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1. Vector Spaces

Definition 1.1. Let K be a field. (V,+, ·) is a vector space over K, if (V,+) is
an Abelian group, and · : K × V → V (called scalar multiplication) is distributive,
associative and multiplication by 1 is the identity on V . This compact definition
unwinds to give us the following ten(!) axioms:

(1) + : V × V → V
(2) u + (v + w) = (u + v) + w.
(3) u + v = v + u.
(4) ∃0 ∈ V such that v + 0 = 0 + v = v, for all v ∈ V .
(5) ∀v ∈ V , ∃ − v ∈ V such that v + (−v) = 0.
(6) · : K × V → V .
(7) (αβ) · v = α · (β · v).
(8) (α + β) · v = α · v + β · v.
(9) α · (u + v) = α · u + α · v.

(10) 1 · v = v.

Remark 1.2. In Axiom (7) above the product αβ arises from multiplication in the
field K. It has nothing to do with the scalar product ·.

Exercise 1.1. Show that 0K ·v = 0, for all v ∈ V . Use this to show that (−1) ·v =
−v, for all v.

Definition 1.3. A linear combination of elements v1, . . . , vk ∈ V is a sum of the
form α1 · v1 + . . . + αk · vk, where α1, α2, . . . , αk ∈ K.

A subset X ⊂ V is linearly dependent if there is a non-trivial linear combination
from X equals 0. By a non-trivial linear combination from X we mean a linear
combination α1v1 + . . . + αkvk with vi ∈ X and αi ∈ K, with k ≥ 1 and αi 6= 0 for
at least one i.

A list of vectors v1, . . . , vk is linearly dependent if there is a non-trivial linear
combination of the vi, which equals 0. In a list, we’re allowed to repeat an element
more than once. For example v, v is an admissible list, and this will always be
linearly dependent, but the set {v, v} = {v} is not linearly dependent unless v = 0.
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An element x ∈ V depends on X ⊂ V if x can be expressed as a linear combina-
tion of elements of X.

A subset X ⊂ V is linearly independent if it’s not linearly dependent.

Exercise 1.2. Show that any subset consisting of three vectors in a plane is linearly
dependent.

Note on Notation 1. We’ll use the word ’iff’ to mean ’if and only if’.

Lemma 1.4. X ⊂ V is linearly dependent iff there exists x ∈ X that depends on
X \ {x}.

Proof. (⇒)Suppose X is linearly dependent; then we have
k∑

i=1

αivi = 0 ,∃αi ∈ K , vi ∈ X,

for some non-trivial linear combination of elements in X. Since at least one of the
αi is non-zero, we might as well assume α1 6= 0. Take y = v1; this will work.

(⇐)Just reverse the steps above. �

Lemma 1.5. Suppose X ⊂ V is a linearly independent subset, and let y ∈ V ; then
X ∪ {y} is linearly dependent iff y depends on X.

Proof. (⇒)If X ∪ {y} is linearly dependent, then we have
k∑

i=1

αivi = 0 ,∃αi ∈ K , vi ∈ X ∪ {y},

for some non-trivial linear combination of elements in X ∪ {y}. Since X is linearly
independent, there is some i such that vi = y and αi 6= 0 (Why?). This gives us
an expression of y as a linear combination of elements in X, which means precisely
that y depends on X.

(⇐)This is immediate from the definition. �

Definition 1.6. A subset U ⊂ V is a vector subspace, if U is a vector space over
K for the operations + and ·. What we mean is that if u, v ∈ U , and α ∈ K, then
u + v ∈ U and α · u ∈ U : that is, U is closed under addition and multiplication
by scalars. To make it absolutely clear that U is a subspace and not just a subset
we’ll say U ≤ V .

Exercise 1.3. Give some examples of subspaces of vector spaces.

Solution. For any vector space V , {0} is a subspace, and so is V itself. Any line
passing through the origin in R2 is a subspace of R. The subset {(x, y, y) ∈ R3 |
x, y ∈ R} is a subspace of R3. What does this look like? What are the kinds of
subspaces R3 can have? �

Lemma 1.7. Suppose Ui ≤ V , for i ∈ I; then the intersection
⋂

i Ui is also a
subspace of V .

Definition 1.8. Let X ⊂ V be any subset. Define SpanX = ∩X⊂U≤V U to be
the span of X or the subspace generated by X. This is the smallest subspace of V
containing X. If U = SpanX, we’ll say that X spans the subspace U .
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Remark 1.9. Note that an equivalent way of saying that a vector y ∈ V depends
on a subset X ⊂ V is to say that y ∈ SpanX.

