Apprentice Linear Algebra, 1st day, 6/27/05
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Instructor: Laszlé Babai
Scribe: Eric Patterson

Definitions 1.1. e An abelian group is a set G with the following properties:

(i) (Va,be G)(Fla+beq)
(ii) the addition in (i) is associative
(iii) (30)(Va € G)(a+0=a)
) (Va)(3b)(a+b=0)
(v) a+b=b+a

(iv

e A wector space is an abelian group (V,+) with a multiplication by scalars:

— VaeR)(VaecV)(TaacV)
— (af)a=a(fa)
— (a+ pla=caa+ pa

— ala+b)=ca+ab

Theorem 1.2. ca=0&a=0ora=0.
Corollary 1.3. (—1)a = —a.

Examples 1.4. Some examples of vector spaces.

1. R?

2. geometric vectors in 2 or 3 dimensions

3. k x ¢ matrices

4. C0,1], the continuous functions from [0, 1] to R
5. the space of infinite sequences

6. R, the functions from © to R



Q={1,...,n} is example 1 above
Q={1,...,k} x{1,...,¢} is example 3

e (2 =0,1] contains example 4

e () = N is example 5

Definitions 1.5. e A linear combination of aj,...,a; € V is a sum Zle «;a; for some
ag,...,ap € R
e The span of ay, ..., ay, written Span(ay,...,ax), is the set of all linear combinations of

aj,...,ag. More generally, for a possibly infinite subset S of V', Span(S) is the set of all
linear combinations of all finite subsets. By convention, Span()) = {0}.

e A subspace of V is a subset W which is a vector space under the same operations. This
is written W < V. Equivalently, a subset W is a subspace if it is nonempty and closed
under addition and multiplication by scalars:

1. W#0
2. Va,beW)(a+beW)
3. VaeW)(VAeR)(Aae W).

Equivalently, a subspace is a nonempty subset closed under linear combinations.
Corollary 1.6. W <V iff Span(W) = W.
Exercise 1.7. If S C W, then Span(S) < W.

e The vectors aj,...,a; are linearly independent if (Vaq,...qp € R)(Zle o =0 =
ay =+ = ag = 0). An infinite set of vectors is linearly independent if all finite subsets
are linearly independent. If a set of vectors is not linearly independent, it is linearly
dependent.

Examples 1.8. Some more examples of vector spaces.

e R[z] = {polynomials with real coefficients}.

e R(z) = {rational functions with real coefficients}. That is, the set of £ with p, ¢ € R[z],
q#0,and 2t = L2 iff p1go = pagy.
Claim 1.9. {-1: o € R} is linearly independent in R(z).

Definitions 1.10. e Let S C V. The rank of S, rk(S), is the maximum number of linearly
independent vectors in S.

e Let W < V. The dimension of W, dim(W), is the rank of W.

o Let BC W < V. Bisa basisof W if (i) Span(B) = W and (ii) B is linearly independent.



e A vector a depends on a set S C V if a € Span(95).

Corollary 1.11. {ay,...,ax} is a basis of W if (Yw e W) Flag, - ,ap € R)D.aa; = w).

If {a1,...,a;} is a basis for W and w € W, then the coordinates of w with respect to the basis
{ai1,...,a;} is the column vector of the unique a; given by the corollary; we write
ai
[w]{a1,...,ak} =
ag

The coordinates of w depend on the choice of basis for W. Later we shall see how coordinate
vectors change under change of basis.

Observation 1.12. A set of vectors S is linearly dependent iff there is a member which
depends on the rest.

Note 1.13. A set containing 0 is never linearly independent. Also, a sequence of vectors with
repetitions is never linearly independent.

Exercise 1.14. Prove that these functions are linearly independent in R¥: 1, cos z, sin z, cos 2z,
sin2x,...,cosnx,sinnz, . ...

Theorem 1.15 (Magic #1). If uy,...,u; € Span(vy,...,vy) and uy,...,u; are linearly
independent, then k < £.
(Prove later.)

Corollary 1.16. If By and By are bases of W, then |B1| = | Ba|.

Exercise 1.17. Every vector space has a basis. In fact, every set of generators contains a
basis, and every linearly independent set can be extended to a basis.

Exercise 1.18. Let L C G C W, and suppose Span(G) = W. If L is linearly independent,
then there is a basis B such that L C B C G.

Lemma 1.19. If aj,...,a; are linearly independent but ai,... a1 are linearly dependent
then a1 € Span(ag, ..., ag).
The polynomials 1, 2,22, ... are a basis for R[z], showing that dim R[z] is countable. However,

dim R(z) is uncountable since {ﬁ : a € R} is linearly independent and uncountable.

A sequence (g, a1, aa,...) is a Fibonacci-type sequence if for n > 2, a,, = ap—1 + 2.
Let F' be the set of all Fibonacci-type sequences. The Fibonacci-type sequence with ag = 0
and a3 = 1 is called the Fibonacci sequence, f = (0,1,1,2,3,5,8,13,21,34,55,...).

Claim 1.20. F is a 2-dimensional subspace of RN,



A geometric sequence is one of the form (1, ¢, 7, ... ). Can a geometric sequence be a Fibonacci-
type sequence?

Exercise 1.21. The sequence (1,q,¢?,...) is Fibonacci-type iff 1 + ¢ = ¢°.

1+v/5
2

The equation ¢°> = g + 1 has two solutions: . The two geometric sequences (1,

and (1, 1_2‘/5, ...) are linearly independent and, thus, a basis for F'.

Corollary 1.22. The Fibonacci sequence is a linear combination of these two geometric se-
quences.

Exercise 1.23. The nth term in the Fibonacci sequence is

()
fu= Ug <1 +2\/5ﬂ

where |z] means round z to the nearest integer.

Exercise 1.24.

Definitions 1.25. A k x ¢ matrix can be considered a set of £ columns, [aj, ..., ay], or a set of
k rows, [by,...,bg]. The row space of the matrix is the span of these rows: Span(by,...,by) <
R?. Similarly, the column space of the matrix is the span of the columns: Span(ay, ..., a;) < RF,

The row-rank of the matrix is the dimension of the row space, and the column-rank of the matrix
is the dimension of the column space.

Theorem 1.26 (Magic #2). For any k X ¢ matriz, the column rank and the row rank are
equal.

Exercise 1.27. Prove. (Do not use determinants).

Fisher’s Inequality
Let t > 1. Let Ay, ..., A, be subsets of {1,...,n} such that

(Vi # 5)(|Ai N 4] = 1). (1)
How big can m be? If ¢ = 1, we can find n such sets.
Examples 1.28. o Let Aj={i,n} fori=1,...,.n—1and A, ={1,...,n—1}.

e For n = 7, the Fano Plane is a remarkable set of 7 subsets of size 3 of {1,...,7} with
pairwise intersection size ¢t = 1.

Theorem 1.29 (Fisher’s Inequality). Condition implies m < n.



Definition 1.30. For A C {1,...,n}, define the incidence vectorvs asvs = (a1,...,a,) € R
1 ifieA
0 ifigA

where o; =

Fisher’s Inequality follows from Magic #1 and the following exercise.

Exercise 1.31. Let aj,...,a, be incidence vectors for sets Aj,..., A, such that (Vi #
J)(JAi N Aj| =t). Then ay,...,a, are linearly independent in R".



