
Algorithms – CMSC-27230

Walk to path

László Babai

Last updated 2024-02-08

Exercise Let G = (V,E) be a digraph and u, v ∈ V . We describe an
algorithm that, given a u → · · · → v walk, constructs a u → · · · → v path
in linear time, i. e., time O(n + k) where n = |V | and k is the length of the
walk. We assume V = [n] = {1, . . . , n}.

The vertices are represented by “tokens,” i. e., binary strings of length
dlog2(n + 1)e. Each token contributes one unit to the input size, and op-
erations on tokens (addition/subtraction, comparison, copying, viewing the
token as a link and following the link) costs one unit.

Solution The procedure moves along the walk W . Each time it reaches a
vertex x, it jumps forward to the last occurrence of x along W and continues
from there. To implement the algorithm in linear time, we need to store the
last occurrence of each vertex; this can be done in a single pass along the
walk.

Input: n in unary (number of vertices of the digraph)
. array W = [w0, . . . , wk] walk of length k where w0 = u,wk = v
(Note: the digraph itself is not part of the input.)

Output: array P = [z0, . . . , z`] path, where z0 = u, zk = v.

We say that for 0 ≤ i ≤ k, the position i holds vertex wi. It is a frequent
mistake to fail to make this distinction; the essence of the problem is the fact
that multiple positions can hold the same vertex. If x = wi, we shall also say
that x occurs at position i along the walk.

The idea of the algorithm is that we create an array of length n called “last”
which, with each vertex, holds its last position. (If a vertex does not occur
in W then its last position will be NIL.) With the help of this array we shall
be able to skip forward from any vertex along the walk to its last occurrence.

1

Procedure Walk-to-path [input as listed above]

01 for j = 1 to n
02 last[j] := NIL (: initializing the “last” array :)
03 end(for)
04 for i = 0 to k
05 last[wi] := i (: completing the “last” array :)
06 end(for)
07 ` := 0, z0 := x := w0 (: initializing path :)
08 while x 6= wk

09 ` := ` + 1
10 x := w1+last[x] (: advance along path :)
11 z` := x (: appending next vertex to path :)
12 end(while)
13 for i = 0 to `
14 P [i] := zi (: listing path :)
15 return P

Analysis

CORRECTNESS

Notation 1 Let U = {w0, . . . , wk} denote the set of vertices of the walk W .

Observation 2 If x ∈ U then last[x] := max{i : x = wi}.
If x ∈ V \ U then last[x] =NIL.

Observation 3 If x ∈ U then x = wlast[x].

Proof. Immediate by Observation 2.

Notation 4 U∗ = U \ {wk} = {w0, . . . , wk−1}.

Notation 5 For x ∈ U∗ we write N(x) = w1+last[x].

Observation 6 If x ∈ U and x 6= wk then last[x] < k.

Proof. Otherwise last[x] = k but then x = wk by Obs. 3.

Corollary 7 When line 10 is called, it can be executed.

Proof. This is the exact content of Observation 6.

Corollary 8 The statement “x ∈ U” is a loop invariant for the while-loop
in lines 08-12.

Proof. This is immediate from Notation 5 in the light of Obs. 7.

2

Observation 9 After line 11 we have z` = N(z`−1).

Proof. Lines 08-12.

Observation 10 After line 06,

If x ∈ U∗ then x→ N(x).

Proof. Let last[x] = i. Then, by line 05, x = wi. By the definition of the
walk W , there is an edge wi → wi+1.

Corollary 11 [z0, z1, . . .] is a (finite or infinite) walk.

Proof. Combine Observations 2 and 3.

Lemma 12 If x ∈ U∗ then last[N [x]] > last[x].

Proof. Let i = last[x]. Then N(x) = wi+1 and therefore
last[N(x)] ≥ i + 1.

Corollary 13 The following is a loop invariant for the while-loop 08–11:

last[z0] < last[z1] < · · · < last[z`]

Proof. Combine Obs. 9 and Lemma 12.

Corollary 14 The while-loop of lines 08–12 terminates in at most min(n, k)
rounds, and at termination, z` = wk. Moreover, all the zi are distinct.

Proof. By Cor. 13, the while-loop terminates in at most min(n, k) rounds
because for x ∈ U∗ we have last[x] ≤ k and all vertices last[zi] are distinct.
Moreover, on exit the loop condition must be violated and therefore we have
z` = x = wk. Finally, by Corollary 13, this walk has no repetition, because,
obviously, if x = y ∈ U then last[x] = last[y]. (We also need to note that wk

is not repeated because as soon as we hit x = wk, we exit the while-loop of
lines 08–12.)

Theorem 15. [z0, . . . , z`] is a u→ · · · → v path.

Proof. By Corollary 11, [z0, z1, . . .] is a finite or infinite walk. By Corollary
14, this walk is finite and ends at v = wk. It begins at z0 = w0 by line
07. Also by Corollary 14, all the zi are distinct. Therefore [z0, z1, . . .] is a
u→ · · · → v path.

COMPLEXITY

We work in the unit cost model. The size of the input is n + k. The cost of
line 07 and the cost of each execution of our loops is O(1). The for-loop of
lines 01–03 is executed n times and the for-loop of lines 04–06 k times. By
Corollary 1, the while-loop of lines 08–11 is executed ` ≤ min(n, k) times;
the cost of each execution is O(1). This adds up to O(n + k).

3

