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2. LECTURE2

2.1. Rank, Magic #1.
V is a vector space, that is,(V,+) is an abelian group and we have a mapR×V →V,

(λ,a) 7→ λa.

Definition 2.1. A set a1, . . . ,ak ∈ V are linearly independent if (∀αi ∈ R)(∑k
i=1 αiai =

0 =⇒ α1 = · · ·= αk = 0). In other words, only the trivial linear combination gives zero.

Definition 2.2. A set b1, . . . ,bs ∈ V span (or generate)V iff (∀a ∈ V)(∃β1, . . . ,βs ∈
R)(∑s

i=1 βibi = a).

Definition 2.3. Span(b1, . . . ,bs) = {∑s
i=1 βibi |βi ∈ R} .

We say thatv dependsonb1, . . . ,bs if v ∈ Span(b1, . . . ,bs).

Proposition 2.4. Transitivity of linear dependence: Ifa1, . . . ,ak each depends onb1, . . . ,b`

and b1, . . . ,b` each depends onc1, . . . ,cm thena1, . . . ,ak each depends onc1, . . . ,cm. In
other words, if A,B,C⊆V, A⊆ SpanB and B⊆ SpanC then A⊆ SpanC.

Exercise 2.5.Span(Span(C)) = SpanC.

Definition 2.6. W 6 V is a subspace ifW⊆V andW is a vector space under the same op-
erations. EquivalentlyW 6 V iff W 6= /0 andW is closed under addition and multiplication
by scalars (i.e. it is closed under linear combinations).

Corollary 2.7. W 6 V ⇐⇒W = Span(W).

Corollary 2.8. For any set A of vectors in V ,Span(A) 6 V. Moreover,Span(A) is the
smallestsubspace containing A: If W 6 V and A⊆W=⇒ SpanA⊆W.

Corollary 2.9. SpanA =
T

A⊆W6V W.

Proposition 2.10. If v1, . . . ,vk are linearly independent andv1, . . . ,vk ,vk+1 are linearly
dependent thenvk+1 depends onv1, . . . ,vk . In other wordsvk+1 ∈ Span(v1, . . . ,vk), i.e.
(∃α1, ..,αk ∈ R)(vk+1 = ∑k

i=1 αikvi).

Theorem 2.11(Magic #1). If v1, . . . ,vk are linearly independent and each depends on
w1, . . . ,w` then k≤ `.

The proof is based on the

Theorem 2.12(Steinitz Exchange Principle). If a1, . . . ,ak are linearly independent and
each depends onb1, . . . ,b` then∃ j such thatbj ,a2, . . . ,ak are linearly independent.
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Proof. We proceed by contradiction. Suppose∀ j we havebj ,a2, . . . ,ak are linearly depen-
dent, i.e. (∀ j)(bj ∈ Span{a2, . . . ,ak}. Sincea1 ∈ Span{b1, . . . ,b`} ⊆ Span{a1, . . . ,ak}
we havea1 ∈ Span{a2, . . . ,ak} . But this is a contradiction sincea1, . . . ,ak are linearly
independent. �

Corollary 2.13. If a1, . . . ,ak are linearly independent and(∀i)(ai ∈ Span{b1, . . . ,b`})
then(∀i)(∃ j)(a1, . . . ,ai−1,bj ,ai+1, . . . ,ak) are linearly independent).

Proof. (Of Magic #1) By repeatedly applying 2.13 we can replacev1 with somewj1 and
thenv2 with somewj2 and so on. At each stagewj1, . . . ,wj i ,vi+1 . . . ,vk are linearly inde-
pendent. And we have thatwj1, . . . ,wjk are linearly independent and therefore distinct. So
among thew1, . . . ,w` there arek distinct vectors and thereforek≤ `. �

Definition 2.14. If v1, . . . ,vm ∈V we say thatvi1, . . . ,vik is abasisof v1, . . . ,vk if

(1) vi1, . . . ,vik are linearly independent .
(2) (∀ j)vj ∈ Span

{
vi1, . . . ,vik

}
.

Exercise 2.15.If vi1, . . . ,vit are linearly independent then they can be extended to a basis
of v1, . . . ,vm.

