Apprentice Program: Linear Algebra

Professor Abert
Notes taken by Deepam Patel and Kate Ponto

July 13,2006

We shall continue our discussion of eigenvectors and eigenvalues from last time.

Lemma 1. Let A be a linear transformation. Then λ is an eigenvalue of A if and only if $\operatorname{ch}(\lambda)=0$. Here $\operatorname{ch}(x)$ is the characteristic polynomial of A.
Proof. λ is an eigenvalue $\leftrightarrow \exists v \neq 0$ such that $A v=\lambda v \leftrightarrow \exists v \neq 0$ such that $(\lambda I-A) v=0 \leftrightarrow \operatorname{det}(\lambda I-A)=0 \leftrightarrow \operatorname{ch}(\lambda)=0$.
Example 2. Consider $A=\left(\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right)$. Then $\operatorname{det}(\lambda I-A)=\lambda^{2}-\lambda-1$. This gives two eigenvalues $\lambda_{1}=\frac{1+\sqrt{(5)}}{2}$ and $\lambda_{1}=\frac{1-\sqrt{(5)}}{2}$. Now $v=(x, y)$ is an eigenvector for $\lambda_{1} \leftrightarrow A v=\lambda v$. Since any eigenvector is nonzero multiple of another, we may assume $x=1$. This give $y=\lambda_{1}$. Similarly $\left(1, \lambda_{2}\right)$ is an eigenvector for λ_{2}. We can write the matrix of eigenvectors $E=\left(\begin{array}{cc}1 & 1 \\ \lambda_{1} & \lambda_{2}\end{array}\right)$. Then $A E=E\left(\begin{array}{cc}\lambda_{1} & 0 \\ 0 & \lambda_{2}\end{array}\right)$. Therefore $E^{-1} A^{n} E=\left(E^{-1} A E\right)^{n}$. This gives $A^{n}=$ $E\left(\begin{array}{cc}\lambda_{1} & 0 \\ 0 & \lambda_{2}\end{array}\right) E^{-1}$. This can be used in general to compute powers of A. Note that our particular choice of A applied to the vector $(1,1)$ iteratively gives the Fibonacci sequence. This can be used to give a formula for the n-th term of the Fibonacci sequence.
Lemma 3. Let v_{1}, \ldots, v_{k} be eigenvectors of a linear transformation A with pairwise distinct eigenvalues $\lambda_{1}, \ldots, \lambda_{k}$. Then the v_{i} are linearly independent. Proof. Suppose not. Let $\sum_{1}^{k} c_{i} v_{i}=0$ be the relation with minimal number of nonzero constants c_{i}. Fix some nonzero c_{j} and apply $A-\lambda_{j} I$ to the above relation. This gives a relation of with a strictly smaller number of nonzero coefficients. The fact that it is a nontrivial relation follows from the fact that the eigenvalues are pairwise distinct so not all the coefficients can be zero.

1 Jordan Form

It is not always possible to find a basis for a linear transformation consisting only of eigenvectors. The matrix

$$
\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)
$$

as characteristic polynomial λ^{2} with a single root, 0 . So the only eigenvalue of this matrix is 0 . Since the linear transformation corresponding to this matrix is not the linear transformation that takes the entire vector space to zero, the eigenspace corresponding to 0 cannot be the entire space. The eigenvector associated to 0 is $\binom{1}{0}$.

This shows that not every matrix is diagonalizable (i.e., can be written with respect to a basis of eigenvectors), but this is an example of the worst possible case.

Theorem 4 (Jordan Form). Over an algebraically closed field, every linear transformation can be written as a matrix of the form

$$
\left(\begin{array}{ccccc}
B_{1} & 0 & 0 & \ldots & 0 \\
0 & B_{2} & 0 & \ldots & 0 \\
0 & 0 & B_{3} & & 0 \\
\vdots & & & \ddots & \vdots \\
0 & \ldots & & 0 & B_{n}
\end{array}\right)
$$

where each B_{i} is an $n_{i} \times n_{i}$ matrix of the form

$$
\left(\begin{array}{ccccc}
\lambda_{i} & 1 & 0 & \ldots & 0 \\
0 & \lambda_{i} & 1 & & \vdots \\
0 & 0 & \lambda_{i} & \ddots & 0 \\
\vdots & & \ddots & \ddots & 1 \\
0 & \ldots & 0 & 0 & \lambda_{i}
\end{array}\right)
$$

Note: The λ_{i} do not have to be distinct.

