REU 2006 Apprentice

Instructor: László Babai
Scribe: Matthew Booth
NOT PROOF-READ

July 7, 2006. Last updated July 8, 2006

Recall that Euler's ϕ function is defined so that $\phi(n)$ is the number of integers between 1 and n that are relatively prime to n. Note that if p is prime then $\phi(p)=p-1$ because all integers from 1 to $p-1$ are relatively prime to p.

So for example, what would be $\phi\left(p^{7}\right)$? A number is not relatively prime to p^{7} if and only if it is a multiple of p. So the numbers at most p^{7} which are not relatively prime to p^{7} are $p, 2 p, 3 p, \ldots, p \cdot p^{6}$. So there are p^{6} such numbers. Hence, $\phi\left(p^{7}\right)=p^{7}-p^{6}=p^{7}\left(1-\frac{1}{p}\right)$. Another way of looking at this is that one out of every p numbers is divisible by p, and so out of the first p^{7} integers, the probability that an element is relatively prime to p^{7} is $\left(1-\frac{1}{p}\right)$.

Now let's consider

$$
\sum_{d \mid p^{7}} \phi(d)=\phi(p)+\phi\left(p^{2}\right)+\ldots \phi\left(p^{7}\right)=1+(p-1)+\left(p^{2}-p\right)+\ldots+\left(p^{7}-p^{6}\right)
$$

Note that this is a telescoping sum, and so the result is p^{7}. This leads us to wonder if we get a similar result for all numbers.

Conjecture 1.0.1. $\sum_{d \mid n} \phi(n)=n$
Now, consider $p q$ where p and q are primes. There are q multiples of p that are at most $p q$ and there are p multiples of q that are at most $p q$. The only number $\leq p q$ that is a multiple of both is $p q$ itself. So we get that $\phi(p q)=p q-p-q+1$ where adding the 1 back is because $p q$ is both a multiple of p and a multiple of q and so was counted twice. Note that we can factor this as $\phi(p q)=(p-1) \cdot(q-1)$. So $\frac{\phi(p q)}{p q}=\frac{p-1}{p} \cdot \frac{q-1}{q}=\left(1-\frac{1}{p}\right) \cdot\left(1-\frac{1}{q}\right)$.
Exercise 1.0.2 (The Chinese Remainder Theorem). If we have integers m_{1}, \ldots, m_{n} such that each m_{i} is relatively prime to m_{j} for $i \neq j$ then system of congruences

$$
\begin{array}{ll}
x \equiv & a_{1}\left(\bmod m_{1}\right) \\
x \equiv & a_{2}\left(\bmod m_{2}\right) \\
& \vdots \\
x \equiv & a_{k}\left(\bmod _{k}\right) \tag{1.0.4}
\end{array}
$$

has a solution which is unique $\bmod \prod_{1 \leq i \leq k} m_{i}$

Now note that

$$
\sum_{d \mid p q} \phi(d)=\phi(1)+\phi(p)+\phi(q)+\phi(p q)=1+(p-1)+(q-1)+(p q-p-q+1)=p q .
$$

So that's more evidence for our conjecture.
It would be good to get an explicit formula for $\phi(n)$.
Theorem 1.0.3. If $n=p_{1}^{a_{1}} \cdots p_{k}^{a_{k}}$, where p_{i} are distinct primes, then $\phi(n)=n\left(1-\frac{1}{p_{1}}\right) \cdots(1-$ $\left.\frac{1}{p_{k}}\right)$.
Proof. Let $\Omega=\{1, \ldots, n\}$ and j be a random number in Ω. Let A_{i} be the subset of Ω of numbers which are not divisible by p_{i}. The events $j \in A_{i}$ are independent of each other (which can be seen from the Chinese Remainder Theorem).

Note that the probability that a random number in Ω is relatively prime to n is just $\frac{\phi(n)}{n}$. But also note that a number in Ω is relatively prime to n if and only if it is not divisible by any of the p_{i} (and that the probability of not being divisible by a particular p_{i} is $\left(1-\frac{1}{p_{i}}\right)$). Since these events are independent, we get the desired formula

