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7 More on Linear Transformations

7.1 Bases and Similarity

Suppose ¢ : V' — V is linear transformation. Recall A is an eigenvalue if (3x € V,z # 0)(px =
Azx).

To associate a matrix to a linear transformation: ¢ — [¢], choose e = (e1,...,e,) a basis
of V
x1
x — [x|]e = | ¢ | the column matrix of coordinates, i.e. x =) 1" | z;e;.
T,

Then the matrix [p]e is [[pei1le - - - [penle]-
Example 7.1. p, rotation by « in the plane:

Pa€1 = cos ae] + sin aes

Pa€2 = — Ssin e + cos aes

[Pale = [

cosa —sino
sina  cosa |’

Theorem 7.2. If A and B are the matrices associated with the same linear transformation in
two bases then A ~ B (A, B are similar.)

Definition 7.3. A ~ B if (35,5 1) (B = S71AS). S is the matrix of change of basis trans-
formation.

If we have the “old” basis ai,...,a, and “new” basis by,...,b,, 0 :a; — b;, then
S =[o]a = [o]b = [[bila,- - -, [Pn]al.

If you want to classify all linear transformations, you need to classify matrices up to simi-
larity.



Theorem 7.4. If A ~ B then fa(x) = fp(x) (fa(z) = det(xl — A) is the characteristic
polynomial.)

Proof: First prove that if A ~ B then det A = det B: B = S7'AS,det B = det ST1AS =
det ST1SA = det A since det CD = det C det D.

Question: is 2 — A ~ 2l — B? Yes: S~ Yzl — A)S =25~ '1S — S™1AS = 2T — B. So we
are done. O

7.2 Diagonalizability and Eigenbases

Definition 7.5. An eigenbasis is a basis consisting of eigenvectors.

If e1,..., e, is an eigenbasis then pe; = \;e;.

pe; = A\eq + 0eg + -+ - + Oey,
A1
0
[pei]e = .
0
pes = 0ey + Agex + Oes + - - - + Oey,
0

A2
[pesle = | . | et cetera, so

[ple =

Corollary 7.6. e is an eigenbasis of ¢ < [¢]e is a diagonal matriz.
Definition 7.7. A is diagonalizable if it is similar to a diagonal matrix.

Corollary 7.8. [¢le is diagonalizable iff ¢ has an eigenbasis.

Remark: the definitions involving eigenvectors only make sense for linear transformations,
not linear maps.

Theorem 7.9. If fa(x) = (z — A1) -+ (x — ) with all \; distinct, then A is diagonalizable.



This is sufficient but not necessary — for example the identity matrix is already diagonal.

Lemma 7.10. If e1,...,e, are eigenvectors to distinct eigenvalues, then they are linearly
independent.

Proof: [of the theorem from the lemma] Let A = [p]¢. Take an eigenvector for each eigenvalue:
pe; = \je;. By the lemma the e; are linearly independent. There are n of them = dim V' so

they are a basis. So ¢ has an eigenbasis = A is diagonalizable. U
Proof: [of lemma] Assumption: pe; = Ne;,i = 1,...,k, \; distinct. Desired conclusion:
e, ..., ey are linearly independent.

Suppose Z,’f:l a;e; = 0. Desired conclusion: all a; = 0. Apply ¢ to both sides: cp(Zle ;€;) =
Zle ajpe; = Zle a;\ie; = 0. Would like to use induction.

Base case k = 1: single vector is linearly independent only if it is not zero. An eigenvector
is always not zero.

Case k = 2 (instructive, not needed for induction.) pe; = Ajel, pes = Ase2. Assumption:
aje] + ases = 0, a1 1€1 + asdges = 0. Multiply first equation by A1 : ajA1e1 + asAjes = 0.
Eliminate ej : agAgeg — avhieg = 0 = 062()\2 — )\1)62 =0= 062()\2 — )\1) =0 = ay = 0 since
A1 # A2. But this can’t happen.

Inductive step: assume lemma is true for k— 1. Need to prove it for k. Multiply > ase; =0

by Ag: Zle o; A\L€;. Subtract: Z;:ll a;(Ai—Ag)e; = 0 is a linear relation between eq, ..., ex_1.
By the inductive hypothesis e1,...,e,_; are linearly independent, so a;(A; — Ag,—1) = 0 for
i=1,...,k—1. i — M #0=>q; =0fori=1,...,k— 1. We still need: ap = 0. But
ae1+---+aer=0=are, =0=a =0. O

Alternative proof (illustrated for k = 3): we have

aie] + ases + azez = 0.
Apply @ Aaier + doases + Azazes = 0.
Apply ¢ again: )\%alel + /\§a2e2 + /\§a3e3 =0.

Call a;e; = x;. We get

x1+x9+23=0
AMx1 4+ Ao + Azzz =0
)\%$1 + )\%332 + )\%l’g =0.

