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REU 2005

Instructor: László Babai
Scribe: Ben Lee

7 More on Linear Transformations

7.1 Bases and Similarity

Suppose ϕ : V → V is linear transformation. Recall λ is an eigenvalue if (∃x ∈ V, x 6= 0)(ϕx =
λx).

To associate a matrix to a linear transformation: ϕ 7→ [ϕ], choose e = (e1, . . . , en) a basis
of V

x 7→ [x]e =

x1
...
xn

 the column matrix of coordinates, i.e. x =
∑n

i=1 xiei.

Then the matrix [ϕ]e is [[ϕe1]e · · · [ϕen]e].

Example 7.1. ρα rotation by α in the plane:

ραe1 = cosαe1 + sinαe2

ραe2 = − sinαe1 + cosαe2

[ρα]e =
[
cosα − sinα
sinα cosα

]
.

Theorem 7.2. If A and B are the matrices associated with the same linear transformation in
two bases then A ∼ B (A,B are similar.)

Definition 7.3. A ∼ B if (∃S, S−1)(B = S−1AS). S is the matrix of change of basis trans-
formation.

If we have the “old” basis a1, . . . ,an and “new” basis b1, . . . ,bn, σ : ai 7→ bi, then

S = [σ]a = [σ]b = [[b1]a, . . . , [bn]a].

If you want to classify all linear transformations, you need to classify matrices up to simi-
larity.
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Theorem 7.4. If A ∼ B then fA(x) = fB(x) (fA(x) = det(xI − A) is the characteristic
polynomial.)

Proof: First prove that if A ∼ B then detA = detB: B = S−1AS, detB = detS−1AS =
detS−1SA = detA since detCD = detC detD.

Question: is xI −A ∼ xI −B? Yes: S−1(xI −A)S = xS−1IS − S−1AS = xI −B. So we
are done.

7.2 Diagonalizability and Eigenbases

Definition 7.5. An eigenbasis is a basis consisting of eigenvectors.

If e1, . . . , en is an eigenbasis then ϕei = λiei.

ϕe1 = λ1e1 + 0e2 + · · ·+ 0en

[ϕe1]e =


λ1

0
...
0


ϕe2 = 0e1 + λ2e2 + 0e3 + · · ·+ 0en

[ϕe2]e =


0
λ2
...
0

 et cetera, so

[ϕ]e =

λ1 0
. . .

0 λn


Corollary 7.6. e is an eigenbasis of ϕ⇔ [ϕ]e is a diagonal matrix.

Definition 7.7. A is diagonalizable if it is similar to a diagonal matrix.

Corollary 7.8. [ϕ]e is diagonalizable iff ϕ has an eigenbasis.

Remark: the definitions involving eigenvectors only make sense for linear transformations,
not linear maps.

Theorem 7.9. If fA(x) = (x− λ1) · · · (x− λn) with all λi distinct, then A is diagonalizable.
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This is sufficient but not necessary – for example the identity matrix is already diagonal.

Lemma 7.10. If e1, . . . , ek are eigenvectors to distinct eigenvalues, then they are linearly
independent.

Proof: [of the theorem from the lemma] Let A = [ϕ]f . Take an eigenvector for each eigenvalue:
ϕei = λiei. By the lemma the ei are linearly independent. There are n of them = dimV so
they are a basis. So ϕ has an eigenbasis ⇒ A is diagonalizable.

Proof: [of lemma] Assumption: ϕei = λiei, i = 1, . . . , k, λi distinct. Desired conclusion:
e1, . . . , ek are linearly independent.

Suppose
∑k

i=1 αiei = 0. Desired conclusion: all αi = 0. Apply ϕ to both sides: ϕ(
∑k

i=1 αiei) =∑k
i=1 αiϕei =

∑k
i=1 αiλiei = 0. Would like to use induction.

Base case k = 1: single vector is linearly independent only if it is not zero. An eigenvector
is always not zero.