$$
\frac{\phi(n)}{n}=\prod_{1 \leq i \leq k}\left(1-p_{i}\right)
$$

Let G be a group and $a \in G$.
Definition 1.0.4. The order of $a \operatorname{ord}(a)$, is the smallest $k \geq 1$ such that $a^{k}=1$.
Exercise 1.0.5. $a^{l}=1$ if and only if $\operatorname{ord}(a) \mid l$.
Consider the complex $n^{\text {th }}$ roots of unity (i.e. the complex numbers z such that $z^{n}=1$). They are evenly spaced on the unit circle in the complex plane. Call them $z_{0}, \ldots z_{n-1}$ where we have $z_{k}=\cos \left(\frac{2 k \pi}{n}\right)+i \sin \left(\frac{2 k \pi}{n}\right)$.
Observation 1.0.6. z is an $n^{\text {th }}$ root of unity if and only if $\operatorname{ord}(z) \mid n$.
Definition 1.0.7. If $\operatorname{ord}(z)=n$, then z is a primitive $n^{\text {th }}$ root of unity.
Exercise 1.0.8. Show z_{k} is a primitive $n^{\text {th }}$ root of unity if and only if $\operatorname{gcd}(k, n)=1$.
Therefore the number of primitive $n^{\text {th }}$ roots of unity is $\phi(n)$.
Let $U_{n}=\left\{z_{0}, \ldots, z_{n-1}\right\}$. How many of the z_{i} have order d where $d \mid n$ (i.e. the number of primitive $d^{t h}$ roots of unity)? Let P_{d} be the set of primitive $d^{\text {th }}$ roots of unity. Then $U_{n}=\bigcup_{d \mid n} P_{d}$ and the P_{d} are disjoint. So

$$
n=\left|U_{n}\right|=\sum_{d \mid n}\left|P_{d}\right|=\sum_{d \mid n} \phi(n)
$$

and we have proven the conjecture given earlier in the class.
For another proof, take the numbers $\frac{1}{n}, \frac{2}{n}, \ldots \frac{n}{n}$. Put each of these fractions in their lowest terms and look at the denominators d that you get (which are exactly the numbers which divide n).

Exercise 1.0.9. Show that the number of occurences of the denominator d in this list is $\phi(d)$ and finish the proof.

As a reminder, we restate
Theorem 1.0.10 (Fermat's Little Theorem). If p is prime and $\operatorname{gcd}(a, p)=1$, then $a^{p-1} \equiv 1(\bmod p)$.

Definition 1.0.11. The order of $a \bmod p, \operatorname{ord}_{p}(a)$, is the smallest $k \geq 1$ such that $a^{k} \equiv 1$ $(\bmod p)$.

So Fermat's Little Theorem can be restated as $\operatorname{ord}_{p}(a) \mid(p-1)$.
Definition 1.0.12. If p is prime then we say a is a primitive root $\bmod p$ if $\operatorname{ord}_{p}(a)=p-1$.
Theorem 1.0.13. For all primes p there is a primitive root mod p.
Before preparing for the proof, here's a nice exercise.
Exercise 1.0.14. Find infinitely many 2 x 2 matrices A such that $A^{2}=I$ where I is the identity matrix.

Let \mathbb{F} be a field (for example it could be $\mathbb{C}, \mathbb{R}, \mathbb{F}_{p}, \mathbb{Q}$, or $\mathbb{Q}[\sqrt{2}]=\{a+b \sqrt{2} \mid a, b \in \mathbb{Q}\}$).
Definition 1.0.15. A multiplicative inverse of $a \bmod m$ is a number x such that $a x \equiv 1$ $\bmod m$.

For example, since $3 \cdot 5=15 \equiv 1(\bmod 7)$, we have that $5=3^{-1}(\bmod 7)$
Exercise 1.0.16. Show that a has a multiplicative inverse mod m if and only if $\operatorname{gcd}(a, m)=$ 1.

Definition 1.0.17. Let $f(x)=a_{0}+a_{1} x+\ldots a_{n} x^{n}$ where $a_{i} \in \mathbb{F}$ and $a_{n} \neq 0$. Then we say that the degree of $f, \operatorname{deg}(f)$, is n. A root of f is an element $z \in \mathbb{F}$ such that $f(z)=0$.

Exercise 1.0.18. Find a quadratic polynomial with coefficients in \mathbb{F}_{2} which does not have a root in \mathbb{F}_{2}.

Theorem 1.0.19. For f as above, f has at most n roots in \mathbb{F}.
Lemma 1.0.20. If $f(a)=0$, then $f(x)=(x-a) \cdot g(x)$ for some polynomial $g(x)$ over \mathbb{F}.
This is a special case of the following lemma.
Lemma 1.0.21. $f(x)-f(a)=(x-a) \cdot g(x)$ for some polynomial $g(x)$ over \mathbb{F}.
Example 1.0.22. Let $f(x)=x^{n}$. Then $f(x)-f(a)=x^{n}-a^{n}=(x-a) \cdot\left(x^{n-1}+a x^{n-2}+\right.$ $\left.a^{2} x^{n-3}+\cdots+a^{n-2} x+a^{n-1}\right)$. One can see this by expanding out the right hand side and noticing that it is a telescoping sum.

