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Read these notes in conjunction with the “Paley graphs and Paley tournaments” handout.
If you do not feel comfortable with the notion of finite fields, replace all occurrences of the
prime power q by the prime number p. The field Fp is simply Zp, the ring of residue classes
modulo p.

1 Finite fields

Definition 1.1. A field is a set F with two binary operations, called addition and multipli-
cation, and two distinct constants (special elements) called 0 and 1 (so 0 6= 1), such that we
can perform the four arithmetic operations on F under the usual rules. Specifically, the two
operations are commutative and associative, distributivity holds (multiplication distributes
over addition), (∀a ∈ F)(0 + a = 1 · a = a), every element a has an addtitive inverse −a,
and every nonzero element a has a multiplicative inverse a−1. The set of non-zero elements
of the field F is called the multiplicative group of F and is denoted F×.

Examples: C (complex numbers), R (real numbers), Q (rational numbers), Fp (the modulo
p residue classes under operations defined by representatives). A notable non-example is Z.
(Why is Z not a field?)

Terminology 1.2. The number of elements of a field is called the order of the field. It
may be finite or infinite. For example, Fp has order p.

Exercise 1.3. The order of every field is at least 2.

Theorem 1.4 (Galois, 1930). If F is a field then the order of F is a prime power, i. e., a
number of the form q = pe where p is a prime number and e ≥ 1. Moreover, for every prime
power q there exists a field of order q, denoted Fq. This field is unique up to isomorphism.

The field Fq is also denote GF(q) (“Galois field”). If p is a prime then the finite field Fp
is the same as Zp, the ring of residue classes modulo p.
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Exercise 1.5. Show that the ring Zn of residue classes modulo n is a field if and only if n
is a prime number.

So in particular, if q is a prime power but not a prime number then Zq is not a field. The
construction of the Fq for q = pe relies on the existence of an irreducible polynomial of degree
e over Fp.

Definition 1.6. We say that a ∈ Fq is a square if (∃x ∈ Fq)(a = x2), and non-square
otherwise.

Exercise 1.7. Let q be an odd prime power. Then there are (q−1)/2 squares and (q−1)/2
non-squares in F×q .

Exercise 1.8. Let q be an odd prime power. Prove that in Fq, the product of two non-
squares is a square.

Hint. Count: use the preceding exercise.

2 Order of elements, primitive roots

Definition 2.1. We say that the order of an element a ∈ F× is k if k is the smallest positive
integer such that ak = 1. If no such k exists, we say that the order of a is infinite. We write
o(a) for the order of a, except that we write o(a) = 0 if the order of a is infinite.

Exercise 2.2. Let a ∈ F× and let n ∈ Z. Then an = 1 if and only if o(a) | n.

Note that this exercise is true even if the order of a is infinite, i. e., when o(a) = 0. In this
case it says that an = 1 if and only if n = 0.

Definition 2.3. Let z ∈ F×. For n ≥ 1 we say that z is an n-th root of unity in F if
zn = 1, i. e., if o(z) | n.

Definition 2.4. For n ≥ 1, we say that z ∈ F× is a primitive n-th root of unity if
o(z) = n.

The following exercise generalizes Fermat’s little Theorem to all finite fields.

Exercise 2.5. Let a ∈ F×q . Then aq−1 = 1.

In other words, the order of every element of F×q is a divisor of q − 1.

Definition 2.6. A primitive root of the field Fq is an element of order q − 1.

Theorem 2.7 (Primitive roots). Every finite field has a primitive root.

Exercise 2.8. If g is a primitive root of Fq then every element of F×q is a power of g. If
a = g` then ` is called the discrete logarithm of a to the base g. The discrete logarithm
is unique modulo q − 1.
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Exercise 2.9. Let q be an odd prime power. Let a ∈ Fq. Then a is a square in Fq (i. e.,
(∃x ∈ Fq)(a = x2)) if and only if a(q−1)/2 = −1.