This is a system of three equations in three unknowns. If the z; were numbers (as opposed to
vectors) then the system has no nontrivial solutions because the matrix

111
Mo g
AOAS A3



is a Vandermonde matrix, with determinant (A2 — A1)(A3 — A1)(A3 — A2). (In general there are
(g) terms.) This is only zero if two of the \; are equal.

This system of equations works for numbers. To make it work for vectors, take a vector y.
Take the inner product of each vector equation with y:

aje) -y +ages-y +agez-y =0
Alajer -y + Apages -y + Azazes -y =0
)\%alel Yy + )\%O@GQ -y + )\gageg cy=0

Set z; = aye; - y. Then all x; must be zero by our Vandermonde argument. Therefore
(Vy)(ase;y = 0). In particular over the real numbers y = e;,€; - €; # 0 = a; = 0. In general
choose y ¢ e;-.

Problem 7.11. Find a curve in R™ such that any n points on the curve are linearly indepen-
dent. f:R —R". f(t):= (fi(t),..., fu(t)) where fi(t): R — R.

Solution. Set f(t) = (1,t,t%,...,") is the moment curve.

f(t1) 1ty - 7!

f(tn) I
has nonzero Vandermonde determinant.

Aside: to make this bounded we can use the arctangent function — it will rescale R a
bounded open interval.



7.3 Relations between the roots and the coefficients of a polynomial

n

f@)=(z—=A)-(x—X) =) aa’

i=0
a, =1

an—1 = — Z Ai
i=1
Qg = Z AiAj (there are <Z> terms)

1<i<j<n

an_i': -1 >[I (there are (7;) terms.)

1<ji<-<jgisn

Notation 7.12. The elementary symmetric polynomials:

o1(x1,...,xpn) =21+ -+
0o(T1, .y W) = BTy F T3+ Ty 1T = Y T

1<i<j<n

oi(z1, ..., xp) = Z all i-wise products of the z; (<n> terms.)

1

So an_; = (—1)%0i(A1,..., A\n). This is the relationship between roots and coefficients of a

polynomial.

We apply this to the characteristic polynomial.



For A € M, (F) we have fa(z) =[] (z — X)) = >_i" ya;z’. Then

an_i = (—1)° Z det(z x ¢ symmetric submatrices)

ap = (—1)" det(A).

Hence,

n

tI‘(A) = Z)\Z = 0'1()\1,... ,)\n)

i=1
Zdet(Z X 2 symmetric submatrices) = Z AiNj = 02(A1, .., An)

i<j

det(A) = ﬁ N
=1

7.4 Real roots of polynomials

Exercise 7.13. 2'00 + 52% 4 132% 4 ... = 0 all remaining coefficients real. Prove this
polynomial must have roots that are not real, whatever the remaining coefficients are.

If f(x) € Rlz],an =1, write f(z) =[[(z — i)\ € C.

Exercise 7.14. If ) is a root, then A (the complex conjugate: a + ib = a — ib) is also a root
with the same multiplicity.

(=N (x =) =22 — (A + Az + I\ =22 — 2R(\) + |A|? (where Rz = the real part of z.)
This implies
f(z) = product of real polynomials of degree 2 without real roots - H (x —N\).
A €ER
Corollary 7.15. A real polynomial of odd degree has a real root.

A calculus proof uses the intermediate value theorem.



7.5 Orthonormality and Sense-preservation

Definition 7.16. An othornomal basis is a basis of pairwise orthogonal unit vectors.

An orthonormal basis for R has e; - e¢; = 1 if i = j, 0 otherwise.

Definition 7.17. A congruence is a transformation that preserves orthonomality.

If ¢ is a congruence, and A = [ple = [[peile- - [penle] = [ai...ay] then a; -a; = 1 if
i=74,0if i # j. This is the same as AT - A = 1.

Definition 7.18. A real n x n matrix A is called an orthogonal matrix if ATA = I.

Question: what is det A?

det(ATA) = det I = 1. So det(AT)det(A) = 1. But det(AT) = det(A), so det(4)? =1 =
det(A) = £1.

A “sense preserving” transformation is a congruence that can be deformed little by little into

the identity matrix. Therefore a “sense preserving” matrix must have the same determinant
as the identity matrix (by continuity), i.e. 1.

Claim: in R? every sense preserving congruence is a rotation. (We are excluding transla-
tions, i.e. the origin is fixed.)

Lemma 7.19 (Key Lemma). For every sense preserving congruence in three dimensions,
there is an eigenvector with eigenvalue 1, i.e. A =1 is an eigenvalue.

Proof: deg =3 = J areal root A. Because it is a congruence, A = +1 because length of z =
length of Az.

Write fa(z) = (x — A1)(x — Ao)(z — Ag). If all \; are real, then they are all £1. If all of
them are —1 then @A = —1. So one must be 1. If not all are real, then A\ = +1, Ay = A3.
Then Ao - A3 = Ay - A9y = |)\|2>0. But )\1-|)\2|2>0:>>\1 > 0. O

Exercise 7.20. Finish proof that every sense-preserving congruence in R? is a rotation.