Exercise 2.16.Everymaximallinearly independent set ofvi is a basis ofv1, . . . ,vm.

Theorem 2.17. All bases ofv1, ...,vm have the same size.

Definition 2.18. This size is called therank of v1, . . . ,vm.

Definition 2.19. The row-rank (resp. thecol-rank) of a matrix (αi j ) is defined to be
the rank of the row vectors,v1 = (α11, . . . ,α1n), . . . ,vn = (αn1, . . . ,αnn) (resp. the column
vectors,w1 = (α11, . . . ,αn1), . . . ,wn = (α1n, ...,αnn).

2.2. Column-rank and Row-rank of matrices.

Theorem 2.20(Magic #2). For a matrix row-rank=col-rank.

Example 2.21. Diagonal matrices:A = (αi j ) such that ifi 6= j thenαi j = 0. α11 0 0 0
0 α22 0 0
0 0 α33 0

 .

We have that the rank ofA = diag(α11, . . . ,αkk) is the number of nonzero diagonal entries.

Definition 2.22. Thetranspose,AT , of a matrixA = (αi j ) is defined asAT = (α ji ).

Since the transpose of a diagonal matrix is diagonal we see that Magic #2 is true for
diagonal matrices.

Definition 2.23. There are twoelementary row operations:

(1)

 a1
...

ak

 ai := ai +λaj , λ ∈ R and j 6= i.

(2) Permutation of rows.

Theorem 2.24(Row-rank invariance). Elementary row operations do not change the row-
rank or the column-rank.
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Proof. (Hints) After applying an elementary operation every row vector remains in the
span of the row vectors before the operation. So by Magic #1 the row-rank can only get
smaller. Since the inverse of an elementary operation is another elementary operation, we
have that the row-rank must not change under elementary operations

For column rank invariance we check that if the column vectorsb1, ..,bs are linearly
dependent before applying a row operation they remain linearly dependent after and satisfy
the same nontrivial linear relation. �

2.3. Linear algebra methods in combinatorics.

2.3.1. Fisher’s Inequality.

Theorem 2.25(Fisher’s Inequality). If A1, ..,Am⊆{1, . . . ,n} , t ≥1and(∀i 6= j)(
∣∣Ai ∩A j

∣∣=
t) then m≤ n.

Proof. (Hint) Under these conditions theincidence vectorsof theAi are linearly indepen-
dent (see proof below). So we havem linearly independent vectors inRn =⇒ m≤ n by
Magic #1. �

Definition 2.26. A⊆ {1, . . . ,n} . The incidence vectorof A, γA = (γ1, . . . ,γn) ∈ Rn, is

defined byγi =

{
1 i ∈ A

0 i /∈ A
.

Definition 2.27(Inner Product inRn). If a= (α1, . . . ,αn) andb = (β1, . . . ,βn) thena·b =
∑n

i=1 αiβi .

This inner product satisfies the following formulae:

(1) a· (b+c) = a·b+a·c
(2) a· (∑k

i=1 γici) = ∑k
i=1 γia·ci .

(3) a·b = b ·a

Proposition 2.28. If A,B⊆ {1, . . . ,n} and vA,vB are their respective incidence vectors
thenvA ·vB = |A∩B| .

Example 2.29. Let A = {1,2,5} ,B = {2,3,5} thenvA = (1,1,0,0,1), vB = (0,1,1,0,1)
andvA ·vB = 1·0+1·1+0·1+0·0+1·1 = 2 = |A∩B| .

Notation2.30. Under Fisher’s conditions with incidence vectorsv1 = vA1, . . . ,vm = vAm ∈
Rn for i 6= j, vi ·vj = t andvi ·vi = |Ai |= ki .

Definition 2.31. A1, . . . ,Am is a sunflower if (∃C)(∀i 6= j)(Ai ∩A j = C). C is called the
kernel of the sunflower.

Proof. (Of 2.25 continued) �

Case1. (∃i0)(ki0 = t) =⇒ (∀ j)(A j ⊇ Ai0) . In this case, we have a sunflower and it is easy
to very that thevi are linearly independent.