Exercise 2.10. Let q be an odd prime power. The element −1 ∈ Fq is a square if and only
if q ≡ 1 (mod 4).

Definition 2.11. Let N = {1, 2, . . . } denote the set of natural numbers. The Euler ϕ
function ϕ : N → N is defined as follows: ϕ(n) is the number of integers in the interval
{1, . . . , n} that are relatively prime to n.

Exercise 2.12. (a) ϕ(1) = ϕ(2) = 1. (b) If p is a prime number then ϕ(p) = p− 1. (c)
For a prime number p and e ≥ 0 we have ϕ(pe) = pe(1 − 1/p). (d) If gcd(a, b) = 1 then
ϕ(ab) = ϕ(a) ·ϕ(b). (e) Let n = pe11 · · · p

ek
k be the prime-power decomposion of the positive

integer n. Then

ϕ(n) = n ·
k∏
i=1

(
1− 1

pi

)
. (1)

Exercise 2.13. (a) The number of primitive roots in Fq is ϕ(q − 1). (b) Let k | q − 1,
k ≥ 0. Then the number of elements of order k in Fq is ϕ(k). (c) The number of primitive
roots of order k in C is ϕ(k).

3 Multiplicative characters

Let q be a prime power and Fq the corresponding finite field.

Definition 3.1. A multiplicative character of Fq is a function χ : Fq → C such that
χ(0) = 0, χ(1) = 1, and (∀a, b ∈ Fq)(χ(ab) = χ(a)χ(b)).

Note that in the equation χ(1) = 1, the two occurrences of “1” have different meaning:
the first occurrence refers to the identity element of the field Fq, the second, the identity
element of the field C. The analogous comment applies to the equation χ(0) = 0. The actual
meaning of the symbols 0 and 1 should always be clear from the context.

Convention 3.2. An additive character is a function ψ : Fq → C such that (∀a, b ∈
Fq)(ψ(a+ b) = ψ(a)ψ(b)). In these notes we consider multiplicative characters only, so
even if the adjective “multiplicative” is omitted, the term “character” will always refer to
multiplicative characters.

Definition 3.3. The principal character χ1 assigns the value 1 to each nonzero element
of Fq.

Definition 3.4. Let q be an odd prime power. The quadratic character χ2 of Fq is defined
by setting, for a ∈ Fq,

χ2(a) =


0 if a = 0

1 if a 6= 0 and a is a square in Fq
−1 if a is not a square in Fq
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Exercise 3.5. Prove that χ2 is a multiplicative character. (The hard case is covered by
Ex. 1.8.)

Exercise 3.6. If χ is a multiplicative character of Fq then χq−1 = χ1.
This means that (∀a ∈ Fq)((χ(a))q−1 = χ1(a)). So the statement is equivalent to saying that
for all a ∈ F×q , the complex number χ(a) is a (q − 1)-st complex root of unity.

Definition 3.7. The order of the multiplicative character χ : Fq → C is the smallest
positive k such that χk = χ1. We denote the order of χ by o(χ).

Exercise 3.8. (a) For every multiplicative character χ we have o(χ) | q−1. (b) o(χ1) = 1
(c) o(χ2) = 2.

Exercise 3.9. (a) χ1 is the only multiplicative character of order 1. (b) χ2 is the only
multiplicative character of order 2.

Exercise 3.10. Let g be a primitive root in Fq. A multiplicative character χ is determined
by the value χ(g).
What this means is that if χ and ξ are two multiplicative characters of Fq and χ(g) = ξ(g)
then χ = ξ.

Exercise 3.11. The number of characters of Fq is q − 1.

Exercise 3.12. Let k | q − 1. The number of characters of Fq of order k is ϕ(k).

Exercise 3.13. Let χ 6= χ1 be a non-prinicipal multiplicative character of Fq. Then∑
x∈Fq

χ(x) = 0.