Exercise 1.4. Show that the span of the subset X ⊂ V is the collection of all linear
combinations α1v1 + . . . + αkvk, for v1, . . . , vk ∈ V . That is

SpanX = {
k∑

i=1

αivi | vi ∈ X, αi ∈ K}.

Solution. Call the subset on the right hand side U . U is a vector subspace of V
(Why?). Now show that every vector subspace of V that contains X must also
contain U . �

Exercise 1.5. Consider the vector space of all polynomials over R:

R[x] = {
k∑

i=1

aix
i | ai ∈ R}.

Show that this cannot be generated by finitely many elements.

Solution. Suppose we have finitely many polynomials f1(x), . . . , fr(x), with deg fi =
di. Now, consider xn, where n > di, for all 1 ≤ i ≤ r. Can this be in Span{f1, . . . , fr}?

�

Definition 1.10. A subset B ⊂ V is a basis if SpanB = V and B is linearly
independent.

Lemma 1.11. A subset B ⊂ V is a basis iff every element of V can be uniquely
expressed as a linear combination of elements in B.

Proof. (⇒)First assume that B is a basis. Recalling the constructive description of
SpanB from Exercise (1.4), we see that saying SpanB = V is the same as saying
that every element can be expressed as a linear combination of B. If some element
v ∈ V can be expressed as a linear combination of elements in B in two different
ways, say

v =
k∑

i=1

αivi =
l∑

j=1

βjwj ,

for v1, . . . , vk, w1, . . . , wl ∈ B, then
k∑

i=1

αivi −
l∑

j=1

βjwj = 0

gives us a linear combination of elements in B which equals 0. But B was linearly
independent to begin with, so all the coefficients in this linear combination must
be 0. This shows that the two different expressions that we had for v were in fact
the same, and so we indeed have a unique way of expressing every element of V as
a linear combination of elements in B.

(⇐)Now assume that every element in V can be uniquely expressed as a linear
combination of elements in B. Trivially, we have Span B = V . We must show
that B is linearly independent. Suppose

∑
i=1 αivi = 0, for some non-trivial linear

combination of elements v1, . . . , vn ∈ B. Then, we have two different ways of
expressing 0 as a linear combination of elements in B. Contradiction! �
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Lemma 1.12. Let B ⊂ V be a subset. Then the following are equivalent.

(1) B is a basis.
(2) B is a maximal linearly independent subset; that is, B is linearly indepen-

dent, and if B′ ! B is a bigger subset, then B′ must be linearly dependent.
(3) B is a minimal generating set; that is, SpanB = V , and if B̃  B is a

smaller subset, then Span B̃ 6= V .

Proof. We will show (1) ⇔ (2) and (1) ⇔ (3).
[(1) ⇔ (2)]If B is a basis and b ∈ B; then B \ {b} cannot span V (Why? Is

b ∈ SpanB \ {b}?). This shows that B is a minimal generating set. Conversely, if
B is a minimal generating set, then B must be linearly independent. Otherwise,
there is some element b ∈ B, which depends on B \ {b}, but then SpanB \ {b} = V
(Why?), which contradicts the fact that B is a minimal generating set.

[(1) ⇔ (3)]Suppose B is a basis and y ∈ V \B. Then, since B spans V , y depends
on B. But then, by Lemma 1.5, B ∪ {y} is linearly dependent. This shows that
B is a maximal linearly independent subset. Conversely, suppose B is a maximal
linearly independent subset. Then, we claim that SpanB = V ; for otherwise, if we
can find y ∈ V \SpanB, then B∪{y} will still be linearly independent, contradicting
the maximality of B. �

Theorem 1.13 (Exchange Principle). If v1, v2, . . . , vn is a linearly independent
list, and Span{w1, . . . , wk} contains all the vi. Then, ∀1 ≤ i ≤ n ,∃1 ≤ j ≤ k such
that v1, . . . , vi−1, wj , vi+1, . . . , vn is also a linearly independent list.

