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1 Matrices

An n×k matrix A over a ring R is a collection of nk elements of R, arranged
in n rows and k columns. The element of A in row i and column j is denoted
Aij ∈ R.

The transpose AT of A is defined by AT
ij = Aji. Addition of matrices is

defined by (A + B)ij = Aij + Bij.
The product of A and B is only defined if the number of columns of A

equals the number of rows of B. If A is an n × k matrix and B is a k ×m
matrix then the product AB is defined by

(AB)ij =
k∑

l=1

AilBlj,

so the ij entry of AB is the dot product of the ith row of A with the jth
column of B. In particular, if n = 1 and m = 1 (i.e., A is a row vector and
B is a column vector) then AB is simply the dot product of A and B.

The set of all n× n matrices over R is denoted by Mn(R).

Claim 1. Mn(R) is a ring.

As an exercise, you should check, for instance, that A(B+C) = AB+AC
and A(BC) = (AB)C.
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The zero element of this ring is the zero matrix, every entry of which is
0 ∈ R. The unit is the identity matrix

I =


1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1

 .

Notice that the ring Mn(R) is not commutative for n ≥ 2, even when R is
commutative. For example, in M2(Z) we have(

1 0
0 0

) (
0 1
0 0

)
=

(
0 1
0 0

)
,

(
0 1
0 0

) (
1 0
0 0

)
=

(
0 0
0 0

)
.

This example also shows that a product of nonzero matrices can equal zero,
so Mn(R) is said to have nonzero zero divisors. This is in sharp contrast to
other familiar rings such as Z, Q, R, C, which have no nonzero zero divisors
(so xy = 0 in these rings only if x = 0 or y = 0).

2 Permutations

A permutation of the set {1, . . . , n} is simply a bijection from this set to
itself. Notice that a composition of permutations is again a permutation,
and each permutation has an inverse (since bijections are invertible). Thus,
it is easy to see that the set Sym(n) of all permutations of {1, . . . , n} forms a
group, called the symmetric group on this set. For example, Sym(7) contains
the permutation (

1 2 3 4 5 6 7
2 4 1 3 5 7 6

)
which maps 1 7→ 2, 2 7→ 4, 3 7→ 1, etc. We can write this same permuta-
tion more efficiently using cycle notation as (1 2 4 3)(5)(6 7). We typically
omit the fixed points of a permutation in cycle notation, so we would write
simply (1 2 4 3)(6 7).

A permutation that interchanges two numbers i 6= j and fixes every other
number (written (i j) in cycle notation) is called a transposition.

Consider now the bubble sort algorithm for sorting a sequence a1, . . . , an

of n numbers. For i = 1, . . . , n − 1, if ai > ai+1 then we interchange ai

and ai+1. After traversing the sequence once, the largest number in the
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sequence must be in the last position. After traversing it k times, the largest
k numbers are in correct position (try proving this rigorously by induction).
Thus, we obtain the sorted sequence 1, 2, . . . , n after at most n traversals of
the sequence, and each traversal uses at most n−1 transpositions, so bubble
sorting n numbers takes at most n(n − 1) steps. (In fact, a more careful
analysis shows that it takes at most n(n− 1)/2 steps, and this bound is the
best possible.)

Thus, if a1, . . . , an represents a permutation π of {1, . . . , n}, then we can
find finitely many transpositions t1, . . . , tk such that πt1 . . . tk = id, hence

π = t−1
k . . . t−1

1 = tk . . . t1.

We have proved the following:

Proposition 2. Every permutation is a product of transpositions.

For the example permutation given above, bubble sort takes only two
traversals to sort the sequence, with intermediate steps:

2 4 1 3 5 7 6

2 1 4 3 5 7 6

2 1 3 4 5 7 6

2 1 3 4 5 6 7

1 2 3 4 5 6 7

Reading the transpositions from these intermediate steps, we can write (using
cycle notation):

(1 2 4 3)(6 7) = (1 2)(6 7)(3 4)(2 3).

We define the sign of a permutation π to be

sgn(π) =

{
+1 , π is a product of an even number of transpositions

−1 , π is a product of an odd number of transpositions.

In order to show that sgn(π) is well-defined, we must prove the following

Lemma 3. If t1, . . . , tk and r1, . . . , rl are transpositions such that t1 · · · tk =
r1 · · · rl then k ≡ l (mod 2).
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Proof. Notice that it is enough to prove that a product of an odd number of
transpositions cannot equal the identity. To prove this, consider the function
s : Sym(n) → {±1} defined by

s(π) =

∏
i<j(xπ(i) − xπ(j))∏

i<j(xi − xj)
.

As an exercise, you should show that s(πτ) = −s(π) whenever τ is a trans-
position. It follows that if t1 . . . tk = id then (−1)k = s(id) = 1, so k is even,
as claimed.