For the general case, it is not that much different from the example.
Proof of Lemma. Let $f(x)=\sum c_{i} x^{i}$. Then

$$
f(x)-f(a)=\sum c_{i}\left(x^{i}-a^{i}\right)=\sum c_{i}(x-a) \cdot g_{i}(x)=(x-a) \cdot \sum g_{i}(x)
$$

where the g_{i} are polynomials.

Exercise 1.0.23. If \mathbb{F} is a field and $a, b \in \mathbb{F}$, then $a \cdot b=0$ if and only if either a or b is 0 .
Proof of the previous theorem. Let a_{1}, \ldots, a_{n} be the distinct roots of f. So since $f\left(a_{1}\right)=0$, we have that $f(x)=\left(x-a_{1}\right) f_{1}(x)$. But we also have that $f\left(a_{2}\right)=0$, so we have that $\left(a_{2}-a_{1}\right) f_{1}\left(a_{2}\right)=0$. Since $a_{1} \neq a_{2}$, we have that $a_{1}-a_{2} \neq 0$ and hence $f_{1}\left(a_{2}\right)=0$. So we have that $f(x)=\left(x-a_{1}\right)\left(x-a_{2}\right) f_{2}(x)$. Continuing this argument we get $f(x)=$ $\left(x-a_{1}\right) \cdots\left(x-a_{l}\right) f_{l}(x)$. By looking at the degree of f, we see that l can be no greater than the degree of f, as desired.

Now, in \mathbb{F}_{p}, Fermat's little theorem tells us that all $a \neq 0$ are roots of $f(x)=x^{p-1}-1$. So we get that $f(x)=\left(\prod_{a \in \mathbb{F}_{p}-\{0\}}(x-a)\right) \cdot g(x)$. Looking at degrees, we see that $g(x)$ is a constant polynomial, and looking at the coefficient of x^{p-1} on the left and right gives us that $g(x)=1$. So we have just proven

Theorem 1.0.24. In \mathbb{F}_{p},

$$
x^{p-1}-1=\left(\prod_{a \in \mathbb{F}_{p}-\{0\}}(x-a)\right) .
$$

Now, Fermat's Little Theorem tells us that the order of every nonzero element in \mathbb{F}_{p} is a divisor of $p-1$.

Question 1.0.25. How many elements of $\mathbb{F}_{p}-\{0\}$ have order that divides d (where $d \mid p-1$)?
In other words, how many $a \in \mathbb{F}_{p}-\{0\}$ are such that $a^{d}=1$? Call this number k_{d}. Now we know that $k_{d} \leq d$ because these are the roots of $x^{d}-1$ in \mathbb{F}_{p}.

Lemma 1.0.26. $k_{d}=d$.
Proof. We need only show that $k_{d} \geq d$ by the above. Consider the map $g(x)=x^{\frac{p-1}{d}}$. How many elements can have the same $\left(\frac{\bar{p}-1}{d}\right)^{t h}$ power? No more than the number of solutions to the polynomial $x^{\frac{p-1}{d}}-a$ where a is their common power. So no more than $\frac{p-1}{d}$. Hence, if we group the $p-1$ elements of $\mathbb{F}_{p}-\{0\}$ by their $\left(\frac{p-1}{d}\right)^{t h}$ power, we are grouping $p-1$ elements into groups of no more than $\frac{p-1}{d}$. Hence, we have at least d groups. So there are at least d different $\left(\frac{p-1}{d}\right)^{t h}$ powers.

And if $b=a^{\frac{p-1}{d}}, b^{d}=a^{p-1}=1$ by Fermat's Little Theorem. So since there are at least d different $\left(\frac{p-1}{d}\right)^{t h}$ powers, there are at least d distinct $d^{t h}$ roots of unity. Hence $k_{d} \geq d$ and we are done.

Theorem 1.0.27. Let $d \mid p-1$. Then the number of primitive d $d^{\text {th }}$ roots of unity in $\mathbb{F}_{p}-\{0\}$ is $\phi(d)$.

Corollary 1.0 .28 . There exists a primitive root mod p.
The corollary follows by noting tht a primitive root mod p is just a primitive $(p-1)^{\text {st }}$ root of unity and $\phi(p-1) \geq 1$.

Proof of theorem by induction on d. For the base case, we take $d=1$ and note that $a^{1}=1$ has the unique solution of $a=1$ and $\phi(1)=1$.