Proof. Consider the list v1, . . . , vi−1, vi+1, . . . , vn: this is still linearly independent.
Let U = Span{v1, . . . , vi−1, vi+1, . . . , vn} be the subspace of V generated by this
list. If wj ∈ U for every 1 ≤ j ≤ k, then we have a problem, because vi will then
not be in the span of w1, . . . , wk, contradicting our assumption. So there is at least
one j such that wj /∈ U . This j will work. �

Corollary 1.14. If {v1, . . . , vn} ⊂ V is a linearly independent subset and {w1, . . . , wk}
is a generating subset, then n ≤ k.

Proof. By the Exchange Principle, we can exchange each of the vi one by one
with some wj , while still keeping our list linearly independent. Eventually, we can
replace each of the vi with some wj . If n > k, then some wj has to repeat, but then
the list won’t be linearly independent. This is a contradiction, and so n ≤ k. �

Corollary 1.15. Suppose a vector space V has a finite generating subset. Then V
has a basis. Moreover, every basis has the same size, and we denote this common
size by dim V , the dimension of V .

Proof. Let X ⊂ V be a finite subset that spans V . If X is linearly independent,
then it’s already a basis according to Lemma (1.12). If X is linearly dependent,
then we can find a y ∈ X that depends on X \ {y}. So X \ {y} must also span V .
Is X \ {y} linearly independent? If so, then we’re done. If not, rinse and repeat
till we hit a linearly independent subset. Note that this won’t work if X is infinite.
Why?

Suppose {v1, . . . , vn} and {w1, . . . , wk} are two bases for V . Use the previous
Corollary to show that n ≥ k and k ≥ n. �
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2. Applications to Matrix Theory

Definition 2.1. Suppose we have an n× k matrix

M =

 a11 . . . a1k

...
. . .

...
an1 . . . ank


For 1 ≤ i ≤ n, let vi be the vector (ai1, . . . , aik) ∈ Kk. The vi are the row vectors
of the matrix M . For 1 ≤ j ≤ n, let wj be the vector (a1j , . . . , anj) ∈ Kn. The wj

are the column vectors of the matrix M .

Definition 2.2. The subspace spanned by the rows of M is

R(M) = Span{v1, . . . , vn} ⊂ Kk,

and the subspace spanned by the columns of M is

C(M) = Span{w1, . . . , wk} ⊂ Kn.

Suppose now that M is an n × n square matrix, and suppose that the list
v1, . . . , vn is linearly dependent. In this case, we’ll say that the rows of the matrix
are linearly dependent. Then there is a non-trivial linear combination of the vi that
gives us 0. Since the determinant of M doesn’t change under row operations, using
this linear dependence relation, we can change M to another matrix M ′ using just
row operations so that M ′ now has a row with all zeros. But then det M ′ = 0.
Since row operations preserve the determinant, detM must also be 0.

In fact the converse is also true: if det M = 0, then the rows of M will be linearly
dependent. We’ll prove a more general theorem soon, but, for now, given any n×k
matrix M , consider the subspace R(M) ⊂ Kk generated by its rows. It is clear that
row operations on M do not change R(M). But what about column operations?
For example, consider

M =
(

0 0
1 0

)
It’s easy to see that

R(M) = {(x, 0) : x ∈ K} ⊂ K2.

But now suppose we add the first column to the second; then we get the following
matrix.

M ′ =
(

0 0
1 1

)
Now,

R(M ′) = {(x, x) : x ∈ K} ⊂ K2.

So a column operation might change the subspace spanned by the rows, but it
won’t change the dimension of R(M) (for example, we had above dim R(M) =
dim R(M ′) = 1). This will follows from the next Lemma.

Lemma 2.3. Any column operation on M cannot decrease the dimension of R(M).
Symmetrically, any row operation on M cannot decrease the dimension of C(M).

Proof. There are three basic kinds of column operations we can perform on M :
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(1) We can scale one of the rows by a non-zero scalar. So suppose we’ve scaled
the first column of M by α 6= 0 (it doesn’t matter which column we pick;
the proof’s the same). So now M has changed to

M ′ =

 α · a11 . . . a1k

...
. . .

...
α · an1 . . . ank

 .

(2) We can exchange one column with another.
(3) We can add one column to another

�

Why does this tell us that the dimension of R(M) is invariant under column
operations? (Hint: Note that a column operation is invertible).

So we can run any row or column operation we want on M without changing
the dimension of R(M) or C(M). What’s the simplest form into which we can
transform M via row and column operations?

Lemma 2.4. Let M be an n × k matrix. Then using row and column operations
we can transform M into a matrix that has 0’s everywhere off the diagonal, and
has a sequence of 1’s followed by a sequence of 0’s on the diagonal. That is, we can
transform M into a matrix of the form

1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 0

 .