We say a permutation π is even if sgn(π) = 1 and odd if sgn(π) = −1.
Notice that cycles of even length are odd and vice versa. In fact, we can
determine the sign of π from its cycle structure: if we write π as a product
of disjoint cycles then

sgn(π) = (−1)# of even length cycles in π.

We showed above that (1 2 4 3)(6 7) is a product of four transpositions, so
it’s an even permutation. We can also see this from the fact that its disjoint
cycle decomposition contains two even length cycles.

3 Determinants

Question: how many non-attacking rooks can be placed on an n× n chess-
board?

We can place at most one in each row, so we can place at most n on
the board. On the other hand, if there are less than n rooks on the board
then there is some row and some column without rooks, and we are free to
place a rook at the intersection of this row and column. Thus, n is the largest
number of rooks we can place on the board. Call such a placement of n rooks
a rook configuration. Then there is a natural one-one correspondence between
rook configurations on an n × n board and permutations of {1, . . . , n}. In
particular, there are n! different rook configurations.

Given A ∈ Mn(R), we define

det A =
∑

π∈Sym(n)

sgn(π)
n∏

k=1

Ak,π(k).
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As an exercise, you should prove the following basic properties:

• if A has a zero row or a zero column then det A = 0,

• det AT = det A.

Theorem 4 (Properties of the determinant). Let A ∈ Mn(R).

1. If A has an entire row or column of zeros, then det(A) = 0.

2. If A′=multiply the i-th row of A by c, then det(A′) = c · det(A).

3. If A′=change the i-th and j-th rows of A, then det(A′) = −det(A).

4. If the i-th row of A =c·(j-th row of A), then det(A) = 0

5. If A = A′ = A′′ except in the i-th row and the i-th row of A is the sum
of the i-th rows of A′ and A′′, then det(A) = det(A′) + det(A′′).

6. If A′ = add c·(i-th row of A) to the j-th row of A, then det(A′) =
det(A).

In the statements above ‘row’ can be replaced by ‘column’.

Exercise 5. Let A ∈ Mn(Z) such that every row of A has sum divisible by
7. Then det(A) is divisible by 7.

Theorem 6. For all A, B ∈ Mn(R), det(A ·B) = det(A)det(B).

Proof. To compute the determinant of the matrix(
A 0
∗ B

)
we only need to consider rook configurations that do not have any rooks in
the top right corner. These rook configurations are exactly the rook config-
urations that have all rooks contained in A and B. So

det

(
A 0
∗ B

)
= det(A)det(B)

If we take ∗ to be −I, then we have the matrix(
A 0
−I B

)
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Without changing the determinant, we can convert this to a matrix having
all zeros in the bottom right n × n matrix. We do this by adding multiples
of the first n columns in the matrix to the last n columns. (To eliminate the
i, j entry of B, add Bij times the j-th column to the j + n-th column.) The
new matrix is (

A AB
−I 0

)
and

det

(
A AB
−I 0

)
= (−1)ndet

(
AB A
0 −I

)
= (−1)ndet(A·B)det(−I) = det(AB)

Theorem 7. Let a, b ∈ Z. If A is the n× n matrix with a’s on the diagonal
and all other entires b, then

det(A) = (a− b)n−1(a + b(n− 1))

Proof. exercise (hint: Use row and column transformations and try to get
lots of zeros.)

Theorem 8. If n people form c clubs such that:

• every club has the same number of members, (call this number a)

• every two clubs have the same number of common members, (call this
number b)

• a, b > 0 and a 6= b,

then c ≤ n.

Proof. Assume c > n. Let D be the c×n matrix such that Dij is 0 if person
j is not a member of club i, Dij is 1 if person j is a member of club i.

Since every club has the same number of members, the row sum is the
same for all rows of D (and is a). Since every two clubs have the same
number of common members, the dot product of any two different rows in
D is the same (and is b).
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Extend the matrix D to a c×c matrix A by adding columns of zeros. Like
for D, the dot product of any row in A with itself is a and the dot product
of any two different rows in A is b. Then is the same as saying that

AAt =


a b . . . b
b a b
...

. . .
...

b . . . b a


By Theorem 7, det(AAt) 6= 0, but det(A) = 0. A contradiction.

Exercise 9.

det


1 a1 a2

1 a3
1 . . . an−1

1

1 a2 a2
2 a3

2 . . . an−1
2

...
...

1 an a2
n a3

n . . . an−1
n

 =?

The determinant of the matrix(
a b
c d

)
is the area of the parallelogram with two sides given by the vectors (a, b) and
(c, d). The determinant of a 3 × 3 matrix is the volume of a parallelepiped
given by the three rows. This parallelepiped will have volume 0 only when
all three of the vectors are contained in a plane containing the origin in R3.
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