Case k = 2 (instructive, not needed for induction.) ϕe1 = λ1e1, ϕe2 = λ2e2. Assumption:
α1e1 + α2e2 = 0, α1λ1e1 + α2λ2e2 = 0. Multiply first equation by λ1 : α1λ1e1 + α2λ1e2 = 0.
Eliminate e1 : α2λ2e2 − α2λ1e2 = 0 ⇒ α2(λ2 − λ1)e2 = 0 ⇒ α2(λ2 − λ1) = 0 ⇒ α2 = 0 since
λ1 6= λ2. But this can’t happen.

Inductive step: assume lemma is true for k−1. Need to prove it for k. Multiply
∑
αiei = 0

by λk:
∑k

i=1 αiλkei. Subtract:
∑k−1

i=1 αi(λi−λk)ei = 0 is a linear relation between e1, . . . , ek−1.
By the inductive hypothesis e1, . . . , ek−1 are linearly independent, so αi(λi − λk−1) = 0 for
i = 1, . . . , k − 1. λi − λk 6= 0 ⇒ αi = 0 for i = 1, . . . , k − 1. We still need: αk = 0. But
α1e1 + · · ·+ αkek = 0⇒ αkek = 0⇒ αk = 0.

Alternative proof (illustrated for k = 3): we have

α1e1 + α2e2 + α3e3 = 0.
Apply ϕ : λ1α1e1 + λ2α2e2 + λ3α3e3 = 0.

Apply ϕ again: λ2
1α1e1 + λ2

2α2e2 + λ2
3α3e3 = 0.

Call αiei = xi. We get

x1 + x2 + x3 = 0
λ1x1 + λ2x2 + λ3x3 = 0

λ2
1x1 + λ2

2x2 + λ2
3x3 = 0.

This is a system of three equations in three unknowns. If the xi were numbers (as opposed to
vectors) then the system has no nontrivial solutions because the matrix 1 1 1

λ1 λ2 λ3

λ2
1 λ2

2 λ2
3


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is a Vandermonde matrix, with determinant (λ2−λ1)(λ3−λ1)(λ3−λ2). (In general there are(
n
2

)
terms.) This is only zero if two of the λi are equal.

This system of equations works for numbers. To make it work for vectors, take a vector y.
Take the inner product of each vector equation with y:

α1e1 · y + α2e2 · y + α3e3 · y = 0
λ1α1e1 · y + λ2α2e2 · y + λ3α3e3 · y = 0

λ2
1α1e1 · y + λ2

2α2e2 · y + λ2
3α3e3 · y = 0

Set xi = αiei · y. Then all xi must be zero by our Vandermonde argument. Therefore
(∀y)(αieiy = 0). In particular over the real numbers y = ei, ei · ei 6= 0 ⇒ αi = 0. In general
choose y /∈ e⊥i .

Problem 7.11. Find a curve in Rn such that any n points on the curve are linearly indepen-
dent. f : R→ R

n. f(t) := (f1(t), . . . , fn(t)) where fi(t) : R→ R.

Solution. Set f(t) = (1, t, t2, . . . , tn) is the moment curve.f(t1)
...

f(tn)

 =

1 t1 · · · tn−1
1

...
...

1 tn · · · tn−1
n


has nonzero Vandermonde determinant.

Aside: to make this bounded we can use the arctangent function – it will rescale R a
bounded open interval.
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7.3 Relations between the roots and the coefficients of a polynomial

f(x) = (x− λ1) · · · (x− λn) =
n∑
i=0

aix
i

an = 1

an−1 = −
n∑
i=1

λi

an−2 =
∑

1≤i<j≤n
λiλj (there are

(
n

2

)
terms)

...

an−i = (−1)i
∑

1≤j1<···<ji≤n

∏
λj` (there are

(
n

i

)
terms.)

