Definitions 1.1.

- An **abelian group** is a set G with the following properties:

 (i) $(\forall a, b \in G)(\exists! a + b \in G)$

 (ii) the addition in (i) is associative

 (iii) $(\exists 0)(\forall a \in G)(a + 0 = a)$

 (iv) $(\forall a)(\exists b)(a + b = 0)$

 (v) $a + b = b + a$

- A **vector space** is an abelian group $(V, +)$ with a multiplication by scalars:

 $- (\forall \alpha \in \mathbb{R})(\forall a \in V)(\exists! \alpha a \in V)$

 $- (\alpha \beta) a = \alpha (\beta a)$

 $- (\alpha + \beta) a = \alpha a + \beta a$

 $- \alpha (a + b) = \alpha a + \alpha b$

Theorem 1.2. $\alpha a = 0 \iff \alpha = 0$ or $a = 0$.

Corollary 1.3. $(-1)a = -a$.

Examples 1.4. Some examples of vector spaces.

1. \mathbb{R}^n
2. geometric vectors in 2 or 3 dimensions
3. $k \times \ell$ matrices
4. $C[0, 1]$, the continuous functions from $[0, 1]$ to \mathbb{R}
5. the space of infinite sequences
6. \mathbb{R}^Ω, the functions from Ω to \mathbb{R}
• $\Omega = \{1, \ldots, n\}$ is example 1 above
• $\Omega = \{1, \ldots, k\} \times \{1, \ldots, \ell\}$ is example 3
• $\Omega = [0, 1]$ contains example 4
• $\Omega = \mathbb{N}$ is example 5

Definitions 1.5.

- A **linear combination** of $a_1, \ldots, a_k \in V$ is a sum $\sum_{i=1}^{k} \alpha_i a_i$ for some $\alpha_1, \ldots, \alpha_k \in \mathbb{R}$.
- The **span** of a_1, \ldots, a_k, written $\text{Span}(a_1, \ldots, a_k)$, is the set of all linear combinations of a_1, \ldots, a_k. More generally, for a possibly infinite subset S of V, $\text{Span}(S)$ is the set of all linear combinations of all finite subsets. By convention, $\text{Span}(\emptyset) = \{0\}$.

- A **subspace** of V is a subset W which is a vector space under the same operations. This is written $W \leq V$. Equivalently, a subset W is a subspace if it is nonempty and closed under addition and multiplication by scalars:
 1. $W \neq \emptyset$
 2. $(\forall a, b \in W)(a + b \in W)$
 3. $(\forall a \in W)(\forall \lambda \in \mathbb{R})(\lambda a \in W)$.

 Equivalently, a subspace is a nonempty subset closed under linear combinations.

Corollary 1.6. $W \leq V$ iff $\text{Span}(W) = W$.

Exercise 1.7. If $S \subseteq W$, then $\text{Span}(S) \subseteq W$.

- The vectors a_1, \ldots, a_k are **linearly independent** if $(\forall \alpha_1, \ldots, \alpha_k \in \mathbb{R})(\sum_{i=1}^{k} \alpha_i a_i = 0 \Rightarrow \alpha_1 = \cdots = \alpha_k = 0)$. An infinite set of vectors is linearly independent if all finite subsets are linearly independent. If a set of vectors is not linearly independent, it is **linearly dependent**.

Examples 1.8. Some more examples of vector spaces.

- $\mathbb{R}[x] = \{\text{polynomials with real coefficients}\}$.
- $\mathbb{R}(x) = \{\text{rational functions with real coefficients}\}$. That is, the set of $\frac{p}{q}$ with $p, q \in \mathbb{R}[x]$, $q \neq 0$, and $\frac{p_1}{q_1} = \frac{p_2}{q_2}$ iff $p_1 q_2 = p_2 q_1$.

Claim 1.9. $\{\frac{1}{x-\alpha} : \alpha \in \mathbb{R}\}$ is linearly independent in $\mathbb{R}(x)$.

Definitions 1.10.

- Let $S \subseteq V$. The **rank** of S, $\text{rk}(S)$, is the maximum number of linearly independent vectors in S.
- Let $W \leq V$. The **dimension** of W, $\dim(W)$, is the rank of W.
- Let $B \subseteq W \leq V$. B is a **basis** of W if (i) $\text{Span}(B) = W$ and (ii) B is linearly independent.
A vector \(a \) depends on a set \(S \subseteq V \) if \(a \in \text{Span}(S) \).

Corollary 1.11. \(\{a_1, \ldots, a_k\} \) is a basis of \(W \) if \((\forall w \in W) (\exists! \alpha_1, \ldots, \alpha_k \in \mathbb{R}) (\sum \alpha_i a_i = w)\).

If \(\{a_1, \ldots, a_k\} \) is a basis for \(W \) and \(w \in W \), then the coordinates of \(w \) with respect to the basis \(\{a_1, \ldots, a_k\} \) is the column vector of the unique \(\alpha_i \) given by the corollary; we write

\[
[w]_{\{a_1, \ldots, a_k\}} = \begin{bmatrix}
\alpha_1 \\
\vdots \\
\alpha_k
\end{bmatrix}.
\]

The coordinates of \(w \) depend on the choice of basis for \(W \). Later we shall see how coordinate vectors change under change of basis.

Observation 1.12. A set of vectors \(S \) is linearly dependent iff there is a member which depends on the rest.

Note 1.13. A set containing \(0 \) is never linearly independent. Also, a sequence of vectors with repetitions is never linearly independent.