Hint. Take a ∈ Fq such that χ(a) 6= 1. Notice that the Fq → Fq map x 7→ ax is bijective.

Exercise 3.14. Let q be an odd prime power. Then
∑

a∈Fq
χ2(a)χ2(a− 1) = −1.

Hint. For a 6= 0 write a− 1 as a(1− 1/a).

Exercise 3.15. (Orthogonality) Let χ and ξ be two distinct multiplicative characters of
Fq. Then

∑
a∈Fq

χ(a)ξ(a) = 0. (Here z means the complex conjugate of the number z.)

4 André Weil’s character sum estimate

Exercise 4.1. Let q be an odd prime power. Then |
∑

a∈Fq
χ2(−a2 + 2a− 1)| = q − 1.

Exercise 4.2. Let q be an odd prime power. Then
∑

a∈Fq
χ2(a

2 + 1) = −1.

In each of the preceding two exercises we were looking at the quadratic character evaluated
at values of a polynomial: −x2 + 2x− 1 in the first case and x2 + 1 in the second case. We
observe no cancellation of terms in the first case, and virtually all terms cancel out in the
second case. The reason is that in the first case the polynomial is a constant times a square;
in the second case, it is not. Of course the first exercise is straightforward; the second takes
effort.

A far-reaching generalization of the second case was proved by André Weil in 1948.

4



Theorem 4.3 (Weil’s character sum estimate). Let q be a prime power. Let χ be a multi-
plicative character of Fq of order k = o(χ). Let g be a polynomial of degree d ≥ 1 over Fq.
Assume g is not of the form c · hk where c ∈ Fq and h is a polynomial over Fq. Then∣∣∣∣∣∣

∑
a∈Fq

χ(g(a))

∣∣∣∣∣∣ ≤ (d− 1)
√
q .

Let us understand what is happening here. Think of q being large and d small–we evaluate
the character of a low-degree polynomial. We are adding up q quantities, at least q − d of
which have unit absolute value. (Why?) So the sum could potentially be close to q. Instead,
it is now not much greater than

√
q. This means tremendous cancellation is occurring–the

amount of cancellation is comparable to the cancellation in a sum of random ±1 values.

Exercise 4.4. Let X =
∑n

i=1 Yi where the Yi are independent random variables taking the
value ±1 with equal probability. Then the standard deviation of X is

√
n.

This observation makes Weil’s Theorem a powerful derandomization tool: it permits us, in
some cases, to give explicit construction of objects of which the existence is easily proved by
the probabilistic method. An example is the analysis of small subgraphs of the Paley graph
which we describe below.

Let us take a look at the necessity of Weil’s assumption on the polynomial.

Exercise 4.5. If in Weil’s Theorem we change the assumption on g to g = c · hk for some
c ∈ Fq and some polynomial h then

q − (d/k) ≤

∣∣∣∣∣∣
∑
a∈Fq

χ(g(a))

∣∣∣∣∣∣ ≤ q .

5 Paley graphs over finite fields

In this section, q is a prime power and q ≡ 1 (mod 4).

Definition 5.1. The Paley graph of order q, denoted PGr(q), is defined as follows. The
vertices of PGr(q) are the elements of the field Fq . Vertices i and j are adjacent if j − i is a
non-zero square in Fq.

Exercise 5.2. Show that this definition is sound: it indeed defines a graph. You need to
show that the adjacency relation is symmetric. Show where you use the assumption that
q ≡ 1 (mod 4).

Exercise 5.3. Show that PGr(q) is (a) vertex-transitive (all vertices are equivalent under
automorphisms) (b) edge-transitive (all edges are equivalent under automorphisms) (c)
arc-transitive (all ordered pairs of adjacent vertices are equivalent under automorphisms).

Exercise 5.4. Show that PGr(q) is self-complementary (isomorphic to its complement).
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Exercise 5.5. Show that every vertex of PGr(q) has degree (q − 1)/2.

