithm satisfies some recur-
rent inequality; from this we want to infer an upper bound on the order
of magnitude of the number of steps, and we seek the best upper bound
(in term of rate of growth) that can be inferred from the given recurrent
inequality.

We explain how to do this using the method of reverse inequalities. We il-
lustrate the method on two recurrences that occur in the analysis of “Divide-
and-Conquer” algorithms.

Our first recurrence arises from the Karatsuba algorithm to multiply
integers and to multiply polynomials. Both algorithms lead to the same
recurrent inequality.

For simplicity we assume n = 2¥. Let f(n) be the number of scalar arith-
metic operations (multiplication, addition, subtraction of real or complex
numbers) and bookkeeping operations required by the Karatsuba algorithm
to multiply two polynomials of degree < n — 1. The inequality then is:

f(n) <3f(n/2) + O(n). (1)

Let us first ignore the O(n) term. Then we have f(2F) < 3f(2¥~1), from
which it follows by induction on k that f(2F) < 3%f(1). Now 3% = (2¥)«
where o = log 3 ~ 1.585, so we have f(n) < f(1)n® = O(n®) (because f(1)
is a constant).!

Let us now consider the full inequality (1). Somewhat surprisingly, it
turns out that we shall still have f(n) = O(n®).

Theorem 1. If a monotone non-decreasing function f(n) > 0 satisfies in-
equality (1) for every n that is a power of 2 then f(n) = O(n®) where
a =log 3 ~ 1.585.

9©Lészl6 Babai 1998-2021. Licensed under Creative Commons attribution license CC
BY

YOriginal 01-12-1998. Last updated 01-13-2021.

n this note, log always refers to base-2 logarithms.

It suffices to prove the existence of a constant C' such that f(n) < C-n® for
all values of n that are powers of 2. Indeed, for any n, let 2F=1 < n < 2,
Then f(n) < f(2F) < C - (2M)* < C - (2n)* = 3C - n~.

The big-Oh notation is ill-suited for evaluation in a recurrence, so we make
the O(n) term explicit by replacing it by Cn where C' is an unspecified
constant. So we have

f(n) <3f(n/2) + Cn. (2)

Our strategy is to guess a function g(n) that satisfies the inequalities
g(n) =3g(n/2)+Cn and g(1) = f(1). (3)

Note that the inequality g(n) > 3¢g(n/2) + Cn goes in the opposite direction
than inequality (2) (hence the name of the method) and this is crucial for
our inductive argument.

Theorem 2. Suppose the function f(n) satisfies Eq. (2) and the function
g(n) satisfies Eq. (3) for all n > 2 that are powers of 2. Then, for all all
values n that are powers of 2, we have f(n) < g(n).

Proof. Let n = 2¥. We need to show f(2¥) < g(2¥) for all k. We proceed
by induction on k.

Base case. For k = 0 we need f(1) < g(1) which is true by the second
inequality in Eq. (3).

Inductive step. Let now k > 0 and assume the inequality f(2¢) < g(2%) holds
for all ¢ < k (Inductive Hypothesis). We have

F2F) < 3F(2F 1) + 028 < 3g(2F 1) + 28 < g(2Y). (4)

Here the first inequality is Eq. (2), the second is true by the Inductive
Hypothesis, and the third by Eq. (3). O

Our next job is to guess the function g(n). Our target is g(n) = O(n®)
where o« = log 3, so let us try to find g(n) in the form of An® for some
constant A that we may determine later.

We need g(n) > 3g(n/2) + Cn. In fact if we choose g(n) = An® then
g(n) = 3g(n/2) (verify!) so the desired inequality never holds. But the
nature of the failure suggests that adjusting our guess at g(n) with a linear
term may succeed.

Let us therefore try to find g(n) in the form g(n) = An® + Bn for some
constants A and B.

For our choice to be good, we need to be able to find values of the
constants A and B such that Eq. (3) holds. In other words, we need

An® 4+ Bn > 3(A(n/2)* + Bn/2) + Cn (5)

for all n and we need
A+ B> f(1). (6)

to cover both parts of Eq. (3).
We have two degrees of freedom, being free to choose both A and B.
Observing that n® = 3(n/2)* (by the definiotn of o = log 3), inequal-
ity (5) reduces to
Bn > 3Bn/2+ Cn,

i.e.,
B < -2C.

It may be surprising at first that we are forced to give B a negative
value. Let us choose B := —2C' (the “least negative” value permitted); then
inequality (5) is satisfied.

