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2. LECTURE?Z2

2.1. Rank, Magic #1.
V is a vector space, that i§/, +) is an abelian group and we have a nfapV — V,
A, @) — Aa

Definition 2.1. A setay,...,a € V arelinearly independentif (Va; € R)(z}‘zlaiai =
0= a1 =--- =akx = 0). In other words, only the trivial linear combination gives zero.

Definition 2.2. A setbs,...,bs € V span (or generate) iff (Va € V)(3p4,...,Bs €
R)(351Bibi = a).
Definition 2.3. Spariby,...,bs) = {37 1 Bibi | Bi € R}.

We say thav dependsonby, ..., bsif v € Spariby,...,bs).

Proposition 2.4. Transitivity of linear dependence:di, ..., ax each depends dm, ..., b,
andb,,..., by each depends oty,...,cy thenay,...,ax each depends ooy, ...,Cy. In
other words, if AB,C CV, A C SparB and BC SparC then AC SparC.

Exercise 2.5. Spar{Spar{C)) = SparC.

Definition 2.6. W <V is a subspace W CV andW is a vector space under the same op-
erations. EquivalentlV <V iff W £ 0 andW is closed under addition and multiplication
by scalars (i.e. it is closed under linear combinations).

Corollary 2.7. W <V <= W = SparfW).

Corollary 2.8. For any set A of vectors in VSpar{A) < V. Moreover,SparfA) is the
smallestsubspace containing AfW <V and AC W= SparA CW.

Corollary 2.9. Spam = Nacw<y W

Proposition 2.10. If vy,..., vk are linearly independent and, . .., vk, vk 1 are linearly
dependent themy 1 depends oy, ...,vk. In other wordsvy 1 € Sparfvs,...,Vk), i.e.

(3(}1, .,k € R)(Vk+1 = z}‘zlaikvi).

Theorem 2.11(Magic #1) If vq,...,vk are linearly independent and each depends on
Wi,...,Wp then k< 4.

The proof is based on the

Theorem 2.12(Steinitz Exchange Principle)f a,...,ax are linearly independent and
each depends dmy,...,b, thendj such thatb;, a,, .. .,ax are linearly independent.
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Proof. We proceed by contradiction. Suppogewe haveb;, ap, ..., ax are linearly depen-
dent, i.e. (Vj)(b; € Spar{ay,...,ac}. Sincea; € Span{by,...,b,} C Spanfay,...,a}
we havea; € Span{ay,...,ak}. But this is a contradiction sincay,...,ax are linearly
independent. |

Corollary 2.13. If a,...,a are linearly independent anvi)(a € Span{by,...,b.})
then(Vi)(3j)(ay,...,ai-1,bj,811,...,a) are linearly independeit

Proof. (Of Magic #1) By repeatedly applying 2.13 we can replagevith somew;, and
thenv, with somew;, and so on. At each stagg,,...,W;,,Viy1...,Vk are linearly inde-
pendent. And we have that ..., w;, are linearly independent and therefore distinct. So
among thews, ..., w, there arek distinct vectors and therefoke< /. O

Definition 2.14. If v4,...,vmy €V we say thav;,, ..., vj, is abasisof vy,..., vif
(1) vi,...,v;, are linearly independent .
(2) (Vi)vj € Span{vi,,..., Vi, }.

Exercise 2.15.1f vj,,...,v;, are linearly independent then they can be extended to a basis
ofvy,...,Vm.

Exercise 2.16.Everymaximallinearly independent set &f is a basis of/1,...,vm.
Theorem 2.17. All bases of/q, ..., vy have the same size.
Definition 2.18. This size is called theank of vy,...,vny.

Definition 2.19. The row-rank (resp. thecol-rank) of a matrix (a;j) is defined to be
the rank of the row vectorsy = (011,...,01n),-..,Vn = (01, ..., 0nn) (resp. the column
vectorswy = (011,...,0n1),- .., Wn = (Q1n, ..., Onn)-

2.2. Column-rank and Row-rank of matrices.
Theorem 2.20(Magic #2) For a matrix row-rank=col-rank.
Example 2.21. Diagonal matricesA = (aij) such that ifi # j thenaj; = 0.

11 0 0 0
0 022 0 0
0 0 oazz3 O

We have that the rank & = diag(a11,...,0kk) is the number of nonzero diagonal entries.
Definition 2.22. Thetranspose AT, of a matrixA = (a;) is defined a&\™ = (aj;).

Since the transpose of a diagonal matrix is diagonal we see that Magic #2 is true for
diagonal matrices.

Definition 2.23. There are twaelementary row operations
a
(1) : g :=a +Aa,AeRandj #i.
A
(2) Permutation of rows.

Theorem 2.24(Row-rank invariance) Elementary row operations do not change the row-
rank or the column-rank.
2



Proof. (Hints) After applying an elementary operation every row vector remains in the
span of the row vectors before the operation. So by Magic #1 the row-rank can only get
smaller. Since the inverse of an elementary operation is another elementary operation, we
have that the row-rank must not change under elementary operations

For column rank invariance we check that if the column vechars., bs are linearly
dependent before applying a row operation they remain linearly dependent after and satisfy
the same nontrivial linear relation. O

2.3. Linear algebra methods in combinatorics.
2.3.1. Fisher’s Inequality.

Theorem 2.25(Fisher’s Inequality) If A1, .., AnC {1,...,n}, t > 1and(Vi # j)(|A NAj| =
t) then m< n.