Exercise 5.6. Show that PGr(q) has diameter 2.

Hint. Prove the following, much more general statement. Let G be a graph with n of vertices.
Assume every vertex has degree ≥ (n− 1)/2. Then the graph has diameter ≤ 2.

Exercise 5.7. (a) Show that every pair of adjacent vertices of PGr(q) has the same number
of common neighbors. (b) Show that this number is (q− 5)/4. (c) Show that every pair
of distinct, non-adjacent vertices has the same number of common neighbors. (d) Show
that this number is (q − 1)/4.

Exercise 5.8. (a) Show that the adjacency matrix A of PGr(q) satisfies an equation of the
form A2 + bA + cI = dJ . Determine the coefficients b, c, d. (I is the identity matrix, J is
the all-ones matrix.) (b) Find the eigenvalues of A. (c) Find the multiplicity of each
eigenvalue of A.

6 Paley tournaments

In this section, q is a prime power and q ≡ −1 (mod 4).

Definition 6.1. The Paley tournament of order q, denoted PTr(q), is defined as follows.
The vertices of PTr(q) are the elements of the field Fq . (i, j) is an edge (we draw the arrow
i→ j) if j − i is a non-zero square in Fq.

Exercise 6.2. Show that this definition is sound: it indeed defines a tournament. You need
to show that this is an orientation of the complete graph, i. e., for every pair {a, b} of distinct
vertices, exactly one of (a, b) and (b, a) is an edge. Show where you use the assumption that
q ≡ −1 (mod 4).

Exercise 6.3. Show that PTr(q) is (a) vertex-transitive (b) edge-transitive (all edges are
equivalent under automorphisms).

Exercise 6.4. Show that PTr(q) is self-converse (isomorphic to its converse, where every
edge is reversed).

Exercise 6.5. Show that every vertex of PTr(q) has indegree (q − 1)/2 and the same out-
degree. Show that this follows from vertex-transitivity.

Exercise 6.6. Show that the directed diameter of PTr(q) is 2, i. e., if a 6= b are vertices then
b can be reached from a in at most two steps.

Exercise 6.7. (a) Show that every edge (a, b) in PTr(q), the number of two-step walks from
a to b is the same. (b) Show that this number is (q − 3)/4. (c) Show that every edge
(a, b) in PTr(q), the number of two-step walks from b to a is the same. (d) Show that this
number is (q + 1)/4.

Definition 6.8. Let G = ([n], E) be an oriented graph. This means that the adjacency
relation is antisymmetric: if (u, v) ∈ E then (v, u) /∈ E. We define the ±-adjacency
matrix A = (aij) of G as follows:
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aij =


1 if (i, j) ∈ E
−1 if (j, i) ∈ E
0 otherwise

Note that this includes aii = 0. If G is a tournament then aij = 0 ⇐⇒ i = j.

Exercise 6.9. Let G be an oriented graph and let A be its ±-adjacency matrix.
(a) Observe that AT = −A.
(b) Assume (∀i, j)(deg+(i) = deg−(j)) (all indegrees and outdegrees are equal). Then the
all-ones vector is an eigenvector of A. What is the corresponding eigenvalue?
(c) If G is vertex-transitive then the assumption in (b) holds.

Exercise 6.10. Let A be the ±-adjacency matrix of the Paley tournament PTr(q).
(i) Prove that A2 can be expressed as A2 = aI + bJ . Determine the coefficients a and b.
(ii) Determine the eigenvalues of A2 and their multiplicities.
(iii) Determine the eigenvalues of A and their multiplicities (over C).

7 k-universal graphs

Definition 7.1. We say that the graph G is k-universal if every graph with k vertices is
isomorphic to some induced subgraph of G.

Exercise 7.2. For every k ≥ 1 there exists a k-universal graph with ≤ k · 2(k
2) vertices.