Now assume the $d>1$. Our inductive hypothesis is that our theorem is true for all $d^{\prime}<d$ where $d^{\prime} \mid d$. So we need to count the elements which have order d. So let P_{d} be the set of such elements and let U_{d} be the set of solutions of $x^{d}-1$. Now $U_{d}=\bigcup_{d^{\prime} \mid d} P_{d^{\prime}}$ where the $P_{d^{\prime}}$ are disjoint. So we have

$$
d=k_{d}=\left|U_{d}\right|=\sum_{d^{\prime} \mid d}\left|P_{d}^{\prime}\right|=\left|P_{d}\right|+\sum_{d^{\prime} \mid d d d^{\prime} \neq d} \phi\left(d^{\prime}\right)
$$

The last equality comes from our inductive hypothesis that for the $d^{\prime}<d,\left|P_{d}\right|=\phi(d)$. By our earlier theorem the summation on the right is equal to $d-\phi(d)$. So we have that $d=\left|P_{d}\right|+d-\phi(d)$ and hence $\left|P_{d}\right|=\phi(d)$ as desired.

Definition 1.0.29. An element $a \in \mathbb{F}_{p}$ is a quadratic residue $\bmod \mathrm{p}$ if $a \neq 0$ and there is a b such that $a=b^{2}$.

Example 1.0.30. 2 is a quadratic residue mod 7 because $2=3^{2}$ in \mathbb{F}_{7}.
Definition 1.0.31. An element $a \in \mathbb{F}_{p}$ is a quadratic nondesidue $\bmod p$ if there is no $b \in \mathbb{F}_{p}$ such that $a=b^{2}$.

Definition 1.0.32 (The Legendre Symbol).

$$
\left(\frac{a}{p}\right)= \begin{cases}1 & \text { if } a \text { is a quadratic residue } \\ -1 & \text { if } a \text { is a quadratic nonresidue } \\ 0 & \text { if } a=0\end{cases}
$$

Theorem 1.0.33 (Euler). For odd primes $p,\left(\frac{a}{p}\right) \equiv a^{\frac{p-1}{2}}(\bmod p)$.
Proof. Let $b=a^{\frac{p-1}{2}}$. If $a=0$, then $b=0$ and the theorem holds. If $a \neq 0$, then $b^{2}=a^{p-1}=1$. So $0=b^{2}-1=(b+1)(b-1)$ which implies that $b-1=0$ or $b+1=0$ and hence $b= \pm 1$.

If a is a quadratic residue mod p , then there is a c such that $c^{2}=a$ and hence $a^{\frac{p-1}{2}}=$ $c^{p-1}=1$ by Fermat's Little Theorem and the desired result holds.

Now consider the case where a is a quadratic nonresidue mod p. Now by the corollary above, there is a primitive root mod p. Call it g. So $\operatorname{ord}_{p}(g)=p-1$ which implies that there is an l such that $g^{l}=a$. We call l the discrete \log of a in \mathbb{F}_{p} with base g.

Lemma 1.0.34. $a=g^{l}$ is a quadratic residue $\bmod p$ if and only if l is even.
If we can show the lemma, then we would know that for a a quadratic nonresidue, l would be odd. So $a^{\frac{p-1}{2}}=g^{\frac{l \cdot(p-1)}{2}}$. Since l is odd, it cannot cancel the 2 in the denominator and hence $\frac{l \cdot(p-1)}{2}$ would not be divisible by $p-1$. Hence since the order of g is $p-1$, this means that $a^{\frac{p-1}{2}}=g^{\frac{l \cdot(p-1)}{2}} \neq 1$. By the above, this means that $a^{\frac{p-1}{2}}=-1$ as desired.
Proof of Lemma. If l is even, then $a=g^{l}=\left(g^{\frac{l}{2}}\right)^{2}$ and hence a is a quadratic residue.
Now assume that a is a quadratic residue. Then $a=b^{2}$ for some $b \neq 0$. But then $b=g^{s}$ for some s and hence $g^{l}=a=b^{2}=g^{2 s}$ and so $g^{2 s-l}=1$. But g has order $p-1$. Hence $(p-1) \mid(2 s-l)$. Since p is odd, $p-1$ is even and hence $2 \mid(p-1)$. So $2 \mid(2 s-l)$. Since $2 \mid 2 s$, this means that $2 \mid l$ whence l is even.

Corollary 1.0.35. -1 is a quadratic residue $\bmod \mathrm{p}$ if and only if $p \equiv 1(\bmod 4)$ or $p=2$.
Proof. For $p=2,1=-1$ and so $1^{2}=1=-1$. So let $p \geq 3$. So

$$
\left(\frac{-1}{p}\right)=(-1)^{\frac{p-1}{2}}= \begin{cases}1 & \text { if } 4 \mid p-1 \\ -1 & \text { if } 4 \nmid p-1\end{cases}
$$

Corollary 1.0.36. If $p \equiv 1(\bmod 4)$ then there is an a such that $p \mid\left(a^{2}+1\right)\left(\right.$ i.e. $a^{2} \equiv-1$ $(\bmod p))$.
Experiment 1.0.37. Evaluate $\left(\frac{2}{p}\right)$ experimentally.