Proof. (Hint) Under these conditions thiecidence vectorsf the A; are linearly indepen-
dent (see proof below). So we hanelinearly independent vectors iR" = m < n by
Magic #1. O

Definition 2.26. A C {1,...,n}. Theincidence vectorof A, ya = (y1,..-,Yn) € R", is
) 1 ieA
defined byy; = .
ned by {o i ¢ A
Definition 2.27 (Inner ProductirR"). If a= (ay,...,an) andb = (B,...,Bn) thena-b=
St Qi
This inner product satisfies the following formulae:
(1) a-(b+c)=a-b+a-c
(2) a- (34 v6) = Sl via-ci.
(3) a-b=b-a

Proposition 2.28. If A,B C {1,...,n} andva,vg are their respective incidence vectors
thenva -vg = |Aﬂ B| .

Example 2.29. Let A= {1,2,5} ,B = {2,3,5} thenva = (1,1,0,0,1), vg = (0,1,1,0,1)
andva-vg=1-0+1-140-1+0-0+1-1=2=|ANB|.

Notation2.30 Under Fisher’s conditions with incidence vectois=va,,...,Vm = Va, €
R" fori # j, v vj =t andv; -vj = ‘A.| =k;.

Definition 2.31. Ay,...,An is asunflowerif (3C)(Vi # j)(AiNA; =C). Cis called the
kernel of the sunflower.

Proof. (Of 2.25 continued) O

Casel. (Jio)(ki, =t) = (V])(Aj; 2 A,) - Inthis case, we have a sunflower and it is easy
to very that they; are linearly independent.

Case2. (Vi)(ki >1t) Vq,..,vm € R" i # j,vi-vj =t andv;-vj = k > t.

Lemma 2.32. If vq,...,vm € R", t € R, (Vi # j)(vi-vj =t) and (Vi)(vi -v; > t) then
V1,...,Vq are linearly independent.

Note. We no longer assume that theare incidence vectors or theandk; = v; - v; are
integers.



Proof. Suppos& ", ajv; = 0. We want to show thati; = --- = oy = 0.

We have
m m m
\ZE oivi | =Y 0j(vi-vi) =ty aj —tas+aky
2,0 ) =2,

t (iai> +a1(ky—t)

sot (3", 0i) = —ai(ky—t). SoVj we have

(=}
|

2.1) o) = T o)

kj—t
Assume nows " ; 0 # 0. Letus add 2.1 foj = 1 tom:

=0).
m m 1 m
aj=-ty ——- Y a.
le J lekjft iZI |

Dividing both sides bys |, a; we obtain 1= ~t 371, g5 < 0 which is absurd.

If s, a; =0 then(Vj)(q;

O

This is an example of proving a combinatorial inequality using Linear Algebra. The
method was initiated by R.C. Bose in 1949 who proved a special case of 2.25 (he assumed
|Ail = --- = |Am|). To learn about other appilications of the method see Babai-Frankl's
bookLinear Algebra Methods in Combinatorics.

2.3.2. Eventown and OddtowrThere aren citizens in Eventown. They are forming a
collection of clubs. No two clubs are permitted to have identical membership. So we have
2" possible clubs if we allow the empty club. But in Eventown there are additional rules on
the formation of clubs. Namely, the number of people in a given Alubust be even and

the number of people belonging to any two clubs is even. ((iiej)(|Ai| and\Ai NA| ] are
even)).

Exercise 2.33.Show that the number of even subsets of a given set is equal to the number
of odd subsets. Give a “combinatorial proof” (explicit matching) and an “algebra proof”
(use the binomial theorem).

Exercise 2.34.For whatn is it the case that the number of subsets of size divisible by 4 is
2n-2,

Hint: Use complex numbers and the binomial theorem.
Exercise 2.35.Generalize this.

One way to saitsfy the Eventown rules is to pair up the citizens and insist that each pair
join exactly the same clubs. This “married couples” solution yieleﬁ Zlubs.

Exercise 2.36. *Show that 22/ is the maximum number of possible clubs under Even-
town rules.

Exercise 2.37. *Show that there exists|2] possible clubs under Eventown rules that
isn’'t given by a “married couples” solution.

Oddtown is also forming a collection of cluf#y}. In Oddtown the rules dictate that
foralli, j |A] is odd andAi N A|| is even.
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Exercise 2.38.There are at least®? ways to formn clubs in Oddtown.

Exercise 2.39.(Oddtown Theorem) Under Oddtown rules< n, (wheremis the number
of clubs andh is the number of citizens).

Definition 2.40. Informally afield is a set with the usual notions of addition, subtraction,
multiplication and division.

Example 2.41. The following are fieldR,C,Q andF, for p a prime.

Exercise 2.42.A,B arek x £ matrices over a field show that rankA+ B) < rankA+
rankB.

Exercise 2.43.Ais ak x ¢ matrix andB is an/ x mmatrix then rankAB) < min(rankA, rankB).
And therefore
rank AAT) < rankA.

Exercise 2.44.0verR : rank AAT) = rankA.

Exercise 2.45.Show that this is fals& = Cor F = F, for all primesp. In fact, over each
of these fields, there exist matrica®f large rank such thadA™ = 0.