Given a linear transformation ϕ that can be written as a matrix of the form

$$
\left(\begin{array}{llllll}
0 & & & & & \\
& \ddots & & & & \\
& & 0 & & & \\
& & & 1 & & \\
& & & & \ddots & \\
& & & & & 1
\end{array}\right)
$$

with all other entires 0 , the subspace corresponding to the top left block of all zeros is the kernel of ϕ. The subspace corresponding to the bottom right block is the kernel of $\phi-i d$.

If ψ is a linear transformation that can be written as a matrix of the form

$$
\left(\begin{array}{llllll}
0 & 1 & 0 & & & \\
0 & 0 & 1 & & & \\
0 & 0 & 0 & & & \\
& & & 2 & 1 & 0 \\
& & & 0 & 2 & 1 \\
& & & & 0 & 0
\end{array}\right)
$$

with all other entires zero, the subspace corresponding to the top block is the kernel of ψ^{n} for some large n. The subspace corresponding to the bottom block is the kernel of $(\psi-2 \cdot i d)^{n}$ for some large n.

Definition 5. If V is a vector space of dimension n and $\phi \in \operatorname{Hom}(V)$, $V_{\lambda}=\operatorname{ker}(\phi-\lambda \cdot i d)^{n}$ is a generalized eigenspace.

Steps in the proof of Jordan Form. Let $\phi \in \operatorname{Hom}(V)$.

- Let $\lambda_{1}, \lambda_{2} \ldots \lambda_{k}$ be the (distinct) roots of the characteristic polynomial of ϕ. If $v_{1} \in V_{\lambda_{1}}, \ldots v_{k} \in V_{\lambda_{k}}$ and $v_{i} \neq 0$, then the v_{i} are linearly independent.
- $\operatorname{Span}\left(V_{\lambda_{1}}, \ldots, V_{\lambda_{k}}\right)=V$

Corollary 6. $V=\oplus_{i=1}^{k} V_{\lambda_{i}}$
By considering each generalized eigenspace separately, we can assume that ϕ has only one eigenvalue. We can further reduce to the case that the eigenvalue is zero by replacing ϕ by $\phi-i d$. So we can assume that ϕ is nilpotent (i.e., $\phi^{n}=0$ for some n).

Definition 7. For $v \in V$, a chain is $\left\{v, \phi(v), \phi^{2}(v), \ldots, \phi^{k}(v)\right\}$ where $\phi^{k}(v) \neq 0$ and $\phi^{k+1}(v)=0$.

- Each chain is ϕ-invariant (i.e., applying ϕ to an element of

$$
<v, \phi(v), \phi^{2}(v), \ldots, \phi^{k}(v)>
$$

is an element of $\left.<v, \phi(v), \phi^{2}(v), \ldots, \phi^{k}(v)>\right)$.
Each chain is linearly independent. (If there were c_{i}, not all zero, so that $c_{1} v_{1}+\ldots c_{k} \phi^{k}(v)=0$ applying ϕ many times would lead to a contradiction.)

- For every chain of maximal length $\left\{v, \phi(v), \phi^{2}(v), \ldots, \phi^{k}(v)\right\}$ let $W=<$ $v, \phi(v), \phi^{2}(v), \ldots, \phi^{k}(v)>$. Then there exists $U \subset V$ such that $U \cap W=$ 0 and $\operatorname{span}(U, W)=V$ (i.e. $V=U \oplus W)$ and U is ϕ-invariant.

2 Change of Basis

Let V be a vector space and $E=\left\{e_{1}, \ldots, e_{n}\right\}$ and $F=\left\{f_{1}, \ldots f_{n}\right\}$ bases of V. Each $e_{i}=\sum_{j=1}^{n} c_{j i} f_{j}$ for some constants $c_{j i}$. These $c_{j i}$ define a matrix B, called the change of basis matrix.

If $\phi \in \operatorname{Hom}(V)$ and ϕ_{E} and ϕ_{F} are the matrices of ϕ corresponding to E and F then $\phi_{E}=B^{-1} \phi_{F} B$. This can be used to show that each linear transformation has a characteristic polynomial that does not depend on the matrix used to represent the linear transformation.