Proof. We’ll do this by induction on n. The base case is when n = 1. In this case
M is just a row vector

M = (a1 a2 . . . ak).
If M = 0, then we’re done. Otherwise, we can carry a non-zero element to the head
of the row, scale it so that it equals 1, and then get rid of the rest of the row by
subtracting suitable multiples of 1 from each element. Now, suppose n > 1; again,
if M = 0, then we’re done. So we can suppose that there is some a = aij 6= 0.
Using row and column exchanges we can carry this a to the top-left corner, and
scale the first row by a−1 to change it to 1. Then we can subtract a multiple of
this from every other element of the matrix that’s either on the first row or the
first column to clear both the first row and column, and end up with a matrix that
looks like this:

M ′ =


1 0 . . . 0

0
. . . . . .

...
...

. . . . . .
...

0 . . . . . . ank

 .

Now, the submatrix that we get when we remove the first row and column is an
(n− 1)× (k− 1) matrix. So, by the induction hypothesis, this can be changed to a
matrix with 0’s off the diagonal and only 1’s and 0’s on the diagonal using row and
column operations, which do not affect the 1 sitting by itself in the corner. �

Definition 2.5. Let M be an n× k matrix over K. Then
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(1) The row rank rkrow M is the number dimR(M).
(2) The column rank rkcol M is the number dim C(M).
(3) The determinant rank rkdet M is the largest number m, for which there

exists an m×m submatrix, whose determinant is non-zero.

Lemma 2.6. An n × n matrix M has non-zero determinant iff rkrow M = n iff
rkcol M = n.

Proof. Using row and column operations we can get M into the special form as
in the Lemma above. Now, rkrow M and rkcol M are both invariant under row
and column operations. But in this special form that we have, it’s immediate that
rkrow M = rkcol M : they’re both the number of 1’s along the diagonal. Moreover,
the determinant was non-zero to begin with iff it stays non-zero under all row
and column operations. The matrix in this special form, however, has nonzero
determinant iff all its diagonal entries are 1’s, which can happen iff

rkrow M = rkcol M = n.

�

Theorem 2.7. Let M be an n× k matrix over K. Then

rkrow M = rkcol M = rkdet M.

Proof. We’ve shown that both rkrow M and rkcol M are invariant under row and
column operations. Notice now that if we’ve converted our matrix M into the
special matrix as in the Lemma above, which has only 1’s and 0’s on the diagonal,
and 0’s everywhere else, then this special matrix has the same row and column
rank: they both equal the number of 1’s along the diagonal. This shows that for
every matrix M

rkrow M = rkcol M.

Also observe that the determinant rank of the special matrix is the same as
its row and column ranks: it’s again the number of 1’s on the diagonal. So if
we manage to show that the determinant rank is also invariant under row and
column operations, then our proof will be done. We’ll prove that the determinant
rank does not decrease under column operations. This will prove invariance under
column operations, just as before; the proof for invariance under row operations is
strictly analogous.

So suppose rkdet M = m; then there is an m × m submatrix N of M , such
that detN 6= 0, and for l > m, we can’t find any l × l submatrix which has
non-zero determinant. Since row and column exchanges clearly do not change the
determinant rank, we can assume that this submatrix N is in the top left corner. If
the column operation doesn’t affect any columns of N , or if they only move around
columns within N without bringing any outside columns into play, then we’re safe.

There are two ways in which there can be trouble: Either some column of N gets
exchanged with a column outside of N , or some column outside of N is added to a
column in N . In either case, consider the m× (m + 1) submatrix P that’s formed
by N and the first m elements of the column that is going to be exchanged with
(or added to) the poor column in N . Since N has non-zero determinant, we know
by the previous Lemma that rkcol N = m. This shows that rkcol P ≥ m; since
the subspace C(P ) is invariant under column operations on P , even after we’ve
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changed P to some other matrix P ′ using these column operations, we still have
C(P ′) = C(P ), and so

rkcol P
′ = dim C(P ′) = dim C(P ) ≥ m.

But then P ′ must also have at least m linearly independent columns (in fact, it’ll
have exactly m linearly independent columns). Now, pick m linearly independent
columns in P ′ and let N ′ be the m × m submatrix formed by these m linearly
independent columns. Then, it follows from the Lemma above that detN ′ 6= 0,
which finishes our proof. �
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