
Apprentice Linear Algebra, 1st day, 6/27/05

REU 2005

Instructor: László Babai
Scribe: Eric Patterson

Definitions 1.1. • An abelian group is a set G with the following properties:

(i) (∀a, b ∈ G)(∃!a + b ∈ G)

(ii) the addition in (i) is associative

(iii) (∃0)(∀a ∈ G)(a + 0 = a)

(iv) (∀a)(∃b)(a + b = 0)

(v) a + b = b + a

• A vector space is an abelian group (V,+) with a multiplication by scalars:

– (∀α ∈ R)(∀a ∈ V )(∃!αa ∈ V )

– (αβ)a = α(βa)

– (α + β)a = αa + βa

– α(a + b) = αa + αb

Theorem 1.2. αa = 0 ⇔ α = 0 or a = 0.

Corollary 1.3. (−1)a = −a.

Examples 1.4. Some examples of vector spaces.

1. Rn

2. geometric vectors in 2 or 3 dimensions

3. k × ` matrices

4. C[0, 1], the continuous functions from [0, 1] to R

5. the space of infinite sequences

6. RΩ, the functions from Ω to R
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• Ω = {1, . . . , n} is example 1 above

• Ω = {1, . . . , k} × {1, . . . , `} is example 3

• Ω = [0, 1] contains example 4

• Ω = N is example 5

Definitions 1.5. • A linear combination of a1, . . . ,ak ∈ V is a sum
∑k

i=1 αiai for some
α1, . . . , αk ∈ R.

• The span of a1, . . . ,ak, written Span(a1, . . . ,ak), is the set of all linear combinations of
a1, . . . ,ak. More generally, for a possibly infinite subset S of V , Span(S) is the set of all
linear combinations of all finite subsets. By convention, Span(∅) = {0}.

• A subspace of V is a subset W which is a vector space under the same operations. This
is written W ≤ V . Equivalently, a subset W is a subspace if it is nonempty and closed
under addition and multiplication by scalars:

1. W 6= ∅
2. (∀a,b ∈ W )(a + b ∈ W )

3. (∀a ∈ W )(∀λ ∈ R)(λa ∈ W ).

Equivalently, a subspace is a nonempty subset closed under linear combinations.

Corollary 1.6. W ≤ V iff Span(W ) = W .

Exercise 1.7. If S ⊆ W , then Span(S) ≤ W .

• The vectors a1, . . . ,ak are linearly independent if (∀α1, . . . αk ∈ R)(
∑k

i=1 αiai = 0 ⇒
α1 = · · · = αk = 0). An infinite set of vectors is linearly independent if all finite subsets
are linearly independent. If a set of vectors is not linearly independent, it is linearly
dependent.

Examples 1.8. Some more examples of vector spaces.

• R[x] = {polynomials with real coefficients}.

• R(x) = {rational functions with real coefficients}. That is, the set of p
q with p, q ∈ R[x],

q 6= 0, and p1

q1
= p2

q2
iff p1q2 = p2q1.

Claim 1.9. { 1
x−α : α ∈ R} is linearly independent in R(x).

Definitions 1.10. • Let S ⊆ V . The rank of S, rk(S), is the maximum number of linearly
independent vectors in S.

• Let W ≤ V . The dimension of W , dim(W ), is the rank of W .

• Let B ⊆ W ≤ V . B is a basis of W if (i) Span(B) = W and (ii) B is linearly independent.
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• A vector a depends on a set S ⊆ V if a ∈ Span(S).

Corollary 1.11. {a1, . . . ,ak} is a basis of W if (∀w ∈ W ) (∃!α1, · · · , αk ∈ R)(
∑

αiai = w).

If {a1, . . . ,ak} is a basis for W and w ∈ W , then the coordinates of w with respect to the basis
{a1, . . . ,ak} is the column vector of the unique αi given by the corollary; we write

[w]{a1,...,ak} =

 α1
...

αk

 .

The coordinates of w depend on the choice of basis for W . Later we shall see how coordinate
vectors change under change of basis.

Observation 1.12. A set of vectors S is linearly dependent iff there is a member which
depends on the rest.

Note 1.13. A set containing 0 is never linearly independent. Also, a sequence of vectors with
repetitions is never linearly independent.