Case2. (∀i)(ki > t) v1, ..,vm ∈ Rn, i 6= j, vi ·vj = t andvi ·vi = ki > t.

Lemma 2.32. If v1, . . . ,vm ∈ Rn, t ∈ R, (∀i 6= j)(vi · vj = t) and (∀i)(vi · vi > t) then
v1, . . . ,vm are linearly independent.

Note. We no longer assume that thevi are incidence vectors or thatt andki = vi · vi are
integers.
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Proof. Suppose∑m
i=1 αivi = 0. We want to show thatα1 = · · ·= αm = 0.

We have

0 = v1 ·

(
m

∑
i=1

αivi

)
=

m

∑
i=1

αi (v1 ·vi) = t
m

∑
i=1

αi − tα1 +α1k1

= t

(
m

∑
i=1

αi

)
+α1(k1− t)

sot (∑m
i=1 αi) =−α1(k1− t). So∀ j we have

(2.1) α j =− t (∑m
i=1 αi)

k j − t
.

If ∑m
i=1 αi = 0 then(∀ j)(α j = 0). Assume now∑m

i=1 αi 6= 0. Let us add 2.1 forj = 1 tom :
m

∑
j=1

α j =−t
m

∑
j=1

1
k j − t

·
m

∑
i=1

αi .

Dividing both sides by∑m
j=1 α j we obtain 1=−t ∑m

j=1
1

k j−t < 0 which is absurd.
�

This is an example of proving a combinatorial inequality using Linear Algebra. The
method was initiated by R.C. Bose in 1949 who proved a special case of 2.25 (he assumed
|Ai | = · · · = |Am|). To learn about other appilications of the method see Babai-Frankl’s
bookLinear Algebra Methods in Combinatorics.

2.3.2. Eventown and Oddtown.There aren citizens in Eventown. They are forming a
collection of clubs. No two clubs are permitted to have identical membership. So we have
2n possible clubs if we allow the empty club. But in Eventown there are additional rules on
the formation of clubs. Namely, the number of people in a given clubAi must be even and
the number of people belonging to any two clubs is even. (i.e.(∀i, j)(|Ai | and

∣∣Ai ∩A j
∣∣ are

even)).

Exercise 2.33.Show that the number of even subsets of a given set is equal to the number
of odd subsets. Give a “combinatorial proof” (explicit matching) and an “algebra proof”
(use the binomial theorem).

Exercise 2.34.For whatn is it the case that the number of subsets of size divisible by 4 is
2n−2.

Hint: Use complex numbers and the binomial theorem.

Exercise 2.35.Generalize this.

One way to saitsfy the Eventown rules is to pair up the citizens and insist that each pair

join exactly the same clubs. This “married couples” solution yields 2b n
2c clubs.

Exercise 2.36. *Show that 2b
n
2c is the maximum number of possible clubs under Even-

town rules.

Exercise 2.37. *Show that there exists 2b
n
2c possible clubs under Eventown rules that

isn’t given by a “married couples” solution.

Oddtown is also forming a collection of clubs{Ai}. In Oddtown the rules dictate that
for all i, j |Ai | is odd and

∣∣Ai ∩A j
∣∣ is even.
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Exercise 2.38.There are at least 2
n2
8 ways to formn clubs in Oddtown.

Exercise 2.39.(Oddtown Theorem) Under Oddtown rules,m≤ n, (wherem is the number
of clubs andn is the number of citizens).

Definition 2.40. Informally afield is a set with the usual notions of addition, subtraction,
multiplication and division.

Example 2.41. The following are fieldsR,C,Q andFp for p a prime.

Exercise 2.42.A,B arek× ` matrices over a fieldF show that rank(A+ B) ≤ rankA+
rankB.

Exercise 2.43.A is ak×` matrix andB is an`×mmatrix then rank(AB)≤min(rankA, rankB).
And therefore

rank(AAT)≤ rankA.

Exercise 2.44.OverR : rank(AAT) = rankA.

Exercise 2.45.Show that this is falseF = Cor F = Fp for all primesp. In fact, over each
of these fields, there exist matricesA of large rank such thatAAT = 0.
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