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3a.1 The Infinitude of Primes

One theorem which is thousands of years old is that the set of prime numbers is infinite.

Theorem 3a.1.1. (Euclid) There are infinitely many primes.

Proof. (From Euclid’s Elements.) Assume that there were only finitely many, say p1, . . . , pn.
Let q = Πn

1pi + 1.
So pi 6

∣∣ q since q ≡ 1 (mod pi). But any integer larger than 1 has a prime factor, which is
a contradiction since no prime divides q.

Theorem 3a.1.2. There are infinitely many primes of the form 4k−1 (i. e., ≡ −1 (mod 4)).

Observation 3a.1.3. Every odd number is ≡ ±1 (mod 4). So every prime other than 2 is
≡ ±1 (mod 4). Examples: the primes 5, 13, 17, 29, 37 are congruent to 1 (mod 4) while the
primes 3, 7, 11, 19, 23, 31 are congruent to −1 (mod 4).

Proof of the theorem. Suppose there are only finitely many primes≡ −1 (mod 4), p1, . . . , pn.
Let A = p1 . . . pn. If n is odd, then A ≡ −1 (mod 4) because

p1 . . . pn ≡ (−1) . . . (−1)︸ ︷︷ ︸
n times

= (−1)n = −1 (mod 4).

Hence A + 4 ≡ −1 (mod 4).

Lemma 3a.1.4. A + 4 must have a prime divisor ≡ −1 (mod 4).

Proof of lemma. Actually if B ≡ −1 (mod 4) (where B is any integer), then B has a prime
divisor ≡ −1 (mod 4). This is because if B = q1 . . . qt is the prime factorization of B and
qi 6≡ −1 (mod 4), then qi = 2 or qi ≡ 1 (mod 4). But qi 6= 2 because B is odd. So if
none of the qi ≡ −1 (mod 4), all of the qi would be congruent to 1 (mod 4) and hence
B ≡ 1 · · · 1 ≡ 1 (mod 4), which would be a contradiction.
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Lemma 3a.1.5. pi 6
∣∣ A + 4.

Proof of lemma. Now, pi

∣∣A. If pi

∣∣A + 4, then pi

∣∣((A + 4) − A), and so pi

∣∣4 which is a
contradiction.

So we saw that A + 4 must have a prime divisor ≡ −1 (mod 4) and it is not divisible by
any of the finitely many primes pi congruent to −1 (mod 4). This is a contradiction.

So we have taken care of the case when the number n is odd. To take care of when n is
even, we just put down one of our primes twice when we define A to get that A is a product
of an odd number of primes and we apply the same argument.

A slicker proof. Let M = 4 · p1 · · · pn − 1. Now M ≡ −1 (mod 4) and so

1. M must have a prime divisor ≡ −1 (mod 4) (by the lemma above).

2. pi 6
∣∣ M because M ≡ −1 (mod pi).

and we arrive at a contradiction.

3a.2 Primes and Sums of Squares

Now we want to consider when we can write a prime number as the sum of two squares (i. e.,
p = a2 + b2). Let’s start by looking at some examples.

Note that 5, 13 and 17 can be written as (a2+b2): 5 = 22+12, 13 = 22+32 and 17 = 42+12.
But 3, 7, 11, 19 cannot be expressed in that form.

Theorem 3a.2.1. (Fermat, Euler) A prime p is the sum of two squares if and only if
p ≡ 1 (mod 4) or p = 2.

We shall not prove this remarkable theorem today but we shall make the first steps
towards understanding the problem.

One of the most useful “little” results of number theory is Fermat’s “little” theorem.

Theorem 3a.2.2 (Fermat’s little Theorem). If p is a prime and a is an integer not
divisible by p, then ap−1 ≡ 1 (mod p).

Proof. We invoke a counting theorem that was proved in the previous problem session: the
number of necklaces with p beads, made of a kinds of beads, is ap−a

p
+a. (Two necklaces that

are rotations of each other are considered the same.) So this number must be an integer.
Hence p

∣∣ap − a. But ap − a = a(ap−1 − 1). So since by assumption p 6
∣∣ a, we have that

p
∣∣(ap−1 − 1) whence ap−1 ≡ 1 (mod p).
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Theorem 3a.2.3. If p is prime and p ≡ −1 (mod 4) then p 6= a2 + b2 for any integers a
and b.

Proof.