This is very easy to show. We shall see that see that there exist much smaller k-universal
graphs. Here is a simple lower bound so we can get a sense of what we should be shooting
for.

Exercise 7.3. If G is a k-universal graph with n vertices then n ≥ 2(k−1)/2.

So we cannot get better than simply exponential in k (a bound of the form Ck for some
constant C > 1). Below we outline the idea of such a bound.

Definition 7.4. We say that the graph G = (V,E) has the k-extension property if
|V | ≥ k and for all pairs (A,B) of subsets of V such that A ∩B = ∅ and |A ∪B| = k, there
exists a vertex x ∈ V that is adjacent to all vertices in A and to none of the vertices in B.

Exercise 7.5. If G has the k-extension property then G is (k + 1)-universal.

Theorem 7.6 (Erdős). Let G be a random graph with n vertices in the uniform Erdős–
Rényi model (edge probability 1/2). If n ≥ k2 · 2k then whp G has the k-extension property.
Consequently, if k is sufficiently large and n ≥ k2 · 2k then there exists a (k + 1)-universal
graph with n vertices.
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Notation 7.7. “whp” stands for “with high probability.” Since we now have two parameters,
n and k, this requires an explanation. This result holds whp as n→∞ while k is a variable
subject to the condition that n ≥ k2 · 2k. In other words, the following holds.
For every ε > 0 there exists nε such that if n ≥ nε and n ≥ k2 ·2k then G has the k-extension
property with probability ≥ 1− ε.

This theorem gives a non-constructive proof of the existence of k-universal graphs of simply
exponential size. In the next section we give a constructive proof at the cost of some increase
in the size of the universal graph obtained, and a huge increase in the mathematical difficulty
of the proof.

Exercise 7.8. Prove Theorem 7.6.

8 Application of Weil’s character sum estimate:

universality of Paley graphs

In this section we demonstrate an explicit construction of k-universal graphs of simply ex-
ponential size. The result derandomizes Theorem 7.6, at the cost of squaring the size of the
graph. The graphs we show to be k-universal are the Paley graphs for sufficiently large q.
The tool we use is Weil’s character sum estimate.
As in the non-constructive proof of Theorem 7.6, we establish univesality via the k-extension
property (Def. 7.4).

Theorem 8.1. Let q be a prime power, q ≡ 1 (mod 4). Assume q > k2 · 4k. Then the Paley
graph PGr(q) has the k-extension property (and is therefore (k + 1)-universal).

In the proof we shall use the following identity.

Exercise 8.2. Let x1, . . . , xn ∈ C. Then

n∏
i=1

(1 + xi) =
∑
I⊆[n]

∏
i∈I

xi . (2)

Note that the sum on the right-hand side has 2n terms.

Exercise 8.3. Use Weil’s Theorem to prove Theorem 8.1. Follow the steps below.

Sketch of proof. Let A,B ⊂ Fq, where A∩B = ∅ and |A∪B| = k. Let us say that x ∈ Fq
is good for the pair (A,B) if x /∈ A ∪ B and in the Paley graph PGr(q), x is adjacent to
each a ∈ A and not adjacent to any of the b ∈ B. We say that x is bad if x is not good and
x /∈ A ∪B. We say that x is prohibited if x ∈ A ∪B.

Let N denote the number of good vertices. We need to show that N > 0. In fact, we show
more.

Theorem 8.4. Using the notation above (beginning of Sketch of proof), we have∣∣∣N − q

2k

∣∣∣ < k
√
q . (3)
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Remark 8.5. There is nothing random here, this holds for all pairs (A,B). But there is a
probabilistic interpretation to this inequality. First let us conclude from the inequality that∣∣N − q−k

2k

∣∣ < (k + 1)
√
q . Now if the graph we are considering were random in the uniform

Erdős–Rényi model then the expected number of good points would be (q − k)/2k, and the
standard deviation of the number of good points would be

√
q − k ≈ √q. So we are talking

about a tail bound in terms of a small multiple of the standard deviation. Find out what the
Bernstein (Chernoff) bound would give in this situation, taking into account that we would
need to use the union bound to get a result that holds for all pairs (A,B).
This gives concrete meaning to the idea that we are derandomizing the probabilistic proof.