Note that this holds regardless of the value of A. Next we invoke the
other degree of freedom we have: we now set the value of A sufficiently large
to satisfy the initial value condition (6): A+ B > f(1),i.e., A> f(1)—B =
f(1) +2C. The smallest value of A that satifies this is A = f(1) + 2C. So
we choose

A=f(1)+2C and B =-2C. (7)

With this choice of the constants A and B, both conditions in Eq. (3) hold
and therefore f(n) < g(n) = An® —2Cn < An® = O(n®). This concludes
the proof of Theorem 1. O

How do we know that f(n) = O(n®) is the best possible upper bound on

f(n) inferable from the recurrence (1)? The answer is simple: the function
f(n) = n® satisfies (1).

Let us now consider the recurrence

t(n) <2t(n/2)+ (n—1) (8)
with the initial value ¢(1) = 0. This recurrence arises in the study of

MERGE-SORT; ¢(n) denotes the number of comparisons made when we
sort a list of n data using MERGE-SORT.

Theorem 3. If the function t(n) has initial value t(1) = 0 and satisfies
inequality (8) for all values of n > 2 that are powers of 2 and t(1) = 0 then
t(n) < nlogn for all values of n that are powers of 2.

In order to apply the method of reverse inequalities to evaluating this
recurrence, we need to guess a function g(n) such that

g(n) >29(n/2) + (n—1) and g(1)>0. (9)

Exercise 4. Suppose the function t(n) satisfies Eq. (8) and the function
g(n) satisfies Eq. (9) for all values n > 2 that are powers of 2. Then, for all
values n that are powers of 2, we have t(n) < g(n).

Exercise 5. Show that the function g(n) = nlogn satisfies Eq. (9).

Combining Exercises 4 and 5, Theorem 3 follows. Il
Next, we strengthen the conclusion of Theorem 3.

Exercise 6. (a) Under the assumptions of Theorem 3, prove that

t(n) <nlogn — (n — 1) for all values of n > 2 that are powers of 2.

(b) Prove that for every n that is a power of 2, this is the strongest possible
conclusion we can infer from the assumptions of Theorem 3.

Exercise 7. Suppose the function s(n) > 0 satisfies the inequality s(n) <
2s(n/2) + n for all n that is a power of 2. Prove: s(n) < nlogn + O(n)
for all n that is a power of 2. (Note that we made no assumption about s(0)
other than s(0) > 0.)

Next we eliminate the assumption that n is a power of 2. We use the
actual condition satisfied by MERGE-SORT for every n.

Exercise 8. Suppose the function ¢(n) has initial value (1) = 0 and satisfies
the inequality?

t(n) <t([n/2])+t([n/2])+ (n —1). (10)
for every n > 2. Prove: t(n) < nlogn for every n > 1.

Exercise 9. Assume f(n) > 0 satifies the inequality

f(n) <3f(n/2]) + O(n) (11)

for all n. Prove: f(n) = O(n®) where o = log3. (Prove the required upper
bound for all values of n, not only for powers of 2.)

2[z] denotes the rounded-up value of # and |z| denotes the rounded-down value. For
example, [7] =4 and |7] = 3, while [—7] = —3 and |—7] = —4.

Exercise 10. Assume f(n) > 0 satifies the inequality

f(n) <3f([n/2]) + O(n). (12)

Prove: f(n) = O(n®) where ao = log 3. (Prove the required upper bound for
all values of n, not only for powers of 2.)

The next recurrence arises in analysing an algorithm to find the median
using a lineara number of comparisons.

Exercise 11. Assume T'(n) < T(0.2n) + 7(0.7n) + O(n). Prove:
T(n) = O(n). (a) Ignore rounding. (b) Don’t ignore rounding.

The O(n) bound depends on the fact that 0.2+0.7 < 1. Another similar
example is the following.

Exercise 12. Let T'(n) > 0.
Assume T'(n) < T(0.15n) + 7(0.35n) + 7'(0.49n) + O(n).
Prove: T(n) = O(n).

The situation changes when the coefficients add up to 1.

Exercise 13. Let T'(n) > 0.

Assume T'(n) < T'(0.15n) + T7'(0.35n) + 7(0.5n) + O(n).

(a) Prove: T'(n) = O(nlogn). (b) Prove that this is the strongest con-
clusion we can infer from the assumption, i.e., show that T(n) = o(nlogn)
does not follow from the assumption.

The situation changes again when the coefficients add up to a number
greater than 1.

Exercise 14. Let S(n) > 0.

Assume S(n) < 5(0.2n) 4+ S(0.4n) + S(0.5n) + O(n).

(a) Show that S(n) = O(n®) for some constant 8 > 1. Find the smallest
value of 8 for which this conclusion follows from the assumption. Ignore
rounding. Define 5 as the solution of an equation.

(b) Prove that this is the smallest value for which the conclusion follows
from the assumption.

(c) Estimate the value of 5 to 4 decimals. You may use online tools or write
your program. Explain how you did the calculation.