Exercise 1.14. Prove that these functions are linearly independent in RR: 1, cos x, sinx, cos 2x,
sin 2x, . . . , cos nx, sinnx, . . . .

Theorem 1.15 (Magic #1). If u1, . . . ,uk ∈ Span(v1, . . . ,v`) and u1, . . . ,uk are linearly
independent, then k ≤ `.

(Prove later.)

Corollary 1.16. If B1 and B2 are bases of W , then |B1| = |B2|.

Exercise 1.17. Every vector space has a basis. In fact, every set of generators contains a
basis, and every linearly independent set can be extended to a basis.

Exercise 1.18. Let L ⊆ G ⊆ W , and suppose Span(G) = W . If L is linearly independent,
then there is a basis B such that L ⊆ B ⊆ G.

Lemma 1.19. If a1, . . . ,ak are linearly independent but a1, . . . ,ak+1 are linearly dependent
then ak+1 ∈ Span(a1, . . . ,ak).

The polynomials 1, x, x2, . . . are a basis for R[x], showing that dim R[x] is countable. However,
dim R(x) is uncountable since { 1

x−α : α ∈ R} is linearly independent and uncountable.

A sequence (α0, α1, α2, . . . ) is a Fibonacci-type sequence if for n ≥ 2, αn = αn−1 + αn−2.
Let F be the set of all Fibonacci-type sequences. The Fibonacci-type sequence with α0 = 0
and α1 = 1 is called the Fibonacci sequence, f = (0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, . . . ).

Claim 1.20. F is a 2-dimensional subspace of RN.
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A geometric sequence is one of the form (1, q, q2, . . . ). Can a geometric sequence be a Fibonacci-
type sequence?

Exercise 1.21. The sequence (1, q, q2, . . . ) is Fibonacci-type iff 1 + q = q2.

The equation q2 = q + 1 has two solutions: 1±
√

5
2 . The two geometric sequences (1, 1+

√
5

2 , . . . )
and (1, 1−

√
5

2 , . . . ) are linearly independent and, thus, a basis for F .

Corollary 1.22. The Fibonacci sequence is a linear combination of these two geometric se-
quences.

Exercise 1.23. The nth term in the Fibonacci sequence is

fn =
1√
5

((
1 +

√
5

2

)n

−

(
1−

√
5

2

)n)
.

Exercise 1.24.

fn =

⌊
1√
5

(
1 +

√
5

2

)n⌉
where bxe means round x to the nearest integer.

Definitions 1.25. A k× ` matrix can be considered a set of ` columns, [a1, . . . ,a`], or a set of
k rows, [b1, . . . ,bk]. The row space of the matrix is the span of these rows: Span(b1, . . . ,bk) ≤
R`. Similarly, the column space of the matrix is the span of the columns: Span(a1, . . . ,a`) ≤ Rk.
The row-rank of the matrix is the dimension of the row space, and the column-rank of the matrix
is the dimension of the column space.

Theorem 1.26 (Magic #2). For any k × ` matrix, the column rank and the row rank are
equal.

Exercise 1.27. Prove. (Do not use determinants).

Fisher’s Inequality

Let t ≥ 1. Let A1, . . . , Am be subsets of {1, . . . , n} such that

(∀i 6= j)(|Ai ∩Aj | = t). (1)

How big can m be? If t = 1, we can find n such sets.

Examples 1.28. • Let Ai = {i, n} for i = 1, . . . , n− 1 and An = {1, . . . , n− 1}.

• For n = 7, the Fano Plane is a remarkable set of 7 subsets of size 3 of {1, . . . , 7} with
pairwise intersection size t = 1.

Theorem 1.29 (Fisher’s Inequality). Condition (1) implies m ≤ n.
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Definition 1.30. For A ⊆ {1, . . . , n}, define the incidence vector vA as vA = (α1, . . . , αn) ∈ Rn

where αi =
{

1 if i ∈ A
0 if i 6∈ A

Fisher’s Inequality follows from Magic #1 and the following exercise.

Exercise 1.31. Let a1, . . . ,am be incidence vectors for sets A1, . . . , Am such that (∀i 6=
j)(|Ai ∩Aj | = t). Then a1, . . . ,am are linearly independent in Rn.
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