Question 3a.2.4. What is a2 (mod 4)?
If a is even, then a2 is divisible by 4 and so a2 ≡ 0 (mod 4). If a is odd, then both a− 1

and a + 1 are even and so a2 − 1 = (a − 1)(a + 1) is divisible by 4 and so a2 ≡ 1 (mod 4).
So for all a, we have that a2 is congruent to 0 or 1 (mod 4). So a2 + b2 is congruent to 0, 1,
or 2 (mod 4). So a2 + b2 6≡ −1 (mod 4) and we have proven the theorem.

Now there are numbers congruent to 1 (mod 4) which are not the sum of two squares
(an example is 21). However, it turns out that every prime of that form is the sum of two
squares.

Question 3a.2.5. Can p
∣∣a2 + b2, where p is a prime which is ≡ −1 (mod 4)?

Well, if p
∣∣a and p

∣∣b, then of course it does, but that seems like cheating. So let’s revise
our question.

Question 3a.2.6. If p 6
∣∣ a and p 6

∣∣ b, and p ≡ −1 (mod 4), then can p
∣∣a2 + b2?

Suppose p
∣∣a2 + b2. If p 6

∣∣ a, then p 6
∣∣ b (so we don’t need to assume that p does not divide

both of them, but only one of them). And we have that a2 ≡ −b2 (mod p).

Exercise 3a.2.7. If there exists intergers a, b such that a2 ≡ −b2 (mod p), then p 6≡ −1
(mod 4). [Hint: Use Fermat’s Little Theorem]

The following theorem is an immediate consequence of this exericse. (Why?)

Theorem 3a.2.8. If gcd(a, b) = 1, then a2 + b2 has no prime divisors ≡ −1 (mod 4).

A consequence of this is the following theorem.

Theorem 3a.2.9. There are infinitely many primes ≡ 1 (mod 4).

Proof. Assume there are only finitely many primes ≡ 1 (mod 4), say p1, · · · , pn. Let A =
p1, · · · pn. We want to find a number of the form A2 +b2 where b is a (hopefully small) integer
such that

1. A2 + b2 is not divisible by any of the pi

2. A2 + b2 has at least one prime divisor which is ≡ 1 (mod 4). (In fact it will end up
having all prime divisors ≡ 1 (mod 4).)

Then we would have a contradiction. Now, A2 +12 doesn’t give us quite what we want since
it is an even number and hence is divisible by 2. But we could use A2 +22. Alternatively, we
could use (2A)2 + 12 and get what we want as well.
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Theorem 3a.2.10. If a2 ≡ −b2 (mod p), and p 6
∣∣ a, and p is an odd prime then p ≡ 1

(mod 4).

Proof. ap−1 ≡ 1 (mod p). On the other hand,

1 ≡ ap−1 = (a2)
p−1
2 ≡ (−b2)

p−1
2 ≡ (−1)

p−1
2 (b2)

p−1
2 = (−1)

p−1
2 bp−1 ≡ (−1)

p−1
2 (mod p).

So 1 ≡ (−1)
p−1
2 (mod p).

If p ≡ −1 (mod 4), then (−1)
p−1
2 = −1 since p−1

2
would be odd. But if 1 ≡ −1 (mod p),

then p = 2, which is a contradiction since 2 6≡ −1 (mod 4).

3a.3 Quadratic Residues

Definition 3a.3.1. If p is a prime, then a is a quadratic residue mod p if p 6
∣∣ a and there is

an x such that x2 ≡ a (mod p).

Definition 3a.3.2. If p is a prime, then a is a quadratic nonresidue mod p if there is no x
such that x2 ≡ a (mod p).

Exercise 3a.3.3. There are p−1
2

quadratic residues mod p (and hence p−1
2

nonresidues mod
p). (Note: we are counting residue classes, i. e., all numbers that are congruent to a particular
number mod p count as one number.)

Question 3a.3.4. When is −1 a quadratic residue?

Exercise 3a.3.5. If p is a prime and p = a2 + b2, then −1 is a quadratic residue mod p.

Exercise 3a.3.6. If p ≡ −1 (mod 4), then −1 is a quadratic nonresidue mod p. [ Hint: this
should be easy after today’s class.]

Experiment 3a.3.7. When is 2 a quadratic residue mod p? [Try to figure it out for primes
less than 100 and make a conjecture.]
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