Algorithms — CMSC-27230
Walk to path
Lészl6 Babai

Last updated 2024-02-08

Ezercise Let G = (V,E) be a digraph and u,v € V. We describe an
algorithm that, given a u — --- — v walk, constructs a v — --- — v path
in linear time, i.e., time O(n + k) where n = |V| and k is the length of the
walk. We assume V' = [n] = {1,...,n}.

The vertices are represented by “tokens,” i.e., binary strings of length
[logy(n + 1)]. Each token contributes one unit to the input size, and op-
erations on tokens (addition/subtraction, comparison, copying, viewing the
token as a link and following the link) costs one unit.

Solution The procedure moves along the walk . Each time it reaches a
vertex z, it jumps forward to the last occurrence of x along W and continues
from there. To implement the algorithm in linear time, we need to store the
last occurrence of each vertex; this can be done in a single pass along the
walk.

Input: n in unary (number of vertices of the digraph)
array W = [wy,...,w] walk of length k where wy = u, wy, = v
(Note: the digraph itself is not part of the input.)

Output: array P = [z,...,2] path, where zy = u, z;, = v.

We say that for 0 < ¢ < k, the position i holds vertex w;. It is a frequent
mistake to fail to make this distinction; the essence of the problem is the fact
that multiple positions can hold the same vertex. If x = w;, we shall also say
that x occurs at position ¢ along the walk.

The idea of the algorithm is that we create an array of length n called “last”
which, with each vertex, holds its last position. (If a vertex does not occur
in W then its last position will be NIL.) With the help of this array we shall
be able to skip forward from any vertex along the walk to its last occurrence.

Procedure Walk-to-path [input as listed above]

01 forj=1ton

02 last[j] := NIL (: initializing the “last” array :)
03 end(for)

04 fori=0tok

05 last[w;] := i (: completing the “last” array :)
06 end(for)

07 (:=0, zp:=x:=wy (: initializing path :)

08 while x # wy,

09 C:=0+1

10 T 1= Wi last[e] (: advance along path :)

11 2= (: appending next vertex to path :)

12 end(while)

13 fori=0to/

14 Pli] :== z (: listing path :)
15 return P

Analysis

CORRECTNESS
Notation 1 Let U = {wy, ..., wy} denote the set of vertices of the walk V.

Observation 2 If € U then last[z] := max{i : * = w;}.
If z € V' \ U then last|z] =NIL.

Observation 3 If z € U then & = wiagfq)-
Proof. Immediate by Observation 2. [
Notation 4 U* =U \ {wy} = {wo, ..., wi_1}.

Notation 5 For x € U* we write N(2) = W1 1ast[a]-

Observation 6 If v € U and = # wy, then last[z] < k.

Proof. Otherwise last[z] = k but then x = wy, by Obs. 3. O

Corollary 7 When line 10 is called, it can be executed.

Proof. This is the exact content of Observation 6. O]

Corollary 8 The statement “x € U” is a loop invariant for the while-loop
in lines 08-12.

Proof. This is immediate from Notation 5 in the light of Obs. 7.]

Observation 9 After line 11 we have z, = N(z,_1).

Proof. Lines 08-12. O]

Observation 10 After line 06,
If € U* then x — N(z).
Proof. Let last[z] = i. Then, by line 05, x = w;. By the definition of the

walk W there is an edge w; — w; ;. O
Corollary 11 [z, z1,...] is a (finite or infinite) walk.
Proof. Combine Observations 2 and 3. n

Lemma 12 If x € U* then last[N[z]] > last[z].

Proof. Let i = last[z]. Then N(z) = w;1 and therefore
last[N(x)] > i+ 1. O

Corollary 13 The following is a loop invariant for the while-loop 08-11:
last[zg] < last|z1] < - -+ < last[z/]
Proof. Combine Obs. 9 and Lemma 12. m

Corollary 14 The while-loop of lines 08-12 terminates in at most min(n, k)
rounds, and at termination, z, = w;. Moreover, all the z; are distinct.

Proof. By Cor. 13, the while-loop terminates in at most min(n, k) rounds
because for x € U* we have last[z] < k and all vertices last[z;] are distinct.
Moreover, on exit the loop condition must be violated and therefore we have
2z = x = wy. Finally, by Corollary 13, this walk has no repetition, because,
obviously, if z = y € U then last[z] = last[y]. (We also need to note that wy,
is not repeated because as soon as we hit x = wy, we exit the while-loop of
lines 08-12.) O

Theorem 15. [z),...,2]isau — --- — v path.

Proof. By Corollary 11, [z, 21, ...] is a finite or infinite walk. By Corollary
14, this walk is finite and ends at v = wy. It begins at zy = wy by line
07. Also by Corollary 14, all the z; are distinct. Therefore [z, 21,...] is a
u — - -+ — v path. O

COMPLEXITY

We work in the unit cost model. The size of the input is n + k. The cost of
line 07 and the cost of each execution of our loops is O(1). The for-loop of
lines 01-03 is executed n times and the for-loop of lines 04-06 k£ times. By
Corollary 1, the while-loop of lines 08-11 is executed ¢ < min(n, k) times;
the cost of each execution is O(1). This adds up to O(n + k).