...

a0 = f(0) = (−1)n
n∏
i=1

λi

Notation 7.12. The elementary symmetric polynomials:

σ1(x1, . . . , xn) = x1 + · · ·+ xn

σ2(x1, . . . , xn) = x1x2 + x1x3 + · · ·+ xn−1xn =
∑

1≤i<j≤n
xixj

σi(x1, . . . , xn) =
∑

all i-wise products of the xi (
(
n

i

)
terms.)

So an−i = (−1)iσi(λ1, . . . , λn). This is the relationship between roots and coefficients of a
polynomial.

We apply this to the characteristic polynomial.
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For A ∈Mn(F ) we have fA(x) =
∏n
i=1(x− λi) =

∑n
i=0 aix

i. Then

an = 1
an−1 = − tr(A)

...

an−i = (−1)i
∑

det(i× i symmetric submatrices)

...
a0 = (−1)n det(A).

Hence,

tr(A) =
n∑
i=1

λi = σ1(λ1, . . . , λn)∑
det(2× 2 symmetric submatrices) =

∑
i<j

λiλj = σ2(λ1, . . . , λn)

det(A) =
n∏
i=1

λi.

7.4 Real roots of polynomials

Exercise 7.13. x100 + 5x99 + 13x98 + · · · = 0 all remaining coefficients real. Prove this
polynomial must have roots that are not real, whatever the remaining coefficients are.

If f(x) ∈ R[x], an = 1, write f(x) =
∏

(x− λi)λi ∈ C.

Exercise 7.14. If λ is a root, then λ (the complex conjugate: a+ ib = a − ib) is also a root
with the same multiplicity.

(x− λ)(x− λ) = x2 − (λ+ λ)x+ λλ = x2 − 2<(λ) + |λ|2 (where <z = the real part of z.)
This implies

f(x) = product of real polynomials of degree 2 without real roots ·
∏
λi∈R

(x− λi).

Corollary 7.15. A real polynomial of odd degree has a real root.

A calculus proof uses the intermediate value theorem.
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7.5 Orthonormality and Sense-preservation

Definition 7.16. An othornomal basis is a basis of pairwise orthogonal unit vectors.

An orthonormal basis for Rn has ei · ej = 1 if i = j, 0 otherwise.

Definition 7.17. A congruence is a transformation that preserves orthonomality.

If ϕ is a congruence, and A = [ϕ]e = [[ϕe1]e · · · [ϕen]e] = [a1 . . .an] then ai · aj = 1 if
i = j, 0 if i 6= j. This is the same as AT ·A = I.

Definition 7.18. A real n× n matrix A is called an orthogonal matrix if ATA = I.

Question: what is detA?

det(ATA) = det I = 1. So det(AT ) det(A) = 1. But det(AT ) = det(A), so det(A)2 = 1 ⇒
det(A) = ±1.

A “sense preserving” transformation is a congruence that can be deformed little by little into
the identity matrix. Therefore a “sense preserving” matrix must have the same determinant
as the identity matrix (by continuity), i.e. 1.

Claim: in R3 every sense preserving congruence is a rotation. (We are excluding transla-
tions, i.e. the origin is fixed.)

Lemma 7.19 (Key Lemma). For every sense preserving congruence in three dimensions,
there is an eigenvector with eigenvalue 1, i.e. λ = 1 is an eigenvalue.

Proof: deg = 3⇒ ∃ a real root λ. Because it is a congruence, λ = ±1 because length of x =
length of λx.

Write fA(x) = (x − λ1)(x − λ2)(x − λ3). If all λi are real, then they are all ±1. If all of
them are −1 then detA = −1. So one must be 1. If not all are real, then λ1 = ±1, λ2 = λ3.
Then λ2 · λ3 = λ2 · λ2 = |λ|2 > 0. But λ1 · |λ2|2 > 0⇒ λ1 > 0.

Exercise 7.20. Finish proof that every sense-preserving congruence in R3 is a rotation.
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