We classified the elements of Fq as good, bad, or prohibited with respect to the pair (A,B).
We now translate this classification into algebra by considering the following function f :
Fq → C. For x ∈ Fq let

f(x) =
∏
a∈A

(1 + χ2(x− a)) ·
∏
b∈B

(1− χ2(x− b)) . (4)

Show:

• If x is good then f(x) = 2k.

• If x is bad then f(x) = 0.

• If x is prohibited then either f(x) = 0 or f(x) = 2k−1.

Now proceed as follows.

(a) For I ⊆ A ∪B let

gI(x) =
∏

a∈I∩A

(x− a) ·
∏

a∈I∩B

(x− b) (5)

Show that
f(x) =

∑
I⊆A∪B

(−1)|I∩B|χ2(gI(x)) . (6)

(b) Consider the sum
S =

∑
x∈Fq

f(x). Show that 2kN ≤ S ≤ 2kN + k · 2k−1.

(c) Observe that S =
∑

I⊆A∪B

(−1)|I∩B|
∑
x∈Fq

χ2(gI(x)) .

(d) Notice that the term corresponding to I = ∅ is q. We show that for sufficiently large
q, this is the dominant term, meaning N ≈ q/2k, in accordance with the probabilistic
interpretation discussed in Remark 8.5. All other terms (where I 6= ∅) only contribute
“noise.” The hard job is to show that the noise does not overwhelm the main term,
and this is what Weil’s estimate will do for us.

Let us write S = q +R. So q +R ≥ 2kN ≥ q +R− k · 2k−1 and therefore

|2kN − q| ≤ |R|+ k · 2k−1 . (7)
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(e) Use Weil’s Theorem to give an upper bound on |R|:

|R| < (k − 1) · 2k · √q . (8)

Make sure to verify that Weil’s condition on the polynomials involved is met.

(f) Combine the last two items to show that∣∣N · 2k − q∣∣ < k · 2k · √q . (9)

proving Theorem 8.4. (Check!)

(g) Infer from this that if q > k2 · 4k then N > 0.

(h) Conclude that this completes the proof of Theorem 8.1. (Check!)

9 Problems

Exercise 9.1. Let p be a prime number and k ≥ 2. Prove: If p > k2 · 4k then there exist k
consecutive quadratic non-residues in [p− 1] = {1, 2, . . . , p− 1}. (Use Weil’s character sum
estimate.)

Definition 9.2. Let k ≥ 1. Let T be a tournament with n vertices. We say that a player x
(a vertex) dominates a set A of players if x beats all players in A, i. e., for every a ∈ A, the
edge x → a is in T . We say that T is k-paradoxical if n ≥ k and every set of k players is
dominated by some player.

Explanation of the term. In such a tournament, it is difficult to rank the players: no matter
how we rank them, there will be a player not among the top k who beat every player among
the top k players.

Definition 9.3. In a random tournament, we fix the set of vertices and we orient each
edge independently either way with probability 1/2.

Exercise 9.4. Prove that the Paley tournament PTr(7) is 2-paradoxical. Make your proof
very simple, with no case-distinctions, based on what we know about the automorphisms of
this tournament. Elegance matters.

Exercise 9.5. Let k ≥ 1. Prove: If n > k2 · 2k then whp the random tournament is
k-paradoxical.

The meaning of “whp” in this context (we have two parameters) is explained in Notation 7.7.

Exercise 9.6. Let k ≥ 2 and let q be a prime power, q ≡ −1 (mod 4). Prove: If q > k2 · 4k
then the Paley tournament is k-paradoxical.
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