Exercise 1.14. Prove that these functions are linearly independent in \(\mathbb{R}^R \): \(1, \cos x, \sin x, \cos 2x, \sin 2x, \ldots, \cos nx, \sin nx, \ldots \).

Theorem 1.15 (Magic #1). If \(u_1, \ldots, u_k \in \text{Span}(v_1, \ldots, v_\ell) \) and \(u_1, \ldots, u_k \) are linearly independent, then \(k \leq \ell \).

(Prove later.)

Corollary 1.16. If \(B_1 \) and \(B_2 \) are bases of \(W \), then \(|B_1| = |B_2| \).

Exercise 1.17. Every vector space has a basis. In fact, every set of generators contains a basis, and every linearly independent set can be extended to a basis.

Exercise 1.18. Let \(L \subseteq G \subseteq W \), and suppose \(\text{Span}(G) = W \). If \(L \) is linearly independent, then there is a basis \(B \) such that \(L \subseteq B \subseteq G \).

Lemma 1.19. If \(a_1, \ldots, a_k \) are linearly independent but \(a_1, \ldots, a_{k+1} \) are linearly dependent then \(a_{k+1} \in \text{Span}(a_1, \ldots, a_k) \).

The polynomials \(1, x, x^2, \ldots \) are a basis for \(\mathbb{R}[x] \), showing that \(\dim \mathbb{R}[x] \) is countable. However, \(\dim \mathbb{R}(x) \) is uncountable since \(\{ \frac{1}{x-\alpha} : \alpha \in \mathbb{R} \} \) is linearly independent and uncountable.

A sequence \((\alpha_0, \alpha_1, \alpha_2, \ldots) \) is a Fibonacci-type sequence if for \(n \geq 2 \), \(\alpha_n = \alpha_{n-1} + \alpha_{n-2} \). Let \(F \) be the set of all Fibonacci-type sequences. The Fibonacci-type sequence with \(\alpha_0 = 0 \) and \(\alpha_1 = 1 \) is called the Fibonacci sequence, \(f = (0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, \ldots) \).

Claim 1.20. \(F \) is a 2-dimensional subspace of \(\mathbb{R}^N \).
A geometric sequence is one of the form \((1, q, q^2, \ldots)\). Can a geometric sequence be a Fibonacci-type sequence?

Exercise 1.21. The sequence \((1, q, q^2, \ldots)\) is Fibonacci-type iff \(1 + q = q^2\).

The equation \(q^2 = q + 1\) has two solutions: \(\frac{1 + \sqrt{5}}{2}\). The two geometric sequences \((1, \frac{1 + \sqrt{5}}{2}, \ldots)\) and \((1, \frac{1 - \sqrt{5}}{2}, \ldots)\) are linearly independent and, thus, a basis for \(F\).

Corollary 1.22. The Fibonacci sequence is a linear combination of these two geometric sequences.

Exercise 1.23. The \(n\)th term in the Fibonacci sequence is

\[
f_n = \frac{1}{\sqrt{5}} \left(\left(\frac{1 + \sqrt{5}}{2}\right)^n - \left(\frac{1 - \sqrt{5}}{2}\right)^n \right).
\]

Exercise 1.24.

\[
f_n = \left\lfloor \frac{1}{\sqrt{5}} \left(\frac{1 + \sqrt{5}}{2} \right)^n \right\rfloor
\]

where \(\lfloor x \rfloor\) means round \(x\) to the nearest integer.

Definitions 1.25. A \(k \times \ell\) matrix can be considered a set of \(\ell\) columns, \([a_1, \ldots, a_\ell]\), or a set of \(k\) rows, \([b_1, \ldots, b_k]\). The row space of the matrix is the span of these rows: \(\text{Span}(b_1, \ldots, b_k) \leq \mathbb{R}^k\). Similarly, the column space of the matrix is the span of the columns: \(\text{Span}(a_1, \ldots, a_\ell) \leq \mathbb{R}^k\). The row-rank of the matrix is the dimension of the row space, and the column-rank of the matrix is the dimension of the column space.

Theorem 1.26 (Magic #2). For any \(k \times \ell\) matrix, the column rank and the row rank are equal.

Exercise 1.27. Prove. (Do not use determinants).

Fisher’s Inequality

Let \(t \geq 1\). Let \(A_1, \ldots, A_m\) be subsets of \(\{1, \ldots, n\}\) such that

\[
(\forall i \neq j)(|A_i \cap A_j| = t).
\]

Examples 1.28.

- Let \(A_i = \{i, n\}\) for \(i = 1, \ldots, n - 1\) and \(A_n = \{1, \ldots, n - 1\}\).
- For \(n = 7\), the Fano Plane is a remarkable set of 7 subsets of size 3 of \(\{1, \ldots, 7\}\) with pairwise intersection size \(t = 1\).

Theorem 1.29 (Fisher’s Inequality). Condition \((\ref{1})\) implies \(m \leq n\).
Definition 1.30. For $A \subseteq \{1, \ldots, n\}$, define the incidence vector v_A as $v_A = (\alpha_1, \ldots, \alpha_n) \in \mathbb{R}^n$ where

$$
\alpha_i = \begin{cases}
1 & \text{if } i \in A \\
0 & \text{if } i \notin A
\end{cases}
$$

Fisher's Inequality follows from Magic #1 and the following exercise.

Exercise 1.31. Let a_1, \ldots, a_m be incidence vectors for sets A_1, \ldots, A_m such that $(\forall i \neq j)(|A_i \cap A_j| = t)$. Then a_1, \ldots, a_m are linearly independent in \mathbb{R}^n.